Skip to main content

Radionuclide Therapy in Melanoma

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Melanoma is being diagnosed more often than ever before. This may be due in part to greater vigilance but there is, nevertheless, a steadily increasing incidence of the disease in the western world. Melanoma accounts for less than 5 % of skin cancers but is the cause of more than 80 % of deaths from skin cancer, and the loss of life years is amplified since some patients die when quite young. If detected early, there is a good prognosis with 10-year survival of around 95 % for Stage I melanoma, but if systemic metastases are present, the prognosis is poor with 10-year survival for Stage IV melanoma less than 5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeNardo GL, Raventos A, Hines HH, et al. Requirements for a treatment planning system for radioimmunotherapy. Int J Radiat Oncol Biol Phys. 1985;11:335–48.

    Article  PubMed  CAS  Google Scholar 

  2. Larson SM, Brown JP, Wright PW, et al. Imaging of melanoma with I-131-labeled monoclonal antibodies. J Nucl Med. 1983;24:123–9.

    PubMed  CAS  Google Scholar 

  3. Dadachova E, Revskaya E, Sesay MA, et al. Pre-clinical evaluation and efficacy studies of a melanin-binding IgM antibody labeled with 188Re against experimental human metastatic melanoma in nude mice. Cancer Biol Ther. 2008;7:1116–27.

    Article  PubMed  CAS  Google Scholar 

  4. Lazova R, Klump V, Pawelek J. Autophagy in cutaneous malignant melanoma. J Cutan Pathol. 2010;37:256–68.

    Article  PubMed  Google Scholar 

  5. Milenic DE, Wong KJ, Baidoo KE, et al. Cetuximab: preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm. 2008;23:619–31.

    Article  PubMed  CAS  Google Scholar 

  6. Garin-Chesa P, Beresford HR, Carrato-Mena A, et al. Cell surface molecules of human melanoma. Immunohistochemical analysis of the gp57, GD3 and mel-CSPG antigenic systems. Am J Pathol. 1989;134: 295–303.

    PubMed  CAS  Google Scholar 

  7. Dadachova E, Casadevall A. Renaissance of targeting molecules for melanoma. Cancer Biother Radiopharm. 2007;21:545–52.

    Article  Google Scholar 

  8. Siantar CL, DeNardo GL, Lam K, et al. Selecting an intervention time for intravascular enzymatic cleavage of peptide linkers to clear radioisotope from normal tissues. Cancer Biother Radiopharm. 2007;22:556–63.

    Article  PubMed  CAS  Google Scholar 

  9. Williams LE, DeNardo GL, Meredith RF. Targeted radionuclide therapy. Med Phys. 2008;35:3062–8.

    Article  PubMed  CAS  Google Scholar 

  10. Allen BJ, Raja C, Rizvi S, et al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol Ther. 2005;4:1318–24.

    Article  PubMed  CAS  Google Scholar 

  11. Gray BN, Anderson JE, Burton MA, et al. Regression of liver metastases following treatment with yttrium-90 microspheres. Aust N Z J Surg. 1992;62:105–10.

    Article  PubMed  CAS  Google Scholar 

  12. Cianni R, Urigo C, Notarianni E, et al. Radioembolisation using yttrium 90 (Y-90) in patients affected by unresectable hepatic metastases. Radiol Med. 2010;115:619–33.

    Article  PubMed  CAS  Google Scholar 

  13. Michelot JM, Moreau MFC, Veyre AJ, et al. Phase II scintigraphic clinical trial of malignant melanoma and metastases with iodine-123-N-(2-diethylaminoethyl 4-iodobenzamide). J Nucl Med. 1993;34:1260–6.

    PubMed  CAS  Google Scholar 

  14. Chezal JM, Papon J, Labarre P, et al. Evaluation of radiolabeled (hetero) aromatic analogues of N-(2-diethylaminoethyl)-4-iodobenzamide for imaging and targeted radionuclide therapy in melanoma. J Med Chem. 2008;51:3133–44.

    Article  PubMed  CAS  Google Scholar 

  15. Joyal JL, Barrett JA, Marquis JC, et al. Preclinical evaluation of an 131I-labeled benzamide for targeted radiotherapy of metastatic melanoma. Cancer Res. 2010;70:4045–53.

    Article  PubMed  CAS  Google Scholar 

  16. Bonnet M, Mishellany F, Papon J, et al. Anti-melanoma efficacy of internal radionuclide therapy in relation to melanin target distribution. Pigment Cell Melanoma Res. 2010;23:1–11.

    Article  Google Scholar 

  17. Bonnet-Duquennoy M, Papon J, Mishellany F, et al. Targeted radionuclide therapy of melanoma: anti-tumoral efficacy studies of a new 131I labelled potential agent. Int J Cancer. 2009;125:708–16.

    Article  PubMed  CAS  Google Scholar 

  18. Gardette M, Papon J, Bonnet M, et al. Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using (125)I, an Auger electron emitter. Invest New Drugs. 2011;29(6):1253–63.

    Article  PubMed  CAS  Google Scholar 

  19. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417: 949–54.

    Article  PubMed  CAS  Google Scholar 

  20. Curtin JA, Fridlyand J, Kageshita T, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.

    Article  PubMed  CAS  Google Scholar 

  21. Marquette A, Bagot M, Bensussan A, Dumas N. Recent discoveries in the genetics of melanoma and their therapeutic implications. Arch Immunol Ther Exp (Warsz). 2007;55:363–72.

    Article  CAS  Google Scholar 

  22. Hou P, Liu D, Ji M, et al. Induction of thyroid gene expression and radioiodine uptake in melanoma cells: novel therapeutic implications. PLoS One. 2009;4:e6200.

    Article  PubMed  Google Scholar 

  23. Huang R, Zhao Z, Ma X, et al. Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Cancer Gene Ther. 2011;18(2):144–52.

    Article  PubMed  CAS  Google Scholar 

  24. Bhang HE, Gabrielson KL, Laterra J, et al. Tumor-specific imaging through progression elevated gene-3 promoter-driven gene expression. Nat Med. 2011; 17(1):123–9.

    Article  PubMed  CAS  Google Scholar 

  25. Quinn T, Zhang X, Miao Y. Targeted melanoma imaging and therapy with radiolabeled alpha-melanocyte stimulating hormone peptide analogues. G Ital Dermatol Venereol. 2010;145:245–58.

    PubMed  CAS  Google Scholar 

  26. Miao Y, Owen NK, Fisher DR, et al. Therapeutic efficacy of a 188Re-labeled alpha-melanocyte-stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. J Nucl Med. 2005;46:121–9.

    PubMed  CAS  Google Scholar 

  27. Miao Y, Hylarides M, Fisher DR, et al. Melanoma therapy via peptide-targeted (alpha)-radiation. Clin Cancer Res. 2005;11:5616–21.

    Article  PubMed  CAS  Google Scholar 

  28. Froidevaux S, Calame-Christe M, Tanner H, Eberle AN. Melanoma targeting with DOTA-alpha-melanocyte-stimulating hormone analogs: structural parameters affecting tumor uptake and kidney uptake. J Nucl Med. 2005;46:887–95.

    PubMed  CAS  Google Scholar 

  29. van Essen M, Krenning EP, Kooij PP, et al. Effects of therapy with [177Lu-DOTA0, Tyr3] octreotate in patients with paraganglioma, meningioma, small cell lung carcinoma and melanoma. J Nucl Med. 2006;47:1599–606.

    PubMed  Google Scholar 

  30. Asai T, Shuto S, Matsuda A, et al. Targeting and ­anti-tumor efficacy of liposomal 5’-O- dipalmitoy­lphosphatidyl 2’-C-cyano-2’-deoxy-1-beta-D-arabino-pentofuranosylcytosine in mice lung bearing B16BL6 melanoma. Cancer Lett. 2001;162:49–56.

    Article  PubMed  CAS  Google Scholar 

  31. Fondell A, Edwards K, Ickenstein LM, et al. Nuclisome: a novel concept for radionuclide therapy using targeting liposomes. Eur J Nucl Med Mol Imaging. 2010;37:114–23.

    Article  PubMed  CAS  Google Scholar 

  32. Khan MK, Minc LD, Nigavekar SS, et al. Fabrication of (198Au0) radioactive composite nanodevices and their use for nanobrachytherapy. Nanomedicine. 2008;4:57–69.

    Article  PubMed  CAS  Google Scholar 

  33. Nakanishi T, Ichihashi M, Mishima Y, Matsuzawa T, Fukuda H. Thermal neutron capture therapy of malignant melanoma: in vitro radiobiological analysis. Int J Radiat Biol Relat Stud Phys Chem Med. 1980; 37:573–80.

    Article  PubMed  CAS  Google Scholar 

  34. Allen BJ. Boron neutron capture therapy—a research program for glioblastoma and melanoma. Australas Phys Eng Sci Med. 1983;6:184–6.

    PubMed  CAS  Google Scholar 

  35. Mishima Y, Ichihashi M, Tsuji M, et al. Treatment of malignant melanoma by selective thermal neutron capture therapy using melanoma-seeking compound. J Invest Dermatol. 1989;92:321S–5.

    Article  PubMed  CAS  Google Scholar 

  36. Tsuboi T, Kondoh H, Hiratsuka J, Mishima Y. Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. Pigment Cell Res. 1998;11:275–82.

    Article  PubMed  CAS  Google Scholar 

  37. Altieri S, Balzi M, Bortolussi S, et al. Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J Med Chem. 2009;52:7829–35.

    Article  PubMed  CAS  Google Scholar 

  38. Kabalka GW, Yao ML, Marepally SR, Chandra S. Biological evaluation of boronated unnatural amino acids as new boron carriers. Appl Radiat Isot. 2009;67:S374–9.

    Article  PubMed  CAS  Google Scholar 

  39. Wilkinson DA, Kolar M, Fleming PA, Singh AD. Dosimetric comparison of 106Ru and 125I plaques for treatment of shallow (< or = 5mm) choroidal melanoma lesions. Br J Radiol. 2008;81:784–9.

    Article  PubMed  CAS  Google Scholar 

  40. Verschueren KM, Creutzberg CL, Schalij-Delfos NE, et al. Long-term outcomes of eye-conserving treatment with ruthenium(106) brachytherapy for choroidal ­melanoma. Radiother Oncol. 2010;95:332–8.

    Article  PubMed  Google Scholar 

  41. Gunduz K, Kurt RA, Akmese HE, et al. Ruthenium-106 plaque radiotherapy alone or in combination with transpupillary thermotherapy in the management of choroidal melanoma. Jpn J Ophthalmol. 2010;54:338–43.

    Article  PubMed  Google Scholar 

  42. Oliver SC, Leu M, DeMarco JJ, Chow PE, Lee SP, McCannel TA. Attenuation of iodine 125 radiation with vitreous substitutes in the treatment of uveal melanoma. Arch Ophthalmol. 2010;128:888–93.

    Article  PubMed  Google Scholar 

  43. Thomson RM, Furutani KM, Pulido JS, et al. Modified COMS plaques for 125I and 103Pd iris melanoma brachytherapy. Int J Radiat Oncol Biol Phys. 2010; 78:1261–9.

    Article  PubMed  Google Scholar 

  44. Uren RF, Howman-Giles RB, Shaw HM, et al. Lymphoscintigraphy in high-risk melanoma of the trunk: predicting draining node groups, defining lymphatic channels and locating the sentinel node. J Nucl Med. 1993;34:1435–40.

    PubMed  CAS  Google Scholar 

  45. Morton DL, Wen DR, Wong JH, et al. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127:392–9.

    Article  PubMed  CAS  Google Scholar 

  46. Morton DL, Thompson JF, Cochran AJ, et al. Sentinel-node biopsy or nodal observation in melanoma. N Engl J Med. 2006;355:1307–17.

    Article  PubMed  CAS  Google Scholar 

  47. Denoyer D, Potdevin T, Roselt P, et al. Improved detection of regional melanoma metastasis using 18F-6-fluoro-N-[2-(diethylamino)ethyl] pyridine-3-carboxamide, a melanin-specific PET probe, by perilesional administration. J Nucl Med. 2011;52:115–22.

    Article  PubMed  Google Scholar 

  48. Sanki A, Uren RF, Moncrieff M, et al. Targeted high-resolution ultrasound is not an effective substitute for sentinel lymph node biopsy in patients with primary cutaneous melanoma. J Clin Oncol. 2009;27:5614–9.

    Article  PubMed  Google Scholar 

  49. Carlino MS, Saunders CA, Gebski V, Menzies AM, Ma B, Lebowitz PF, et al. Heterogeneity of FDG-PET response to GSK2118436, an inhibitor of oncogenic mutant BRAF-kinase in BRAF-mutant metastatic melanoma. J Clin Oncol. 2011;29 Suppl:Abstract 8539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger F. Uren M.D., F.R.A.C.P., D.D.U. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uren, R.F., Howman-Giles, R., Thompson, J.F. (2013). Radionuclide Therapy in Melanoma. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics