Medullary Thyroid Carcinoma

  • Jean François Chatal
  • Jacques Barbet
  • Francoise Kraeber-Bodéré
  • David M. Goldenberg
Chapter

Abstract

Medullary thyroid carcinoma (MTC) originates from parafollicular cells (C-cells) of the thyroid gland. Calcitonin is a hormone secreted by parafollicular cells. The exact role of calcitonin is not understood, but it modulates bone mineral turnover. Medullary carcinoma accounts for less than 5 % of all thyroid cancers and is a clinically heterogeneous disease with quite variable growth rates and survival extending from months to years, sometimes decades, even when the disease is metastatic [1]. The primary treatment for this neuroendocrine tumor is surgical consisting of total thyroidectomy, with dissection of ipsilateral and central lymph nodes, which may be extended to contralateral nodes. Following surgery, patients, without lymph node involvement who have an undetectable calcitonin serum level, can be considered to be cured. For patients with persistent abnormal calcitonin serum levels, indicating residual disease or relapse, imaging generally becomes positive when calcitonin levels exceed 200 ng/L [2]. When the relapse is localized in the neck or mediastinum, single or repeated surgical resection(s) is (are) performed but are rarely followed by a normalization of calcitonin serum level. This situation is compatible, nevertheless, with long survival extending to some years and even decades without additional therapy [3]. It is important to take into consideration reliable prognostic indicators before planning systemic treatment (targeted radionuclide therapy and/or chemotherapy). Indeed, systemic treatment can be highly toxic with only a modest survival benefit. Thus, it is necessary to carefully balance the potential toxicity and benefit.

Keywords

Placebo Toxicity Tyrosine Radionuclide Diarrhea 

References

  1. 1.
    Kebebew E, Ituarte PH, Siperstein AE, et al. Medullary thyroid carcinoma: characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88:1139–48.PubMedCrossRefGoogle Scholar
  2. 2.
    Giraudet AL, Vanel D, Leboulleux S, et al. Imaging medullary thyroid carcinoma with persistent elevated calcitonin levels. J Clin Endocrinol Metab. 2007;92:4185–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Bergholm U, Bergstrom R, Ekbom A. Long-term follow-up of patients with medullary carcinoma of the thyroid. Cancer. 1997;79:132–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Modigliani E, Cohen R, Campos JM, et al. Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Clin Endocrinol. 1998;48:265–73.CrossRefGoogle Scholar
  5. 5.
    Miccoli P, Minuto MNMN, Ugolini C, et al. Clinically unpredictable prognostic factors in the outcome of medullary thyroid cancer. Endocr Relat Cancer. 2007; 14:1099–105.PubMedCrossRefGoogle Scholar
  6. 6.
    Byar DP, Green SB, Dor P, et al. A prognostic index for thyroid carcinoma. A study of the EORTC Thyroid Cancer Cooperative Group. Eur J Cancer. 1979;15:1033–41.PubMedCrossRefGoogle Scholar
  7. 7.
    Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic ret oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93:682–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Ito Y, Yoshida H, Tomoda C, et al. Expression of Cdc25b expression level predicts a poor prognosis. Cancer Lett. 2005;229:291–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Tisell LE, Oden A, Muth A, et al. The Ki67 index a prognostic marker in medullary thyroid carcinoma. Br J Cancer. 2003;89:2093–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Barbet J, Campion L, Kraeber-Bodéré F, Chatal JF, The GTE study group. Prognostic impact of serum calcitonin and carcinoembryonic antigen doubling-times in patients with medullary thyroid carcinoma. J Clin Endocrinol Metab. 2005;90:6077–84.CrossRefGoogle Scholar
  11. 11.
    Meijer JAA, le Cessie S, van den Hout WB, et al. Calcitonin and carcinoembryonic antigen doubling times as prognostic factors in medullary thyroid carcinoma: a structured meta-analysis. Clin Endocrinol. 2010;72:534–42.CrossRefGoogle Scholar
  12. 12.
    Mirallie E, Vuillez JP, Bardet S, et al. High frequency of bone/bone marrow involvement in advanced medullary thyroid cancer. J Clin Endocrinol Metab. 2005;90:779–88.PubMedCrossRefGoogle Scholar
  13. 13.
    Chatal JF, Campion L, Kraeber-Bodéré F, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-­carcinoembryonic antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24:1705–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Oudoux A, Salaun PY, Bournaud C, et al. Sensitivity and prognostic value of Positron Emission Tomography with F-18-Fluorodeoxyglucose and sensitivity of immunoscintigraphy in patients with medullary thyroid carcinoma treated with anticarcinoembryonic antigen-targeted radioimmunotherapy. J Clin Endocrinol Metab. 2007;92:4590–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Beheshti M, Pöcher S, Vali R, et al. The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. Eur Radiol. 2009;19:1425–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Machens A, Dralle H. Parenchymal versus nonparenchymal target lesion response in clinical trials for metastatic medullary thyroid cancer. J Clin Oncol. 2010;28:e534: author reply e535–6.Google Scholar
  17. 17.
    Lorenz K, Brauckhoff M, Behrmann C, et al. Selective arterial chemoembolization for hepatic metastases from medullary thyroid carcinoma. Surgery. 2005;138:986–93.PubMedCrossRefGoogle Scholar
  18. 18.
    Fromigue J, De Baere T, Baudin E, et al. Chemoembolization for liver metastases from medullary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:2496–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Juweid ME, Hajjar G, Stein R, et al. Initial experience with high-dose radioimmunotherapy of metastatic medullary thyroid cancer using 131I-MN-14F(b)2 anti-carcinoembryonic antigen MAb and AHSCR. J Nucl Med. 2000;41:93–103.PubMedGoogle Scholar
  20. 20.
    Juweid ME, Hajjar G, Swayne LC. Phase I/II trial of (131)I-MN-14F(ab)2 anti-carcinoembryonic antigen monoclonal antibody in the treatment of patients with metastatic medullary thyroid carcinoma. Cancer. 1999;85:1828–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Barbet J, Kraeber-Bodéré F, Vuillez JP, et al. Pretargeting with the affinity enhancement system for radioimmunotherapy. Cancer Biother Radiopharm. 1999;14:153–66.PubMedCrossRefGoogle Scholar
  22. 22.
    Bardies M, Bardet S, Faivre-Chauvet A, et al. Bispecific antibody and iodine-131-labeled bivalent hapten dosimetry in patients with medullary thyroid or small-cell lung cancer. J Nucl Med. 1996;37:1853–9.PubMedGoogle Scholar
  23. 23.
    Bodei L, Handkiewicz-Junak D, Grana C, et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm. 2004;19:65–71.PubMedCrossRefGoogle Scholar
  24. 24.
    Iten F, Müller B, Schindler C, et al. Response to [90Y-DOTA]-TOC treatment is associated with long-term survival benefit in metastasized medullary thyroid cancer: a phase II clinical trial. Clin Cancer Res. 2007;13:6696–702.PubMedCrossRefGoogle Scholar
  25. 25.
    Castellani MR, Seregni E, Maccauro M, et al. MIBG for diagnosis and therapy of medullary thyroid carcinoma: is there still a role? Q J Nucl Med Mol Imaging. 2008;52:430–40.PubMedGoogle Scholar
  26. 26.
    Schlumberger MJ, Elisei R, Bastholt L, et al. Phase II study of safety and efficacy of motesanib in patients with progressive or symptomatic, advanced or metastatic medullary thyroid cancer. J Clin Oncol. 2009; 27:3794–801.PubMedCrossRefGoogle Scholar
  27. 27.
    Wells SA, Gosnell JE, Gagel RF, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol. 2010;28:767–72.PubMedCrossRefGoogle Scholar
  28. 28.
    Wells SA, Robinson BG, Gagel RF, et al. Vandetanib (VAN) in locally advanced or metastatic medullary thyroid cancer (MTC): a randomized, double-blind phase III trial (ZETA). J Clin Oncol. 2010;28:15s (suppl; abstr 5503).Google Scholar
  29. 29.
    Loges S, Mazzone M, Hohensinner P, et al. Silencing or fueling metastasis with VEGF inhibitors. Cancer Cell. 2009;15:167–70.PubMedCrossRefGoogle Scholar
  30. 30.
    Stellrecht CM, Gandhi V. MET receptor tyrosine kinase as a therapeutic anticancer target. Cancer Lett. 2009;280:1–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Kurzrock R, ShermanSI BDW, et al. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jean François Chatal
    • 1
  • Jacques Barbet
    • 1
    • 2
  • Francoise Kraeber-Bodéré
    • 2
    • 3
  • David M. Goldenberg
    • 4
    • 5
  1. 1.GIP ARRONAXNantesFrance
  2. 2.Oncology Research CenterNantes University, Inserm UMR 892NantesFrance
  3. 3.Nuclear Medicine DepartmentUniversity Hospital and ICO Gauducheau Cancer InstituteNantesFrance
  4. 4.IBC Pharmaceuticals, Inc, and Immunomedics, IncMorris PlainsUSA
  5. 5.Garden State Cancer Center, Center for Molecular Medicine and ImmunologyMorris PlainsUSA

Personalised recommendations