Skip to main content

Radioiodine Therapy of Benign Thyroid Diseases: Graves’ Disease, Plummer’s Disease, Non-toxic Goiter and Nodules

  • Chapter
  • First Online:
Book cover Nuclear Medicine Therapy

Abstract

Thyroid diseases are common in all parts of the world. Hormonal disorders of thyroid gland negatively affect whole metabolism, and cause various health problems while goiter and nodules can cause local, compressive symptoms. Once a correct diagnosis is made, a definitive treatment protocol should be initiated. Medications, surgery, and radioactive iodine are currently the most widely available options. Each treatment option has its own advantages, disadvantages, and limitations. This chapter focuses on the role of radioiodine therapy of benign thyroid diseases. Pertinent information is also provided on the basics of thyroid diseases, thyroid medication, and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trepacz PT, McCue M, Klein I, Levey GS, Greenhouse J. A psychiatric and neuropsychological study of patients with untreated Graves’ disease. Gen Hosp Psychiatry. 1988;10:49–55.

    Article  Google Scholar 

  2. Trepacz PT, Klein I, Roberts M, Greenhouse J, Levey GS. Graves’ disease: an analysis of thyroid hormone levels and hyperthyroid signs and symptoms. Am J Med. 1989;87:558–61.

    Article  Google Scholar 

  3. Bahn RS, Burch HS, Cooper DS, Garber JR, Greenlee CM, Klein IL, et al. The role of propylthiouracil in the management of Graves’ disease in adults: report of a meeting jointly sponsored by the American Thyroid Association and Food and Drug Administration. Thyroid. 2009;19:673–4.

    Article  PubMed  CAS  Google Scholar 

  4. Sosa JA, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R. The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg. 1998;228:320–30.

    Article  PubMed  CAS  Google Scholar 

  5. Röher HD, Goretzki PE, Hellman P, Witte J. Complications in thyroid surgery. Incidence and therapy. Chirurg. 1999;70:999–1000.

    Article  PubMed  Google Scholar 

  6. Sywak MS, Palazzo FF, Yeh M, Wilkinson M, Snook K, Sidhu SB, et al. Parathyroid hormone assay predicts hypocalcemia after total thyroidectomy. ANZ J Surg. 2007;77:667–70.

    Article  PubMed  Google Scholar 

  7. Abbas G, Dubner S, Heller KS. Re-operation for bleeding after total thyroidectomy and parathyroidectomy. Head Neck. 2001;23:544–6.

    Article  PubMed  CAS  Google Scholar 

  8. Jenkins K, Baker AB. Consent and anaesthetic risk. Anaesthesia. 2003;58:962–84.

    Article  PubMed  CAS  Google Scholar 

  9. Kraimps JL, Bouin-Pineau MH, Mathonnet M, De Calan L, Ronceray J, Visset J, et al. Multicenter study of thyroid nodules in patients with Graves’ disease. Br J Surg. 2000;87:1111–3.

    Article  PubMed  CAS  Google Scholar 

  10. Gorman CA. Radioiodine therapy does not aggravate Graves’ ophthalmopathy. J Clin Endocrinol Metab. 1995;80:340–2.

    PubMed  CAS  Google Scholar 

  11. Rivkees SA, Dinauer C. An optimal treatment for pediatric Graves’ disease is radioiodine. J Clin Endocrinol Metab. 2007;92:797–800.

    Article  PubMed  CAS  Google Scholar 

  12. Vitti P, Ragio T, Chiovato L, Pallini S, Santini F, Fiore E, et al. Clinical features of patients with Graves’ disease undergoing remission after antithyroid drug treatment. Thyroid. 1997;7:369–75.

    Article  PubMed  CAS  Google Scholar 

  13. Erickson D, Gharib H, Li H, van Heerden JA. Treatment of patients with toxic multinodular goiter. Thyroid. 1998;8:277–82.

    Article  PubMed  CAS  Google Scholar 

  14. Nygaard B, Hegedüs L, Ulriksen P, Nielsen KG, Hansen JM. Radioiodine therapy for multinodular toxic goiter. Arch Intern Med. 1999;159:1364–8.

    Article  PubMed  CAS  Google Scholar 

  15. Kang AS, Grant CS, Thompson GB, van Heerden JA. Current treatment of nodular goiter with hyperthyroidism (Plummer’s disease): surgery versus radioiodine. Surgery. 2002;132:916–23.

    Article  PubMed  Google Scholar 

  16. Vidal-Trecan GM, Stahl JE, Eckman MH. Radioiodine or surgery for toxic thyroid adenoma: dissecting an important decision. A cost-effective analysis. Thyroid. 2004;14:933–45.

    Article  PubMed  Google Scholar 

  17. Pappalardo G, Guadalaxara A, Frattaroli FM, Illomei G, Falaschi P. Total compared with subtotal thyroidectomy in benign nodular disease: personal series and review of published reports. Eur J Surg. 1998;164:501–6.

    Article  PubMed  CAS  Google Scholar 

  18. Thomusch O, Machens A, Sekula C, Ukkat J, Lippert H, Gastinger I, et al. Multivariate analysis of risk factors for postoperative complications in benign goiter surgery: prospective multicenter study in Germany. World J Surg. 2000;24:1335–41.

    Article  PubMed  CAS  Google Scholar 

  19. Hisham AN, Azlina AF, Aina EN, Sarojah A. Total thyroidectomy: the procedure of choice for multinodular goiter. Eur J Surg. 2001;167:403–5.

    Article  PubMed  CAS  Google Scholar 

  20. Albino CC, Graf H, Sampaio AP, Vigario A, Paz-Filho GJ. Thiamazole as an adjuvant to radioiodine for volume reduction of multinodular goiter. Expert Opin Investig Drugs. 2008;17:1781–6.

    Article  PubMed  CAS  Google Scholar 

  21. Regalbuto C, Salamone S, Scollo C, Vigneri R, Pezzino V. Appearance of anti-TSH receptor antibodies and clinical Graves’ disease after radioiodine ­therapy for hyperfunctioning thyroid adenoma. J Endocrinol Invest. 1999;22:147–50.

    PubMed  CAS  Google Scholar 

  22. Kendall-Taylor P, Keir M, Ross WM. Ablative radioiodine therapy for hyperthyroidism: long term follow-up study. Br Med J. 1984;289:361–3.

    Article  CAS  Google Scholar 

  23. Reiners C. Functional autonomy of the thyroid: ­volume reduction after radioiodine treatment. Exp Clin Endocrinol. 1993;101:136–8.

    Google Scholar 

  24. Kinser JA, Roesler H, Furrer T, Grütter D, Zimmerman H. Nonimmunogenic hyperthyroidism: cumulative hypothyroidism incidence after radioiodine and surgical treatment. J Nucl Med. 1989;30:1960–5.

    PubMed  CAS  Google Scholar 

  25. Ceccarelli C, Bencivelli W, Vitti P, Grasso L, Pinchera A. Outcome of radioiodine-131 therapy in hyperfunctioning thyroid nodules: a 20-years’ retrospective study. Clin Endocrinol (Oxf). 2005;62:331–5.

    Article  CAS  Google Scholar 

  26. Kahraman D, Keller C, Schneider C, Eschner W, Sudbrock F, Schbrsmidt M, et al. Development of hypothyroidism during long term follow-up of patients with toxic nodular goiter after radioiodine therapy. Clin Endocrinol (Oxf). 2012;76:297–303.

    Article  CAS  Google Scholar 

  27. Manders JMB, Corstens FHM. Radioiodine therapy of euthyroid multinodular goiters. Eur J Nucl Med. 2002;29:466–70.

    Article  Google Scholar 

  28. Kaniuka S, Lass P, Sworczak K. Radioiodine-an attractive alternative to surgery in large non-toxic multinodular goiters. Nucl Med Rev Cent East Eur. 2009;12:23–9.

    PubMed  Google Scholar 

  29. Ceccarelli C, Brozzi F, Bianchi F, Santini P. Role of recombinant human TSH in the management of large euthyroid multinodular goiter: a new therapeutic option? Pros and cons. Minerva Endocrinol. 2010;35:161–71.

    PubMed  CAS  Google Scholar 

  30. Braverman L, Kloos RT, Law Jr B, Kipnes M, Dionne M, Magner J. Evaluation of various doses of recombinant human thyrotropin in patients with multinodular goiters. Endocr Pract. 2008;14:832–9.

    PubMed  Google Scholar 

  31. Baczyk M, Pisarek M, Czepczyński R, Ziemnicka K, Gryczyńska M, Pietz L, et al. Therapy of large multinodular goiter using repeated doses of radioiodine. Nucl Med Commun. 2009;30:226–31.

    Article  PubMed  CAS  Google Scholar 

  32. Bahn RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid. 2011;21:593–646.

    Article  Google Scholar 

  33. Sabri O, Zimny M, Schulz G, Schreckenberger M, Reinartz P, Willmes K, et al. Success rate of radioiodine therapy in Graves’ disease: influence of thyrostatic medication. J Clin Endocrinol Metab. 1999;84:1229–33.

    Article  PubMed  CAS  Google Scholar 

  34. Andrade VA, Gross JL, Maia AL. The effect of methimazole pretreatment on the efficacy of radioactive iodine therapy in Graves’ hyperthyroidism: one-year follow-up of a prospective, randomized study. J Clin Endocrinol Metab. 2001;86:3488–93.

    Article  PubMed  CAS  Google Scholar 

  35. Walter MA, Briel M, Christ-Crain M, Bonnema SJ, Connel J, Cooper DS, et al. Effects of antithyroid drugs on radioiodine treatment: systematic review and meta-analysis of randomized controlled trials. BMJ. 2007;334:514.

    Article  PubMed  CAS  Google Scholar 

  36. Bockish A, Jamitzky T, Derwenz R, Biersack HJ. Optimized dose planning of radioiodine therapy of benign thyroidal diseases. J Nucl Med. 1993;34:1632–8.

    Google Scholar 

  37. Peters H, Fischer C, Bogner U, Rainers C, Schleusener H. Radioiodine therapy of Graves’ hyperthyroidism: standard versus calculated 131-iodine activity. Results from a prospective, randomized, multicentric study. Eur J Clin Invest. 1995;25:186–93.

    Article  PubMed  CAS  Google Scholar 

  38. de Rooij A, Vandenbroucke JP, Smit JW, Stokkel MP, Dekkers OM. Clinical outcomes after estimated versus calculated activity of radioiodine for the treatment of hyperthyroidism: systematic review and meta-­analysis. Eur J Endocrinol. 2009;161:771–7.

    Article  PubMed  Google Scholar 

  39. Salvatori M, Luster M. Radioiodine dosimetry in benign thyroid disease and differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2010;37:821–8.

    Article  PubMed  Google Scholar 

  40. Merrill S, Horowitz J, Traino AC, Chipkin SR, Hollot CV, Chait Y. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys Med Biol. 2011;56:557–71.

    Article  PubMed  CAS  Google Scholar 

  41. Liu CJ, Dong YY, Wang YW, Wang KH, Zeng QY. Efficiency analysis of using tailored individual doses of radioiodine and fine tuning using a low-dose antithyroid drugs in the treatment of Graves’ disease. Nucl Med Commun. 2011;32:227–32.

    Article  PubMed  CAS  Google Scholar 

  42. Magner J. Problems associated with the use of thyrogen in patients with a thyroid gland. N Engl J Med. 2008;359:1738–9.

    Article  PubMed  CAS  Google Scholar 

  43. Zakavi SR, Mousavi Z, Davachi B. Comparison of four different protocols of I-131 therapy for treating single toxic thyroid nodule. Nucl Med Commun. 2009;30:169–75.

    Article  PubMed  CAS  Google Scholar 

  44. Bonnema SJ, Nielsen VE, Hegedüs L. Radioiodine therapy in non-toxic multinodular goiter. The possibility of effect-amplification with recombinant human TSH (rhTSH). Acta Oncol. 2006;45:1051–8.

    Article  PubMed  CAS  Google Scholar 

  45. Fast S, Nielsen VE, Bonnema SJ, Hegedüs L. Time to re-consider non-surgical therapy of benign non-toxic multinodular goiter: focus on recombinant TSH augmented radioiodine therapy. Eur J Endocrinol. 2009;160:517–28.

    Article  PubMed  CAS  Google Scholar 

  46. Fast S, Bonnema SJ, Hegedüs L. Radioiodine therapy in non-toxic multinodular goiter. Potential role of recombinant human TSH. Ann Endocrinol (Paris). 2011;72:129–35.

    Article  CAS  Google Scholar 

  47. Tallstedt L, Lundell G, Torring O, Wallin G, Ljunggren JG, Blomgren H, et al. Occurrence of ophthalmopathy after treatment for Graves’ hyperthyroidism. The Thyroid Study Group. N Eng J Med. 1992;326:1733–8.

    Article  CAS  Google Scholar 

  48. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E, et al. Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Eng J Med. 1998;338:73–8.

    Article  CAS  Google Scholar 

  49. Laurberg P, Walling G, Tallstedt L, Abraham-Nording M, Lundell G, Torring O. TSH-receptor autoimmunity in Graves’ disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol. 2008;158:69–75.

    Article  PubMed  CAS  Google Scholar 

  50. Bahn RS. Graves’ ophthalmopathy. N Eng J Med. 2010;362:726–38.

    Article  CAS  Google Scholar 

  51. Pfeilschifter J, Ziegler R. Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf). 1996;45:477–81.

    Article  CAS  Google Scholar 

  52. Regensburg NI, Wiersinga WM, Berendschot TT, Saeed P, Mourits MP. Effect of smoking on orbital fat and muscle volume in Graves’ orbitopathy. Thyroid. 2011;21:177–81.

    Article  PubMed  CAS  Google Scholar 

  53. De Bellis A, Conzo G, Cennamo G, Pane E, Bellastella G, Colella C, et al. Time course of Graves’ ophthalmopathy after total thyroidectomy alone or followed by radioiodine therapy: a 2-year longitudinal study. Endocrine. 2012;41(2):320–6.

    Article  PubMed  Google Scholar 

  54. Nebesio TD, Siddiqui AR, Pescovitz OH, Eugster EA. Time course to hypothyroidism after fixed dose radio-ablation therapy of Graves’ disease in children. J Pediatr. 2002;141:99–103.

    Google Scholar 

  55. Rivkees SA, Cernelius EA. Influence of iodine-131 dose on the outcome of hyperthyroidism in children. Pediatrics. 2003;111:745–9.

    Google Scholar 

  56. Bonnema SJ, Bennedbaek FN, Gram J, Veje A, Marving J, Hegedus L. Resumption of methimazole after I-131 therapy of hyperthyroid diseases: effect on thyroid function and volume evaluated by a randomized clinical trial. Eur J Endocrinol. 2003;149:485–92.

    Article  PubMed  CAS  Google Scholar 

  57. Dolphin GW. The risk of thyroid cancers following irradiation. Health Phys. 1968;15:219–28.

    Article  PubMed  CAS  Google Scholar 

  58. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141:259–77.

    Article  PubMed  CAS  Google Scholar 

  59. Boice Jr JD. Radiation and thyroid cancer: what more can be learned? Acta Oncol. 1998;37:321–4.

    Article  PubMed  Google Scholar 

  60. Sigurdson AJ, Ronckers CM, Mertens AC, Stovall M, Smith SA, Liu Y, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case-control study. Lancet. 2005;365:2014–23.

    Article  PubMed  Google Scholar 

  61. Boice Jr JD. Radiation-induced thyroid cancer—what’s new? J Natl Cancer Inst. 2005;97:703–5.

    Article  PubMed  Google Scholar 

  62. Gómez-Arnaiz N, Andía E, Gumà A, Abós R, Soler J, Gómez JM. Ultrasonographic thyroid volume as a reliable prognostic index of radioiodine-131 treatment outcome in Graves’ disease hyperthyroidism. Horm Metab Res. 2003;35:492–7.

    Article  PubMed  Google Scholar 

  63. Nakatake N, Fukata S, Tajiri J. Prediction of post-treatment hypothyroidism using changes in thyroid volume after radioactive iodine therapy in adolescent patients with Graves’ disease. Int J Pediatr Endocrinol. 2011;2011:14.

    Article  PubMed  Google Scholar 

  64. Carpentier WR, Gilliland PF, Piziak VK, Petty FC, McConnell BG, Verdonk CA, et al. Radioiodine uptake following iodine-131 therapy for Graves’ disease: an early indicator of need for retreatment. Clin Nucl Med. 1989;14:15–8.

    Article  PubMed  CAS  Google Scholar 

  65. Leslie WD, Peterdy AE, Dupont JO. Radioiodine treatment outcomes in thyroid glands previously irradiated for Graves’ hyperthyroidism. J Nucl Med. 1998;39:712–6.

    PubMed  CAS  Google Scholar 

  66. Alexander EK, Larsen PR. High dose of 131-I therapy for the treatment of hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab. 2002;87:1073–7.

    Article  PubMed  CAS  Google Scholar 

  67. Ceccarelli C, Canale D, Battisti P, Caglieresi C, Moschini C, Fiore E, et al. Testicular function after I-131 therapy for hyperthyroidism. Clin Endocrinol (Oxf). 2006;65:446–52.

    Article  CAS  Google Scholar 

  68. Baxter MA, Stewart PM, Daykin J, Sheppard MC, Franklyn JA. Radioiodine therapy for hyperthyroidism in young patients-perception of risk and use. Q J Med. 1993;86:495–9.

    Article  PubMed  CAS  Google Scholar 

  69. Rosário PW, Barroso AL, Rezende LL, Padrão EL, Borges MA, Guimarães VC, et al. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid. 2006;16:667–70.

    Article  PubMed  Google Scholar 

  70. Holm LE, Lundell G, Israelson A, Dahlqvist I. Incidence of hypothyroidism occurring long after iodine-131 therapy for hyperthyroidism. J Nucl Med. 1982;23:103–7.

    PubMed  CAS  Google Scholar 

  71. Goldstein R, Hart IR. Follow-up of solitary autonomous thyroid nodules treated with I-131. N Engl J Med. 1983;309:1473–6.

    Article  PubMed  CAS  Google Scholar 

  72. Nygaard B, Hegedüs L, Nielsen KG, Ulriksen P, Hansen JM. Long-term effect of radioactive iodine on thyroid function and size in patients with solitary autonomously functioning toxic thyroid nodules. Clin Endocrinol (Oxf). 1999;50:197–202.

    Article  CAS  Google Scholar 

  73. Peters H, Fischer C, Bogner U, Rieners C, Schleusener H. Radioiodine therapy of Graves’ hyperthyroidism: standard vs. calculated 131-iodine activity. Results from a prospective, randomized, multicentric study. Eur J Clin Invest. 1995;25:186–93.

    Article  PubMed  CAS  Google Scholar 

  74. Haase A, Bähre M, Lauer I, Meller B, Richter E. Radioiodine therapy in Graves’ hyperthyroidism: determination of individual optimum target dose. Exp Clin Endocrinol Diabetes. 2000;108:133–7.

    Article  PubMed  CAS  Google Scholar 

  75. Marinelli LD, Quinby EH, Hine GJ. Dosage determination with radioactive isotopes; practical considerations in therapy and protection. Am J Roentgenol Radium Ther. 1948;59:260–81.

    PubMed  CAS  Google Scholar 

  76. Traino AC, Di Martino F, Lazzeri M. A dosimetric approach to patient-specific radioiodine treatment of Graves’ disease with incorporation of treatment-induced changes in thyroid mass. Med Phys. 2004;31:2121–7.

    Article  PubMed  Google Scholar 

  77. Catargi B, Leprat F, Guyot M, Valli N, Ducassou D, Tabarin A. Optimized radioiodine therapy of Graves’ disease: analysis of delivered dose and of other possible factors affecting outcome. Eur J Endocrinol. 1999;141:117–21.

    Article  PubMed  CAS  Google Scholar 

  78. Traino AC, Di Martino F, Lazzeri M, Stabin MG. Study of the correlation between administered activity and radiation committed dose to the thyroid in 131-I therapy of Graves’ disease. Radiat Prot Dosimetry. 2001;95:117–24.

    Article  PubMed  CAS  Google Scholar 

  79. Traino AC, Xhafa B. Accuracy of two simple methods for estimation of thyroidal 131-I kinetics of for dosimetry-based treatment of Graves’ disease. Med Phys. 2009;36:1212–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the technical assistance of Arda Dora Aktolun in improving the quality of images and preparing them for publication using his excellent computer skills.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cumali Aktolun M.D., M.Sc. .

Editor information

Editors and Affiliations

Appendix: Dosimetry

Appendix: Dosimetry

To avoid unnecessarily high irradiation of thyroid and the whole body by circulating radioiodine before being taken up by the thyroid gland, individualized calculation of activity necessary for optimal radiation dose to be absorbed by thyroid tissue to be ablated has always been an attractive approach [36, 73, 74]. This can be achieved through individualized dosimetric calculations, which mainly depend on target dose, 24-h radioiodine uptake (activity time interval), and amount of thyroid tissue to be ablated.

Amount of thyroid tissue and the volume to be ablated can be best calculated by ultrasonography. For thyroid glands with multiple autonomy (multiple toxic nodules), scintigraphic volume calculations can be used.

I-131 is the logistically ideal radionuclide for 24-h radioiodine uptake using a collimated probe (thyroid uptake device). I-123 can also be preferred if γ camera is used for counting. For Graves’ disease, a 5-h uptake can be helpful for keeping to the fast kinetics of I-131, since iodine turnover is faster and time-to-reach peak is shorter in this disease than in any other thyroid diseases. Alternatively, 20-min Tc-99m uptake can be used on logistical grounds, but the information obtained from this method is not exactly the same with that obtained from a 24-h iodine uptake study. Anti-thyroid drugs should be withdrawn at least 1 day before the uptake studies.

Two main approaches are commonly used: the Marinelli formula (Marinelli–Quimby formula) and MIRD algorithm [36, 40, 73, 74], the latter differing from the former by about 10 %.

The Marinelli formula [75]:

$$ \rm{I - }131\rm\rm{activity}\rm{(MBq)}=\frac{\rm{Target}\rm\rm{dose}(\rm{Gy})\times \rm{target}\rm\rm{weight}(\rm{g})\times 24.67}{\rm{Maximal}\rm\rm{uptake}(\%)\times \rm{effective}\rm\rm{half - life}\rm{(days)}}.$$

Modified Marinelli–Quimby–Hine formula:

$$ \rm{I - }131\rm\rm{activity}\rm{(mCi) = }\frac{\rm{Target}\rm\rm{dose}\rm{(cGy)}\times \rm{thyroid}\rm\rm{weight}\rm{(g)}\times 6.67}{{t}_{1/2}\rm{effective}\rm\rm{half - life}\rm{(days)}\times 24\rm{ - h}\rm\rm{uptake}(\%)}.$$

Target dose is the desired radiation absorbed dose. Dosimetric calculations take into consideration the effective half-life of radioiodine in the gland and the time-integrated activity. Many physicians choose to calculate the target activity individually by performing multiple tracer dose activity measurements at various times. Some prefer to use four “target variables”: time-integrated activity coefficient, time of maximum activity, effective half-life in the gland, and maximum activity. This approach increased accuracy only slightly [40].

Using a parameter k, thyroid absorbed dose and thyroid mass reduction as early as 1 month after RAIT month after therapy can be predicted before RAIT administration [76]. Dosimetric ­calculations were, however, found to be not ­useful in rendering the patient euthyroid and the performance of dosimetric calculations be low in this respect [7779].

Dosimetry-based therapy of Graves’ disease is still associated with significant controversies and challenges. Most of the formulas, models, and proposed modifications aim to calculate the individual activity in Graves’ disease only. It is difficult to draw a reliable conclusion about the use of dosimetric calculations for Plummer’s disease with the limited data published in the literature on this topic.

A simpler formula requires three variables: 24-h radioiodine uptake, gland weight, fixed activity in microgram per gram of thyroid tissue [32].

$$ \rm{Activity}\rm{(mCi)}=\frac{\rm{Gland}\rm\rm{weight}(\rm{g})\times \rm{Microgram}\rm\rm{per}\rm\rm{each}\rm\rm{gram}\rm\rm{of}\rm\rm{thyroid}\rm\rm{tissue}\times 100}{24\rm{ - h}\rm\rm{uptake}\rm{(percent)}}.$$

Currently, in clinical practice, most of the patients are eligible for a fixed activity-based treatment, but some patients still require elaborative dosimetric calculations. Although fixed activity method gives satisfactory results to achieve the targeted irradiation of thyroid gland in 80 % of the patients with Graves’ disease, there is an obvious need to develop a reasonably fast, simple, and cost-effective method to measure the intra-thyroidal radioiodine kinetics for the routine calculation of optimal radioiodine activity.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Aktolun, C., Urhan, M. (2013). Radioiodine Therapy of Benign Thyroid Diseases: Graves’ Disease, Plummer’s Disease, Non-toxic Goiter and Nodules. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics