Skip to main content

Radionuclide Therapy of Leukemias

  • Chapter
  • First Online:
Nuclear Medicine Therapy
  • 2078 Accesses

Abstract

Leukemia is currently the most common fatal cancer in the United States among males younger than 40 years old, whereas bronchopulmonary cancer predominates in men aged 40 years and older. Among females, leukemia is the leading cause of cancer death before age 20 years, breast cancer ranks first at ages 20–59 years, and lung cancer ranks first at ages 60 years and older [1] (Table 2.1). There are 259,889 people living with, or in remission from, leukemia in the US. In 2011, it was estimated that 44,600 new cases of leukemia in the US would be diagnosed (25,320 men and 19,280 women). In total, 21,780 individuals would die from the disease (12,740 men and 9,040 women). In children younger than 14 years old, nearly one-third of the cancers diagnosed are leukemias (particularly acute lymphoblastic leukemia (ALL)) (Table 2.2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, et al. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    PubMed  Google Scholar 

  2. Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    PubMed  CAS  Google Scholar 

  3. Kaminski MS, et al. Radioimmunotherapy with iodine (131)I tositumomab for relapsed or refractory B-cell non-Hodgkin lymphoma: updated results and long-term follow-up of the University of Michigan experience. Blood. 2000;96(4):1259–66.

    PubMed  CAS  Google Scholar 

  4. Liu SY, et al. Follow-up of relapsed B-cell lymphoma patients treated with iodine-131-labeled anti-CD20 antibody and autologous stem-cell rescue. J Clin Oncol. 1998;16(10):3270–8.

    PubMed  CAS  Google Scholar 

  5. Matthews DC, et al. Phase I study of (131)I-anti-CD45 antibody plus cyclophosphamide and total body irradiation for advanced acute leukemia and myelodysplastic syndrome. Blood. 1999;94(4):1237–47.

    PubMed  CAS  Google Scholar 

  6. Witzig TE, et al. Phase I/II trial of IDEC-Y2B8 radioimmunotherapy for treatment of relapsed or refractory CD20(+) B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 1999;17(12):3793–803.

    PubMed  CAS  Google Scholar 

  7. Grossbard ML, et al. Monoclonal antibody-based therapies of leukemia and lymphoma. Blood. 1992;80(4):863–78.

    PubMed  CAS  Google Scholar 

  8. Scheinberg DA. Monoclonal antibodies in the treatment of myelogenous leukemias. Cancer Treat Res. 1993;64:213–32.

    PubMed  CAS  Google Scholar 

  9. O’Donoghue JA, Bardies M, Wheldon TE. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J Nucl Med. 1995;36(10):1902–9.

    PubMed  Google Scholar 

  10. Siegel JA, Stabin MG. Absorbed fractions for electrons and beta particles in spheres of various sizes. J Nucl Med. 1994;35(1):152–6.

    PubMed  CAS  Google Scholar 

  11. Nunez MI, et al. Radiation-induced DNA double-strand break rejoining in human tumour cells. Br J Cancer. 1995;71(2):311–6.

    PubMed  CAS  Google Scholar 

  12. Kolesnick RN, Haimovitz-Friedman A, Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for tumor necrosis factor, Fas, and ionizing radiation. Biochem Cell Biol. 1994;72(11–12):471–4.

    PubMed  CAS  Google Scholar 

  13. Pandita TK, et al. Ionizing radiation activates the ATM kinase throughout the cell cycle. Oncogene. 2000;19(11):1386–91.

    PubMed  CAS  Google Scholar 

  14. Munro TR. The relative radiosensitivity of the nucleus and cytoplasm of Chinese hamster fibroblasts. Radiat Res. 1970;42(3):451–70.

    PubMed  CAS  Google Scholar 

  15. Matthews DC, Appelbaum FR. Radioimmunotherapy and hematopoietic cell transplantation. In: Thomas ED, Blume KG, Forman SJ, editors. Thomas’ hematopoietic cell transplantation, vol. 1. 3rd ed. Malden: Blackwell; 2004.

    Google Scholar 

  16. Appelbaum FR. Antibody-targeted therapy for ­myeloid leukemia. Semin Hematol. 1999;36 (4 Suppl 6):2–8.

    PubMed  CAS  Google Scholar 

  17. Wright HA, et al. Calculations of physical and chemical reactions produced in irradiated water containing DNA. Radiat Prot Dosimetry. 1985;13(1–4):133–6.

    CAS  Google Scholar 

  18. Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted {alpha}-particle therapy. J Nucl Med. 2005;46 Suppl 1:199S–204.

    PubMed  Google Scholar 

  19. Humm JL. A microdosimetric model of astatine-211 labeled antibodies for radioimmunotherapy. Int J Radiat Oncol Biol Phys. 1987;13(11):1767–73.

    PubMed  CAS  Google Scholar 

  20. Humm JL, Chin LM. A model of cell inactivation by alpha-particle internal emitters. Radiat Res. 1993;134(2):143–50.

    PubMed  CAS  Google Scholar 

  21. Kozak RW, et al. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy. Proc Natl Acad Sci U S A. 1986;83(2):474–8.

    PubMed  CAS  Google Scholar 

  22. Macklis RM, et al. Radioimmunotherapy with alpha-particle-emitting immunoconjugates. Science. 1988;240(4855):1024–6.

    PubMed  CAS  Google Scholar 

  23. Kampf G. Induction of DNA double-strand breaks by ionizing radiation of different quality and their relevance for cell inactivation. Radiobiol Radiother (Berl). 1988;29(6):631–58.

    CAS  Google Scholar 

  24. Raju MR, et al. Radiobiology of alpha particles: III. Cell inactivation by alpha-particle traversals of the cell nucleus. Radiat Res. 1991;128(2):204–9.

    PubMed  CAS  Google Scholar 

  25. McDevitt MR, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med. 1998;25(9):1341–51.

    PubMed  CAS  Google Scholar 

  26. Yao Z, et al. Comparative cellular catabolism and retention of astatine-, bismuth-, and lead-radiolabeled internalizing monoclonal antibody. J Nucl Med. 2001;42(10):1538–44.

    PubMed  CAS  Google Scholar 

  27. Koch L, et al. Production of Ac-225 and application of the Bi-213 daughter in cancer therapy. Czech J Phys. 1999;49:817–22.

    CAS  Google Scholar 

  28. Geerlings MW, et al. The feasibility of 225Ac as a source of alpha-particles in radioimmunotherapy. Nucl Med Commun. 1993;14(2):121–5.

    PubMed  CAS  Google Scholar 

  29. McDevitt MR, Scheinberg DA. Ac-225 and her daughters: the many faces of Shiva. Cell Death Differ. 2002;9(6):593–4.

    PubMed  CAS  Google Scholar 

  30. Davis IA, et al. Comparison of 225actinium chelates: tissue distribution and radiotoxicity. Nucl Med Biol. 1999;26(5):581–9.

    PubMed  CAS  Google Scholar 

  31. Miederer M, Scheinberg DA, McDevitt MR. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv Drug Deliv Rev. 2008;60(12):1371–82.

    PubMed  CAS  Google Scholar 

  32. Chappell LL, et al. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications. Bioconjug Chem. 2000;11(4):510–9.

    PubMed  CAS  Google Scholar 

  33. McDevitt MR, et al. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot. 2002;57(6):841–7.

    PubMed  CAS  Google Scholar 

  34. Zalutsky MR, Vaidyanathan G. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy. Curr Pharm Des. 2000;6(14):1433–55.

    PubMed  CAS  Google Scholar 

  35. Zalutsky MR, et al. High-level production of alpha-particle-emitting (211)At and preparation of (211)At-labeled antibodies for clinical use. J Nucl Med. 2001;42(10):1508–15.

    PubMed  CAS  Google Scholar 

  36. Johnson EL, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol. 1995;22(1):45–54.

    PubMed  CAS  Google Scholar 

  37. Zalutsky MR, Bigner DD. Radioimmunotherapy with alpha-particle emitting radioimmunoconjugates. Acta Oncol. 1996;35(3):373–9.

    PubMed  CAS  Google Scholar 

  38. Larsen RH, Wieland BW, Zalutsky MR. Evaluation of an internal cyclotron target for the production of 211At via the 209Bi (alpha,2n)211 at reaction. Appl Radiat Isot. 1996;47(2):135–43.

    PubMed  CAS  Google Scholar 

  39. Zalutsky MR, Narula AS. Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int J Rad Appl Instrum A. 1988;39(3):227–32.

    PubMed  CAS  Google Scholar 

  40. Atcher RW, Friedman AM, Hines JJ. An improved generator for the production of 212Pb and 212Bi from 224Ra. Int J Rad Appl Instrum A. 1988;39(4):283–6.

    PubMed  CAS  Google Scholar 

  41. McDevitt MR, et al. An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Appl Radiat Isot. 1999;50(5):895–904.

    PubMed  CAS  Google Scholar 

  42. Ma D, et al. Rapid preparation of short-lived alpha particle emitting radioimmunopharmaceuticals. Appl Radiat Isot. 2001;55(4):463–70.

    PubMed  CAS  Google Scholar 

  43. Henriksen G, et al. Sterically stabilized liposomes as a carrier for alpha-emitting radium and actinium radionuclides. Nucl Med Biol. 2004;31(4):441–9.

    PubMed  CAS  Google Scholar 

  44. Bayer-HealthCare. Bayer’s investigational compound radium-223 chloride met its primary endpoint of significantly improving overall survival in a phase III trial in patients with castration-resistant prostate cancer that has spread to the bone. 6 June 2011. http://pharma.bayer.com/html/pdf/news_room115.pdf. Last accessed 5 June 2012.

  45. Nilsson S, et al. Phase I study of Alpharadin™ (223Ra), an alpha-emitting bone-seeking agent in cancer patients with skeletal metastases. Oral presentation, annual congress of the EANM, Helsinki, September 8, 2004. Eur J Nucl Med Mol Imaging. 2004;31(S2):290.

    Google Scholar 

  46. Nilsson S, et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 2007;8(7):587–94.

    PubMed  CAS  Google Scholar 

  47. Nilsson S, et al. First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases. Clin Cancer Res. 2005;11(12):4451–9.

    PubMed  CAS  Google Scholar 

  48. Allen BJ, Blagojevic N. Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: the potential role of terbium-149. Nucl Med Commun. 1996;17(1):40–7.

    PubMed  CAS  Google Scholar 

  49. Mausner LF, Straub RF, Srivastava SC. The in vivo generator for radioimmunotherapy. J Label Compd Radiopharm. 1989;26(1–12):498–500.

    Google Scholar 

  50. Yong K, Brechbiel MW. Towards translation of 212Pb as a clinical therapeutic; getting the lead in! Dalton Trans. 2011;40(23):6068–76.

    PubMed  CAS  Google Scholar 

  51. Craig FE, Foon KA. Flow cytometric immunophenotyping for hematologic neoplasms. Blood. 2008;111(8):3941–67.

    PubMed  CAS  Google Scholar 

  52. Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. Am J Med Sci. 2002;324(1):14–30.

    PubMed  Google Scholar 

  53. Uchiyama T, et al. Interleukin-2 receptor (Tac antigen) expressed on adult T cell leukemia cells. J Clin Invest. 1985;76(2):446–53.

    PubMed  CAS  Google Scholar 

  54. Waldmann TA, et al. Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with yttrium-90-labeled anti-Tac. Blood. 1995;86(11):4063–75.

    PubMed  CAS  Google Scholar 

  55. Zhang Z, et al. Effective treatment of a murine model of adult T-cell leukemia using 211At-7G7/B6 and its combination with unmodified anti-Tac (daclizumab) directed toward CD25. Blood. 2006; 108(3):1007–12.

    PubMed  CAS  Google Scholar 

  56. Andrews RG, Torok-Storb B, Bernstein ID. Myeloid-associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies. Blood. 1983;62(1):124–32.

    PubMed  CAS  Google Scholar 

  57. Dinndorf PA, et al. Expression of normal myeloid-associated antigens by acute leukemia cells. Blood. 1986;67(4):1048–53.

    PubMed  CAS  Google Scholar 

  58. Griffin JD, et al. A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res. 1984;8(4):521–34.

    PubMed  CAS  Google Scholar 

  59. Jilani I, et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol. 2002;118(4):560–6.

    PubMed  Google Scholar 

  60. van der Jagt RHC, et al. Localization of radiolabeled antimyeloid antibodies in a human acute leukemia xenograft tumor model. Cancer Res. 1992;52(1):89–94.

    PubMed  Google Scholar 

  61. Schwartz MA, et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol. 1993;11(2):294–303.

    PubMed  CAS  Google Scholar 

  62. Tanimoto M, et al. Restricted expression of an early myeloid and monocytic cell surface antigen defined by monoclonal antibody M195. Leukemia. 1989;3(5):339–48.

    PubMed  CAS  Google Scholar 

  63. Co MS, et al. Chimeric and humanized antibodies with specificity for the CD33 antigen. J Immunol. 1992;148(4):1149–54.

    PubMed  CAS  Google Scholar 

  64. Caron PC, et al. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res. 1992;52(24):6761–7.

    PubMed  CAS  Google Scholar 

  65. Caron P, et al. A phase 1B trial of humanized monoclonal antibody M195 (anti-CD33) in myeloid leukemia: specific targeting without immunogenicity. Blood. 1994;83(7):1760–8.

    PubMed  CAS  Google Scholar 

  66. Caron PC, Dumont L, Scheinberg DA. Supersaturating infusional humanized anti-CD33 monoclonal antibody HuM195 in myelogenous leukemia. Clin Cancer Res. 1998;4(6):1421–8.

    PubMed  CAS  Google Scholar 

  67. Mulford D. Antibody therapy for acute myeloid leukemia. Semin Hematol. 2008;45(2):104–9.

    PubMed  CAS  Google Scholar 

  68. Dahlke MH, et al. The biology of CD45 and its use as a therapeutic target. Leuk Lymphoma. 2004;45(2):229–36.

    PubMed  CAS  Google Scholar 

  69. Nakano A, et al. Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathol Jpn. 1990;40(2):107–15.

    PubMed  CAS  Google Scholar 

  70. Press OW, et al. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood. 1994;83(5):1390–7.

    PubMed  CAS  Google Scholar 

  71. Matthews DC, et al. Development of a marrow transplant regimen for acute leukemia using targeted hematopoietic irradiation delivered by 131I-labeled anti-CD45 antibody, combined with cyclophosphamide and total body irradiation. Blood. 1995;85(4):1122–31.

    PubMed  CAS  Google Scholar 

  72. Pagel JM, et al. 131I-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood. 2006;107(5):2184–91.

    PubMed  CAS  Google Scholar 

  73. Becker W, Goldenberg DM, Wolf F. The use of monoclonal antibodies and antibody fragments in the imaging of infectious lesions. Semin Nucl Med. 1994;24(2):142–53.

    PubMed  CAS  Google Scholar 

  74. Gray-Owen SD, Blumberg RS. CEACAM1: contact-dependent control of immunity. Nat Rev Immunol. 2006;6(6):433–46.

    PubMed  CAS  Google Scholar 

  75. Bunjes D, et al. Rhenium 188-labeled anti-CD66 (a, b, c, e) monoclonal antibody to intensify the conditioning regimen prior to stem cell transplantation for patients with high-risk acute myeloid leukemia or myelodysplastic syndrome: results of a phase I-II study. Blood. 2001;98(3):565–72.

    PubMed  CAS  Google Scholar 

  76. Seitz U, et al. Preparation and evaluation of the rhenium-188-labelled anti-NCA antigen monoclonal antibody BW 250/183 for radioimmunotherapy of leukaemia. Eur J Nucl Med. 1999;26(10):1265–73.

    PubMed  CAS  Google Scholar 

  77. Zalutsky MR, et al. Labeling monoclonal antibodies and F(ab’)2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity. Proc Natl Acad Sci U S A. 1989;86(18):7149–53.

    PubMed  CAS  Google Scholar 

  78. Lambrecht RM, Tomiyoshi K, Sekine T. Radionuclide generators. Radiochim Acta. 1997;77(1–2):103–23.

    CAS  Google Scholar 

  79. Huneke RB, et al. Effective alpha-particle-mediated radioimmunotherapy of murine leukemia. Cancer Res. 1992;52(20):5818–20.

    PubMed  CAS  Google Scholar 

  80. McDevitt MR, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294(5546):1537–40.

    PubMed  CAS  Google Scholar 

  81. Kennel SJ, et al. Evaluation of 225Ac for vascular targeted radioimmunotherapy of lung tumors. Cancer Biother Radiopharm. 2000;15(3):235–44.

    PubMed  CAS  Google Scholar 

  82. McDevitt MR, et al. Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use. J Nucl Med. 1999;40(10):1722–7.

    PubMed  CAS  Google Scholar 

  83. Cember H, Johnson TE. Introduction to health ­physics. 4th ed. New York: McGraw-Hill; 2009.

    Google Scholar 

  84. Zhou H, et al. Radiation risk to low fluences of alpha particles may be greater than we thought. Proc Natl Acad Sci U S A. 2001;98(25):14410–5.

    PubMed  CAS  Google Scholar 

  85. Jurcic JG, et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100(4):1233–9.

    PubMed  CAS  Google Scholar 

  86. Jurcic JG, et al. Radiolabeled anti-CD33 monoclonal antibody M195 for myeloid leukemias. Cancer Res. 1995;55(23 Suppl):5908s–10.

    PubMed  CAS  Google Scholar 

  87. Jurcic JG, et al. Potential for myeloablation with yttrium-90-labeled HuM195 (anti-CD33): a phase I trial in advanced myeloid leukemias. Blood. 1998;92(10):613A.

    Google Scholar 

  88. Sgouros G, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40(11):1935–46.

    PubMed  CAS  Google Scholar 

  89. Mulford DA, et al. Sequential therapy with cytarabine and Bismuth-213 (213Bi)-labeled-HuM195 (anti-CD33) for acute myeloid leukemia (AML). ASH Annu Meet Abstr. 2004;104(11):1790.

    Google Scholar 

  90. Rosenblat TL, et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin Cancer Res. 2010;16(21):5303–11.

    PubMed  CAS  Google Scholar 

  91. Rosenblat TL, et al. Phase I trial of the targeted alpha-particle nano-generator actinium-225 (225Ac)-HuM195 (anti-CD33) in acute myeloid leukemia (AML). ASH Annu Meet Abstr. 2007;110(11):910.

    Google Scholar 

  92. Miederer M, et al. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45(1):129–37.

    PubMed  CAS  Google Scholar 

  93. Deal KA, et al. Improved in vivo stability of actinium-225 macrocyclic complexes. J Med Chem. 1999;42(15):2988–92.

    PubMed  CAS  Google Scholar 

  94. Sofou S, et al. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J Nucl Med. 2004;45(2):253–60.

    PubMed  CAS  Google Scholar 

  95. Sofou S, et al. Enhanced retention of the alpha-particle-emitting daughters of actinium-225 by liposome carriers. Bioconjug Chem. 2007;18(6):2061–7.

    PubMed  CAS  Google Scholar 

  96. Allen C, et al. Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep. 2002;22(2):225–50.

    PubMed  CAS  Google Scholar 

  97. Jaggi JS, et al. Efforts to control the errant products of a targeted in vivo generator. Cancer Res. 2005;65(11):4888–95.

    PubMed  CAS  Google Scholar 

  98. Jaggi JS, et al. Renal tubulointerstitial changes after internal irradiation with alpha-particle-emitting actinium daughters. J Am Soc Nephrol. 2005;16(9):2677–89.

    PubMed  CAS  Google Scholar 

  99. Busquets MA, Alsina MA, Haro I. Peptides and liposomes: from biophysical to immunogenic studies. Curr Drug Targets. 2003;4(8):633–42.

    PubMed  CAS  Google Scholar 

  100. Sofou S, Sgouros G. Antibody-targeted liposomes in cancer therapy and imaging. Expert Opin Drug Deliv. 2008;5(2):189–204.

    PubMed  CAS  Google Scholar 

  101. Axworthy DB, et al. Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci U S A. 2000;97(4):1802–7.

    PubMed  CAS  Google Scholar 

  102. Zhang M, et al. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood. 2002;100(1):208–16.

    PubMed  CAS  Google Scholar 

  103. Zhang M, et al. Pretarget radiotherapy with an anti-CD25 antibody-streptavidin fusion protein was effective in therapy of leukemia/lymphoma xenografts. Proc Natl Acad Sci U S A. 2003;100(4):1891–5.

    PubMed  CAS  Google Scholar 

  104. Paganelli G, et al. Two-step tumour targetting in ovarian cancer patients using biotinylated monoclonal antibodies and radioactive streptavidin. Eur J Nucl Med. 1992;19(5):322–9.

    PubMed  CAS  Google Scholar 

  105. Paganelli G, et al. Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients. Cancer Res. 1991;51(21): 5960–6.

    PubMed  CAS  Google Scholar 

  106. Paganelli G, Malcovati M, Fazio F. Monoclonal antibody pretargetting techniques for tumour localization: the avidin-biotin system. International workshop on techniques for amplification of tumour targeting. Nucl Med Commun. 1991; 12(3):211–34.

    PubMed  CAS  Google Scholar 

  107. Chinol M, et al. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br J Cancer. 1998;78(2):189–97.

    PubMed  CAS  Google Scholar 

  108. Marshall D, et al. Polyethylene glycol modification of a galactosylated streptavidin clearing agent: effects on immunogenicity and clearance of a biotinylated anti-tumour antibody. Br J Cancer. 1996;73(5):565–72.

    PubMed  CAS  Google Scholar 

  109. McDevitt MR, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med. 2007;48(7):1180–9.

    PubMed  CAS  Google Scholar 

  110. McDevitt MR, et al. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One. 2007;2(9):e907.

    PubMed  Google Scholar 

  111. Zalutsky MR, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med. 2008;49(1):30–8.

    PubMed  CAS  Google Scholar 

  112. Andersson H, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of (211)At-MX35 F(ab’)2—a phase I study. J Nucl Med. 2009;50(7):1153–60.

    PubMed  CAS  Google Scholar 

  113. Hultborn R, et al. Pharmacokinetics and dosimetry of (211)AT-MX35 F(AB’)(2) in therapy of ovarian cancer—preliminary results from an ongoing phase I study. Cancer Biother Radiopharm. 2006;21(4):395.

    Google Scholar 

  114. Kneifel S, et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin Cancer Res. 2006;12(12):3843–50.

    PubMed  CAS  Google Scholar 

  115. Heeger S, et al. Alpha-radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using 213Bi-labelled anti-CD19-and anti-CD20-CHX-A’’-DTPA conjugates. Abstr Pap Am Chem Soc. 2003;225:U261.

    Google Scholar 

  116. Allen BJ, et al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol Ther. 2005;4(12):1318–24.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain S. Abi-Ghanem M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Abi-Ghanem, A.S. (2013). Radionuclide Therapy of Leukemias. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics