Skip to main content

Antibody-Targeted Therapeutic Radionuclides in the Management of Colorectal Cancer

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Colon cancer is the third most common cancer diagnosed in men and women in the USA, with ∼103,000 new cases in 2010, but it ranks second among all cancer-related deaths in men and women, with nearly 51,000 deaths (lung cancer is the highest with an estimated 157,000 deaths and breast is third with 40,000 deaths) [1]. Globally, colorectal cancer (CRC) again ranks as the second most common cause of cancer-related deaths [2]. However, the rate of CRC deaths in both men and women is decreasing in the USA, largely because of screening. As with all cancers, the prognosis is largely dependent on the stage of disease when first diagnosed, with the 5-year survival rate decreasing from an average of 90 % for stage I to just about 12 % for stage IV [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, et al. SEER cancer statistics review, 1975–2008. 2011. http://seer.cancer.gov/csr/1975_2008/.

  4. Lombardi L, Morelli F, Cinieri S, Santini D, Silvestris N, Fazio N, et al. Adjuvant colon cancer chemotherapy: where we are and where we’ll go. Cancer Treat Rev. 2010;36 Suppl 3:S34–41.

    Article  PubMed  CAS  Google Scholar 

  5. Lubezky N, Geva R, Shmueli E, Nakache R, Klausner JM, Figer A, et al. Is there a survival benefit to neoadjuvant versus adjuvant chemotherapy, combined with surgery for resectable colorectal liver metastases? World J Surg. 2009;33:1028–34.

    Article  PubMed  Google Scholar 

  6. Jonker DJ, Spithoff K, Maroun J. Adjuvant systemic chemotherapy for stage II and III colon cancer after complete resection: an updated practice guideline. Clin Oncol (R Coll Radiol). 2011;23:314–22.

    Article  CAS  Google Scholar 

  7. Sato H, Maeda K, Sugihara K, Mochizuki H, Kotake K, Teramoto T, et al. High-risk stage II colon cancer after curative resection. J Surg Oncol. 2011;104:45–52.

    Article  PubMed  Google Scholar 

  8. Chua TC, Saxena A, Liauw W, Kokandi A, Morris DL. Systematic review of randomized and nonrandomized trials of the clinical response and outcomes of neoadjuvant systemic chemotherapy for resectable colorectal liver metastases. Ann Surg Oncol. 2010; 17:492–501.

    Article  PubMed  Google Scholar 

  9. Engstrom PF. Systemic therapy for advanced or metastatic colorectal cancer: National Comprehensive Cancer Network guidelines for combining anti-vascular endothelial growth factor and anti-epidermal growth factor receptor monoclonal antibodies with chemotherapy. Pharmacotherapy. 2008;28:18S–22.

    Article  PubMed  CAS  Google Scholar 

  10. Engstrom PF, Arnoletti JP, Benson III AB, Chen YJ, Choti MA, Cooper HS, et al. NCCN clinical practice guidelines in oncology: colon cancer. J Natl Compr Canc Netw. 2009;7:778–831.

    PubMed  Google Scholar 

  11. Tol J, Punt CJ. Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review. Clin Ther. 2010;32:437–53.

    Article  PubMed  CAS  Google Scholar 

  12. Saltz LB. Adjuvant therapy for colon cancer. Surg Oncol Clin N Am. 2010;19:819–27.

    Article  PubMed  Google Scholar 

  13. Catenacci DV, Kozloff M, Kindler HL, Polite B. Personalized colon cancer care in 2010. Semin Oncol. 2011;38:284–308.

    Article  PubMed  CAS  Google Scholar 

  14. de Gramont A, Chibaudel B, Bachet JB, Larsen AK, Tournigand C, Louvet C, et al. From chemotherapy to targeted therapy in adjuvant treatment for stage III colon cancer. Semin Oncol. 2011;38:521–32.

    Article  PubMed  CAS  Google Scholar 

  15. Allegra CJ, Yothers G, O’Connell MJ, Sharif S, Petrelli NJ, Colangelo LH, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol. 2011;29:11–6.

    Article  PubMed  CAS  Google Scholar 

  16. Dotan E, Cohen SJ. Challenges in the management of stage II colon cancer. Semin Oncol. 2011;38: 511–20.

    Article  PubMed  Google Scholar 

  17. Kelley RK, Van Bebber SL, Phillips KA, Venook AP. Personalized medicine and oncology practice guidelines: a case study of contemporary biomarkers in ­colorectal cancer. J Natl Compr Canc Netw. 2011;9: 13–25.

    PubMed  Google Scholar 

  18. Minsky BD. Unique considerations in the patient with rectal cancer. Semin Oncol. 2011;38:542–51.

    Article  PubMed  Google Scholar 

  19. Van Loon K, Venook AP. Adjuvant treatment of colon cancer: what is next? Curr Opin Oncol. 2011; 23:403–9.

    Article  PubMed  CAS  Google Scholar 

  20. Edwards MS, Chadda SD, Zhao Z, Barber BL, Sykes DP. A systematic review of treatment guidelines for metastatic colorectal cancer. Colorectal Dis. 2012; 14:e31–47.

    Article  PubMed  CAS  Google Scholar 

  21. McLoughlin JM, Jensen EH, Malafa M. Resection of colorectal liver metastases: current perspectives. Cancer Control. 2006;13:32–41.

    PubMed  Google Scholar 

  22. Rees M, Tekkis PP, Welsh FK, O’Rourke T, John TG. Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: a multifactorial model of 929 patients. Ann Surg. 2008; 247:125–35.

    Article  PubMed  Google Scholar 

  23. Welsh FK, Tekkis PP, O’Rourke T, John TG, Rees M. Quantification of risk of a positive (R1) resection margin following hepatic resection for metastatic colorectal cancer: an aid to clinical decision-making. Surg Oncol. 2008;17:3–13.

    Article  PubMed  Google Scholar 

  24. Mayo SC, Pawlik TM. Current management of colorectal hepatic metastasis. Expert Rev Gastroenterol Hepatol. 2009;3:131–44.

    Article  PubMed  Google Scholar 

  25. Robertson DJ, Stukel TA, Gottlieb DJ, Sutherland JM, Fisher ES. Survival after hepatic resection of colorectal cancer metastases: a national experience. Cancer. 2009;115:752–9.

    Article  PubMed  Google Scholar 

  26. Kemeny N. The management of resectable and unresectable liver metastases from colorectal cancer. Curr Opin Oncol. 2010;22:364–73.

    Article  PubMed  Google Scholar 

  27. Yang AD, Brouquet A, Vauthey JN. Extending limits of resection for metastatic colorectal cancer: risk benefit ratio. J Surg Oncol. 2010;102:996–1001.

    Article  PubMed  Google Scholar 

  28. Davies JM, Goldberg RM. Treatment of metastatic colorectal cancer. Semin Oncol. 2011;38:552–60.

    Article  PubMed  CAS  Google Scholar 

  29. Swan PJ, Welsh FK, Chandrakumaran K, Rees M. Long-term survival following delayed presentation and resection of colorectal liver metastases. Br J Surg. 2011;98:1309–17.

    Article  PubMed  CAS  Google Scholar 

  30. Labianca R, Fossati R, Zaniboni A, Torri V, Marsoni S, Nitti D, et al. Randomized trial of intraportal and/or systemic adjuvant chemotherapy in patients with colon carcinoma. J Natl Cancer Inst. 2004;96:750–8.

    Article  PubMed  CAS  Google Scholar 

  31. Wang P, Chen Z, Huang WX, Liu LM. Current preventive treatment for recurrence after curative hepatectomy for liver metastases of colorectal carcinoma: a literature review of randomized control trials. World J Gastroenterol. 2005;11:3817–22.

    PubMed  Google Scholar 

  32. Parks R, Gonen M, Kemeny N, Jarnagin W, D’Angelica M, DeMatteo R, et al. Adjuvant chemotherapy improves survival after resection of hepatic colorectal metastases: analysis of data from two continents. J Am Coll Surg. 2007;204:753–61.

    Article  PubMed  Google Scholar 

  33. Gravalos C, Garcia-Escobar I, Garcia-Alfonso P, Cassinello J, Malon D, Carrato A. Adjuvant chemotherapy for stages II, III and IV of colon cancer. Clin Transl Oncol. 2009;11:526–33.

    Article  PubMed  CAS  Google Scholar 

  34. Kemeny NE, Jarnagin WR, Capanu M, Fong Y, Gewirtz AN, Dematteo RP, et al. Randomized phase II trial of adjuvant hepatic arterial infusion and systemic chemotherapy with or without bevacizumab in patients with resected hepatic metastases from colorectal cancer. J Clin Oncol. 2011;29:884–9.

    Article  PubMed  CAS  Google Scholar 

  35. Power DG, Kemeny NE. Role of adjuvant therapy after resection of colorectal cancer liver metastases. J Clin Oncol. 2010;28:2300–9.

    Article  PubMed  CAS  Google Scholar 

  36. Snoeren N, Voest EE, Bergman AM, Dalesio O, Verheul HM, Tollenaar RA, et al. A randomized two arm phase III study in patients post radical resection of liver metastases of colorectal cancer to investigate bevacizumab in combination with capecitabine plus oxaliplatin (CAPOX) vs CAPOX alone as adjuvant treatment. BMC Cancer. 2010;10:545.

    Article  PubMed  CAS  Google Scholar 

  37. Eng C. The evolving role of monoclonal antibodies in colorectal cancer: early presumptions and impact on clinical trial development. Oncologist. 2010;15: 73–84.

    Article  PubMed  CAS  Google Scholar 

  38. Ocvirk J, Brodowicz T, Wrba F, Ciuleanu TE, Kurteva G, Beslija S, et al. Cetuximab plus FOLFOX6 or FOLFIRI in metastatic colorectal cancer: CECOG trial. World J Gastroenterol. 2010; 16:3133–43.

    Article  PubMed  CAS  Google Scholar 

  39. Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.

    Article  PubMed  CAS  Google Scholar 

  40. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med. 2009;360:1408–17.

    Article  PubMed  Google Scholar 

  41. Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29: 2011–9.

    Article  PubMed  CAS  Google Scholar 

  42. Peeters M, Price TJ, Cervantes A, Sobrero AF, Ducreux M, Hotko Y, et al. Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol. 2010;28:4706–13.

    Article  PubMed  CAS  Google Scholar 

  43. Peeters M, Cohn A, Kohne CH, Douillard JY. Panitumumab in combination with cytotoxic chemotherapy for the treatment of metastatic colorectal carcinoma. Clin Colorectal Cancer. 2012;11:14–23.

    Article  PubMed  CAS  Google Scholar 

  44. Alberts SR, Sargent DJ, Smyrk TC, Shields AF, Chan E, Goldberg RM, et al. Adjuvant mFOLFOX6 with or without cetuxiumab (Cmab) in KRAS wild-type (WT) patients (pts) with resected stage III colon cancer (CC): results from NCCTG Intergroup Phase III Trial N0147. J Clin Oncol. 2010;28:18s:abst CRA3507.

    Google Scholar 

  45. Goldberg RM, Sargent DJ, Thibodeau SN, Mahoney MR, Shields AF, Chan E, et al. Adjuvant mFOLFOX6 plus or minus cetuximab (Cmab) in patients (pts) with KRAS mutant (m) resected stage III colon cancer (CC): NCCTG Intergroup Phase III Trial N0147. J Clin Oncol. 2010;28(15s):abstr 3508.

    Google Scholar 

  46. Murthy R, Nunez R, Szklaruk J, Erwin W, Madoff DC, Gupta S, et al. Yttrium-90 microsphere therapy for hepatic malignancy: devices, indications, technical considerations, and potential complications. Radiographics. 2005;25 Suppl 1:S41–55.

    Article  PubMed  Google Scholar 

  47. Gulec SA, Mesoloras G, Stabin M. Dosimetric techniques in 90Y-microsphere therapy of liver cancer: The MIRD equations for dose calculations. J Nucl Med. 2006;47:1209–11.

    PubMed  CAS  Google Scholar 

  48. Gulec SA, Mesoloras G, Dezarn WA, McNeillie P, Kennedy AS. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J Transl Med. 2007;5:15.

    Article  PubMed  CAS  Google Scholar 

  49. Sharma RA, Van Hazel GA, Morgan B, Berry DP, Blanshard K, Price D, et al. Radioembolization of liver metastases from colorectal cancer using yttrium-90 microspheres with concomitant systemic oxaliplatin, fluorouracil, and leucovorin chemotherapy. J Clin Oncol. 2007;25:1099–106.

    Article  PubMed  CAS  Google Scholar 

  50. Van De Wiele C, Defreyne L, Peeters M, Lambert B. Yttrium-90 labelled resin microspheres for treatment of primary and secondary malignant liver tumors. Q J Nucl Med Mol Imaging. 2009;53:317–24.

    Google Scholar 

  51. Ahmadzadehfar H, Biersack HJ, Ezziddin S. Radioembolization of liver tumors with yttrium-90 microspheres. Semin Nucl Med. 2010;40:105–21.

    Article  PubMed  Google Scholar 

  52. Sangro B, Carpanese L, Cianni R, Golfieri R, Gasparini D, Ezziddin S, et al. Survival after Yttrium-90 resin microsphere radioembolization of hepatocellular carcinoma across barcelona clinic liver cancer stages: a European evaluation. Hepatology. 2011;54:868–78.

    Article  PubMed  Google Scholar 

  53. Sangro B, Inarrairaegui M, Bilbao JI. Radioembolization for hepatocellular carcinoma. J Hepatol. 2012;56:464–73.

    Article  PubMed  Google Scholar 

  54. Gray B, Van Hazel G, Hope M, Burton M, Moroz P, Anderson J, et al. Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol. 2001;12:1711–20.

    Article  PubMed  CAS  Google Scholar 

  55. Hendlisz A, Van den Eynde M, Peeters M, Maleux G, Lambert B, Vannoote J, et al. Phase III trial comparing protracted intravenous fluorouracil infusion alone or with yttrium-90 resin microspheres radioembolization for liver-limited metastatic colorectal cancer refractory to standard chemotherapy. J Clin Oncol. 2010;28:3687–94.

    Article  PubMed  CAS  Google Scholar 

  56. Van Hazel G, Blackwell A, Anderson J, Price D, Moroz P, Bower G, et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol. 2004;88:78–85.

    Article  PubMed  CAS  Google Scholar 

  57. Sharma RA, Wasan HS, Love SB, Dutton S, Stokes JC, Smith JL. FOXFIRE: a phase III clinical trial of chemo-radio-embolisation as first-line treatment of liver metastases in patients with colorectal cancer. Clin Oncol (R Coll Radiol). 2008;20:261–3.

    Article  CAS  Google Scholar 

  58. Nakajo M, Kobayashi H, Shimabukuro K, Shirono K, Sakata H, Taguchi M, et al. Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J Nucl Med. 1988;29:1066–77.

    PubMed  CAS  Google Scholar 

  59. Novell R, Hilson A, Hobbs K. Ablation of recurrent primary liver cancer using 131I-lipiodol. Postgrad Med J. 1991;67:393–5.

    Article  PubMed  CAS  Google Scholar 

  60. Al-Mufti RA, Pedley RB, Marshall D, Begent RH, Hilson A, Winslet MC, et al. In vitro assessment of Lipiodol-targeted radiotherapy for liver and colorectal cancer cell lines. Br J Cancer. 1999;79:1665–71.

    Article  PubMed  CAS  Google Scholar 

  61. Brans B, De Winter F, Defreyne L, Troisi R, Vanlangenhove P, Van Vlierberghe H, et al. The anti-tumoral activity of neoadjuvant intra-arterial 131I-lipiodol treatment for hepatocellular carcinoma: a pilot study. Cancer Biother Radiopharm. 2001;16: 333–8.

    Article  PubMed  CAS  Google Scholar 

  62. Rindani RB, Hugh TJ, Roche J, Roach PJ, Smith RC. 131I lipiodol therapy for unresectable hepatocellular carcinoma. ANZ J Surg. 2002;72:210–4.

    Article  PubMed  Google Scholar 

  63. Garin E, Rakotonirina H, Lejeune F, Denizot B, Roux J, Noiret N, et al. Effect of a 188Re-SSS lipiodol/131I-lipiodol mixture, 188Re-SSS lipiodol alone or 131I-lipiodol alone on the survival of rats with hepatocellular carcinoma. Nucl Med Commun. 2006;27: 363–9.

    Article  PubMed  CAS  Google Scholar 

  64. Raoul JL, Boucher E, Olivie D, Guillygomarc’h A, Boudjema K, Garin E. Association of cisplatin and intra-arterial injection of 131I-lipiodol in treatment of hepatocellular carcinoma: results of phase II trial. Int J Radiat Oncol Biol Phys. 2006;64:745–50.

    Article  PubMed  CAS  Google Scholar 

  65. Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M, et al. Targeted therapy in nuclear medicine–current status and future prospects. Ann Oncol. 2007;18:1782–92.

    Article  PubMed  CAS  Google Scholar 

  66. Bretagne JF, Raoul JL, Bourguet P, Duvauferrier R, Deugnier Y, Faroux R, et al. Hepatic artery injection of I-131-labeled lipiodol. Part II. Preliminary results of therapeutic use in patients with hepatocellular carcinoma and liver metastases. Radiology. 1988; 168:547–50.

    PubMed  CAS  Google Scholar 

  67. Lau WY, Lai EC, Lau SH. The current role of neoadjuvant/adjuvant/chemoprevention therapy in partial hepatectomy for hepatocellular carcinoma: a systematic review. Hepatobiliary Pancreat Dis Int. 2009;8:124–33.

    PubMed  CAS  Google Scholar 

  68. Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging. 2011;38:1393–406.

    Article  PubMed  CAS  Google Scholar 

  69. Saclarides TJ, Szeluga D, Staren ED. Neuroendocrine cancers of the colon and rectum. Results of a ten-year experience. Dis Colon Rectum. 1994;37:635–42.

    Article  PubMed  CAS  Google Scholar 

  70. Bernick PE, Klimstra DS, Shia J, Minsky B, Saltz L, Shi W, et al. Neuroendocrine carcinomas of the colon and rectum. Dis Colon Rectum. 2004;47:163–9.

    Article  PubMed  CAS  Google Scholar 

  71. Nisa L, Savelli G, Giubbini R. Yttrium-90 DOTATOC therapy in GEP-NET and other SST2 expressing tumors: a selected review. Ann Nucl Med. 2011;25:75–85.

    Article  PubMed  CAS  Google Scholar 

  72. Pfeifer AK, Gregersen T, Gronbaek H, Hansen CP, Muller-Brand J, Herskind Bruun K, et al. Peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in advanced neuroendocrine tumors: results from a Danish cohort treated in Switzerland. Neuroendocrinology. 2011;93:189–96.

    Article  PubMed  CAS  Google Scholar 

  73. Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29: 2416–23.

    Article  PubMed  CAS  Google Scholar 

  74. Basu B, Sirohi B, Corrie P. Systemic therapy for neuroendocrine tumours of gastroenteropancreatic origin. Endocr Relat Cancer. 2010;17:R75–90.

    Article  PubMed  CAS  Google Scholar 

  75. Ramage JK, Ahmed A, Ardill J, Bax N, Breen DJ, Caplin ME, et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut. 2012;61:6–32.

    Article  PubMed  CAS  Google Scholar 

  76. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med. 2010;40: 122–35.

    Article  PubMed  Google Scholar 

  77. Hagemeister FB. Maintenance and consolidation strategies in non-Hodgkin’s lymphoma: a review of the data. Curr Oncol Rep. 2010;12:395–401.

    Article  PubMed  Google Scholar 

  78. Morschhauser F, Dreyling M, Rohatiner A, Hagemeister F, Bischof Delaloye A. Rationale for consolidation to improve progression-free survival in patients with non-Hodgkin’s lymphoma: a review of the evidence. Oncologist. 2009;14 Suppl 2:17–29.

    Article  PubMed  CAS  Google Scholar 

  79. Behr TM, Behe MP. Radioimmunotherapy versus traditional, nontargeted forms of systemic cancer treatment. Expert Rev Anticancer Ther. 2001;1: 501–5.

    Article  PubMed  CAS  Google Scholar 

  80. Koppe MJ, Bleichrodt RP, Oyen WJ, Boerman OC. Radioimmunotherapy and colorectal cancer. Br J Surg. 2005;92:264–76.

    Article  PubMed  CAS  Google Scholar 

  81. Wong JYC, Williams LE, Yazaki PJ. Radioimmuno­therapy of colorectal cancer. In: Spear TW, editor. Targeted radionuclide therapy. Philadelphia: Lippincott Williams and Wilkins; 2011. p. 321–51.

    Google Scholar 

  82. Goldenberg DM, Gaffar SA, Bennett SJ, Beach JL. Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen. Cancer Res. 1981;41:4354–60.

    PubMed  CAS  Google Scholar 

  83. Order SE, Klein JL, Ettinger D, Alderson P, Siegelman S, Leichner P. Use of isotopic immunoglobulin in therapy. Cancer Res. 1980;40:3001–7.

    PubMed  CAS  Google Scholar 

  84. Order SE, Klein JL, Leichner PK. Antiferritin IgG antibody for isotopic cancer therapy. Oncology. 1981;38:154–60.

    Article  PubMed  CAS  Google Scholar 

  85. Leichner PK, Klein JL, Garrison JB, Jenkins RE, Nickoloff EL, Ettinger DS, et al. Dosimetry of 131I-labeled anti-ferritin in hepatoma: a model for radioimmunoglobulin dosimetry. Int J Radiat Oncol Biol Phys. 1981;7:323–33.

    Article  PubMed  CAS  Google Scholar 

  86. Ettinger DS, Order SE, Wharam MD, Parker MK, Klein JL, Leichner PK. Phase I-II study of isotopic immunoglobulin therapy for primary liver cancer. Cancer Treat Rep. 1982;66:289–97.

    PubMed  CAS  Google Scholar 

  87. Order SE. Monoclonal antibodies: potential role in radiation therapy and oncology. Int J Radiat Oncol Biol Phys. 1982;8:1193–201.

    Article  PubMed  CAS  Google Scholar 

  88. Leichner PK, Klein JL, Siegelman SS, Ettinger DS, Order SE. Dosimetry of 131I-labeled antiferritin in hepatoma: specific activities in the tumor and liver. Cancer Treat Rep. 1983;67:647–58.

    PubMed  CAS  Google Scholar 

  89. Primus FJ, Wang RH, Goldenberg DM, Hansen HJ. Localization of human GW-39 tumors in hamsters by radiolabeled heterospecific antibody to carcinoembryonic antigen. Cancer Res. 1973;33:2977–82.

    PubMed  CAS  Google Scholar 

  90. Goldenberg DM, Preston DF, Primus FJ, Hansen HJ. Photoscan localization of GW-39 tumors in hamsters using radiolabeled anticarcinoembryonic antigen immunoglobulin G. Cancer Res. 1974;34:1–9.

    PubMed  CAS  Google Scholar 

  91. Jain RK. Therapeutic implications of tumor physiology. Curr Opin Oncol. 1991;3:1105–8.

    Article  PubMed  CAS  Google Scholar 

  92. Jain RK. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng. 1999;1:241–63.

    Article  PubMed  CAS  Google Scholar 

  93. Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29:57–61.

    PubMed  CAS  Google Scholar 

  94. Primus FJ, Macdonald R, Goldenberg DM, Hansen HJ. Localization of GW-39 human tumors in hamsters by affinity-purified antibody to carcinoembryonic antigen. Cancer Res. 1977;37:1544–7.

    PubMed  CAS  Google Scholar 

  95. Wessels BW, Rogus RD. Radionuclide selection and model absorbed dose calculations for radiolabeled tumor associated antibodies. Med Phys. 1984; 11:638–45.

    Article  PubMed  CAS  Google Scholar 

  96. Wessels BW, Vessella RL, Palme 2nd DF, Berkopec JM, Smith GK, Bradley EW. Radiobiological comparison of external beam irradiation and radioimmunotherapy in renal cell carcinoma xenografts. Int J Radiat Oncol Biol Phys. 1989;17:1257–63.

    Article  PubMed  CAS  Google Scholar 

  97. Buchsbaum DJ, ten Haken RK, Heidorn DB, Lawrence TS, Glatfelter AA, Terry VH, et al. A comparison of 131I-labeled monoclonal antibody 17-1A treatment to external beam irradiation on the growth of LS174T human colon carcinoma xenografts. Int J Radiat Oncol Biol Phys. 1990;18:1033–41.

    Article  PubMed  CAS  Google Scholar 

  98. Wessels BW, Yorke ED, Bradley EW. Dosimetry of heterogeneous uptake of radiolabeled antibody for radioimmunotherapy. Front Radiat Ther Oncol. 1990;24:104–8.

    PubMed  CAS  Google Scholar 

  99. Fowler JF. Radiobiological aspects of low dose rates in radioimmunotherapy. Int J Radiat Oncol Biol Phys. 1990;18:1261–9.

    Article  PubMed  CAS  Google Scholar 

  100. Wong JY, Williams LE, Demidecki AJ, Wessels BW, Yan XW. Radiobiologic studies comparing Yttrium-90 irradiation and external beam irradiation in vitro. Int J Radiat Oncol Biol Phys. 1991;20: 715–22.

    Article  PubMed  CAS  Google Scholar 

  101. Fujimori K, Fisher DR, Weinstein JN. Integrated microscopic-macroscopic pharmacology of monoclonal antibody radioconjugates: the radiation dose distribution. Cancer Res. 1991;51:4821–7.

    PubMed  CAS  Google Scholar 

  102. Knox SJ, Goris ML, Wessels BW. Overview of animal studies comparing radioimmunotherapy with dose equivalent external beam irradiation. Radiother Oncol. 1992;23:111–7.

    Article  PubMed  CAS  Google Scholar 

  103. Buras RR, Wong JY, Kuhn JA, Beatty BG, Williams LE, Wanek PM, et al. Comparison of radioimmunotherapy and external beam radiotherapy in colon cancer xenografts. Int J Radiat Oncol Biol Phys. 1993;25:473–9.

    Article  PubMed  CAS  Google Scholar 

  104. Yorke ED, Williams LE, Demidecki AJ, Heidorn DB, Roberson PL, Wessels BW. Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry and three-dimensional dose calculations. Med Phys. 1993;20:543–50.

    Article  PubMed  CAS  Google Scholar 

  105. Langmuir VK, Fowler JF, Knox SJ, Wessels BW, Sutherland RM, Wong JY. Radiobiology of radiolabeled antibody therapy as applied to tumor dosimetry. Med Phys. 1993;20:601–10.

    Article  PubMed  CAS  Google Scholar 

  106. Humm JL, Chin LM. A model of cell inactivation by alpha-particle internal emitters. Radiat Res. 1993;134:143–50.

    Article  PubMed  CAS  Google Scholar 

  107. Roeske JC, Chen GT, Brill AB. Dosimetry of intraperitoneally administered radiolabeled antibodies. Med Phys. 1993;20:593–600.

    Article  PubMed  CAS  Google Scholar 

  108. Howell RW, Goddu SM, Rao DV. Application of the linear-quadratic model to radioimmunotherapy: further support for the advantage of longer-lived radionuclides. J Nucl Med. 1994;35:1861–9.

    PubMed  CAS  Google Scholar 

  109. Hui TE, Fisher DR, Kuhn JA, Williams LE, Nourigat C, Badger CC, et al. A mouse model for calculating cross-organ beta doses from yttrium-90-labeled immunoconjugates. Cancer. 1994;73:951–7.

    Article  PubMed  CAS  Google Scholar 

  110. Roberson PL, Heidorn DB, Kessler ML, Ten Haken RK, Buchsbaum DJ. Three-dimensional reconstruction of monoclonal antibody uptake in tumor and calculation of beta dose-rate nonuniformity. Cancer. 1994;73:912–8.

    Article  PubMed  CAS  Google Scholar 

  111. Roberson PL, Buchsbaum DJ. Reconciliation of tumor dose response to external beam radiotherapy versus radioimmunotherapy with 131-iodine-labeled antibody for a colon cancer model. Cancer Res. 1995;55:5811s–6.

    PubMed  CAS  Google Scholar 

  112. Ning S, Trisler K, Wessels BW, Knox SJ. Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in vitro and in vivo in human renal cell carcinoma xenografts. Cancer. 1997;80:2519–28.

    Article  PubMed  CAS  Google Scholar 

  113. Barendswaard EC, O’Donoghue JA, Larson SM, Tschmelitsch J, Welt S, Finn RD, et al. 131I radioimmunotherapy and fractionated external beam radiotherapy: comparative effectiveness in a human tumor xenograft. J Nucl Med. 1999;40:1764–8.

    PubMed  CAS  Google Scholar 

  114. Hernandez MC, Knox SJ. Radiobiology of radioimmunotherapy with 90Y ibritumomab tiuxetan (Zevalin). Semin Oncol. 2003;30:6–10.

    Article  PubMed  CAS  Google Scholar 

  115. Sharkey RM, Primus FJ, Shochat D, Goldenberg DM. Comparison of tumor targeting of mouse monoclonal and goat polyclonal antibodies to carcinoembryonic antigen in the GW-39 human tumor-hamster host model. Cancer Res. 1988;48:1823–8.

    PubMed  CAS  Google Scholar 

  116. Primus FJ, Freeman JW, Goldenberg DM. Immunological heterogeneity of carcinoembryonic antigen: purification from meconium of an antigen related to carcinoembryonic antigen. Cancer Res. 1983;43:679–85.

    PubMed  CAS  Google Scholar 

  117. Primus FJ, Kuhns WJ, Goldenberg DM. Immunological heterogeneity of carcinoembryonic antigen: immunohistochemical detection of carcinoembryonic antigen determinants in colonic tumors with monoclonal antibodies. Cancer Res. 1983;43: 693–701.

    PubMed  CAS  Google Scholar 

  118. Primus FJ, Newell KD, Blue A, Goldenberg DM. Immunological heterogeneity of carcinoembryonic antigen: antigenic determinants on carcinoembryonic antigen distinguished by monoclonal antibodies. Cancer Res. 1983;43:686–92.

    PubMed  CAS  Google Scholar 

  119. Hansen HJ, Goldenberg DM, Newman ES, Grebenau R, Sharkey RM. Characterization of second-generation monoclonal antibodies against carcinoembryonic antigen. Cancer. 1993;71:3478–85.

    Article  PubMed  CAS  Google Scholar 

  120. Sharkey RM, Goldenberg DM, Goldenberg H, Lee RE, Ballance C, Pawlyk D, et al. Murine monoclonal antibodies against carcinoembryonic antigen: immunological, pharmacokinetic, and targeting properties in humans. Cancer Res. 1990;50:2823–31.

    PubMed  CAS  Google Scholar 

  121. Goldenberg DM, Primus FJ, Ford EH, Brennan K, Goldenberg H. Monoclonal antibodies to CEA: use in cancer radioimmunodetection. J Nucl Med. 1986;27:897.

    Google Scholar 

  122. Primus FJ, Bennett SJ, Kim EE, DeLand FH, Zahn MC, Goldenberg DM. Circulating immune complexes in cancer patients receiving goat radiolocalizing antibodies to carcinoembryonic antigen. Cancer Res. 1980;40:497–501.

    PubMed  CAS  Google Scholar 

  123. Beauchemin N, Draber P, Dveksler G, Gold P, Gray-Owen S, Grunert F, et al. Redefined nomenclature for members of the carcinoembryonic antigen family. Exp Cell Res. 1999;252:243–9.

    Article  PubMed  CAS  Google Scholar 

  124. Hammarstrom S, Shively JE, Paxton RJ, Beatty BG, Larsson A, Ghosh R, et al. Antigenic sites in carcinoembryonic antigen. Cancer Res. 1989;49:4852–8.

    PubMed  CAS  Google Scholar 

  125. Moffat Jr FL, Pinsky CM, Hammershaimb L, Petrelli NJ, Patt YZ, Whaley FS, et al. Clinical utility of external immunoscintigraphy with the IMMU-4 technetium-99 m Fab’ antibody fragment in patients undergoing surgery for carcinoma of the colon and rectum: results of a pivotal, phase III trial. The Immunomedics Study Group. J Clin Oncol. 1996;14:2295–305.

    PubMed  Google Scholar 

  126. Goldenberg DM. Perspectives on oncologic imaging with radiolabeled antibodies. Cancer. 1997;80:2431–5.

    Article  PubMed  CAS  Google Scholar 

  127. Behr TM, Sharkey RM, Juweid ME, Dunn RM, Vagg RC, Ying Z, et al. Phase I/II clinical radioimmunotherapy with an iodine-131-labeled anti-carcinoembryonic antigen murine monoclonal antibody IgG. J Nucl Med. 1997;38:858–70.

    PubMed  CAS  Google Scholar 

  128. Sharkey RM, Pykett MJ, Siegel JA, Alger EA, Primus FJ, Goldenberg DM. Radioimmunotherapy of the GW-39 human colonic tumor xenograft with 131I-labeled murine monoclonal antibody to carcinoembryonic antigen. Cancer Res. 1987;47:5672–7.

    PubMed  CAS  Google Scholar 

  129. Sharkey RM, Weadock KS, Natale A, Haywood L, Aninipot R, Blumenthal RD, et al. Successful radioimmunotherapy for lung metastasis of human colonic cancer in nude mice. J Natl Cancer Inst. 1991;83:627–32.

    Article  PubMed  CAS  Google Scholar 

  130. Siegel JA, Pawlyk DA, Lee RE, Sasso NL, Horowitz JA, Sharkey RM, et al. Tumor, red marrow, and organ dosimetry for 131I-labeled anti-carcinoembryonic antigen monoclonal antibody. Cancer Res. 1990;50:1039s–42.

    PubMed  CAS  Google Scholar 

  131. Behr TM, Sharkey RM, Juweid MI, Dunn RM, Ying Z, Zhang CH, et al. Factors influencing the pharmacokinetics, dosimetry, and diagnostic accuracy of radioimmunodetection and radioimmunotherapy of carcinoembryonic antigen-expressing tumors. Cancer Res. 1996;56:1805–16.

    PubMed  CAS  Google Scholar 

  132. Boerman OC, Sharkey RM, Blumenthal RD, Aninipot RL, Goldenberg DM. The presence of a concomitant bulky tumor can decrease the uptake and therapeutic efficacy of radiolabeled antibodies in small tumors. Int J Cancer. 1992;51:470–5.

    Article  PubMed  CAS  Google Scholar 

  133. Fujimori K, Covell DG, Fletcher JE, Weinstein JN. A modeling analysis of monoclonal antibody percolation through tumors: a binding-site barrier. J Nucl Med. 1990;31:1191–8.

    PubMed  CAS  Google Scholar 

  134. Boerman OC, Sharkey RM, Wong GY, Blumenthal RD, Aninipot RL, Goldenberg DM. Influence of antibody protein dose on therapeutic efficacy of radioiodinated antibodies in nude mice bearing GW-39 human tumor. Cancer Immunol Immunother. 1992;35:127–34.

    Article  PubMed  CAS  Google Scholar 

  135. Saga T, Neumann RD, Heya T, Sato J, Kinuya S, Le N, et al. Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier. Proc Natl Acad Sci U S A. 1995;92:8999–9003.

    Article  PubMed  CAS  Google Scholar 

  136. Sharkey RM, Primus FJ, Goldenberg DM. Second antibody clearance of radiolabeled antibody in cancer radioimmunodetection. Proc Natl Acad Sci U S A. 1984;81:2843–6.

    Article  PubMed  CAS  Google Scholar 

  137. Goldenberg DM, Sharkey RM, Ford E. Anti-antibody enhancement of iodine-131 anti-CEA radioimmunodetection in experimental and clinical studies. J Nucl Med. 1987;28:1604–10.

    PubMed  CAS  Google Scholar 

  138. Begent RH, Bagshawe KD, Pedley RB, Searle F, Ledermann JA, Green AJ, et al. Use of second antibody in radioimmunotherapy. NCI Monogr. 1987;3:59–61.

    PubMed  Google Scholar 

  139. Pedley RB, Dale R, Boden JA, Begent RH, Keep PA, Green AJ. The effect of second antibody clearance on the distribution and dosimetry of radiolabelled anti-CEA antibody in a human colonic tumor xenograft model. Int J Cancer. 1989;43:713–8.

    Article  PubMed  CAS  Google Scholar 

  140. Sharkey RM, Boerman OC, Natale A, Pawlyk D, Monestier M, Losman MJ, et al. Enhanced clearance of radiolabeled murine monoclonal antibody by a syngeneic anti-idiotype antibody in tumor-bearing nude mice. Int J Cancer. 1992;51:266–73.

    Article  PubMed  CAS  Google Scholar 

  141. Blumenthal RD, Sharkey RM, Kashi R, Goldenberg DM. Comparison of therapeutic efficacy and host toxicity of two different 131I-labelled antibodies and their fragments in the GW-39 colonic cancer xenograft model. Int J Cancer. 1989;44:292–300.

    Article  PubMed  CAS  Google Scholar 

  142. Buchegger F, Pfister C, Fournier K, Prevel F, Schreyer M, Carrel S, et al. Ablation of human colon carcinoma in nude mice by 131I-labeled monoclonal anti-carcinoembryonic antigen antibody F(ab’)2 fragments. J Clin Invest. 1989;83:1449–56.

    Article  PubMed  CAS  Google Scholar 

  143. Buchegger F, Pelegrin A, Delaloye B, Bischof-Delaloye A, Mach JP. Iodine-131-labeled MAb F(ab’)2 fragments are more efficient and less toxic than intact anti-CEA antibodies in radioimmunotherapy of large human colon carcinoma grafted in nude mice. J Nucl Med. 1990;31:1035–44.

    PubMed  CAS  Google Scholar 

  144. Blumenthal RD, Sharkey RM, Haywood L, Natale AM, Wong GY, Siegel JA, et al. Targeted therapy of athymic mice bearing GW-39 human colonic cancer micrometastases with 131I-labeled monoclonal antibodies. Cancer Res. 1992;52:6036–44.

    PubMed  CAS  Google Scholar 

  145. Pedley RB, Boden JA, Boden R, Dale R, Begent RH. Comparative radioimmunotherapy using intact or F(ab’)2 fragments of 131I anti-CEA antibody in a colonic xenograft model. Br J Cancer. 1993;68:69–73.

    Article  PubMed  CAS  Google Scholar 

  146. Juweid ME, Sharkey RM, Behr T, Swayne LC, Dunn R, Siegel J, et al. Radioimmunotherapy of patients with small-volume tumors using iodine-131-labeled anti-CEA monoclonal antibody (ab’)2. J Nucl Med. 1996;37:1504–10.

    PubMed  CAS  Google Scholar 

  147. Ychou M, Pelegrin A, Faurous P, Robert B, Saccavini JC, Guerreau D, et al. Phase-I/II radio-immunotherapy study with Iodine-131-labeled anti-CEA monoclonal antibody F6 F(ab’)2 in patients with non-resectable liver metastases from colorectal cancer. Int J Cancer. 1998;75:615–9.

    Article  PubMed  CAS  Google Scholar 

  148. Buchegger F, Allal AS, Roth A, Papazyan JP, Dupertuis Y, Mirimanoff RO, et al. Combined radioimmunotherapy and radiotherapy of liver metastases from colorectal cancer: a feasibility study. Anticancer Res. 2000;20:1889–96.

    PubMed  CAS  Google Scholar 

  149. Buchegger F, Gillet M, Doenz F, Vogel CA, Achtari C, Mach JP, et al. Biodistribution of anti-CEA F(ab’)2 fragments after intra-arterial and intravenous injection in patients with liver metastases due to ­colorectal carcinoma. Nucl Med Commun. 1996;17: 500–3.

    Article  PubMed  CAS  Google Scholar 

  150. Buchegger F, Roth A, Allal A, Dupertuis YM, Slosman DO, Delaloye AB, et al. Radioimmunotherapy of colorectal cancer liver metastases: combination with radiotherapy. Ann N Y Acad Sci. 2000;910: 263–9.

    Article  PubMed  CAS  Google Scholar 

  151. Juweid M, Sharkey RM, Alavi A, Swayne LC, Herskovic T, Hanley D, et al. Regression of advanced refractory ovarian cancer treated with iodine-131-labeled anti-CEA monoclonal antibody. J Nucl Med. 1997;38:257–60.

    PubMed  CAS  Google Scholar 

  152. Juweid M, Swayne LC, Sharkey RM, Dunn R, Rubin AD, Herskovic T, et al. Prospects of radioimmunotherapy in epithelial ovarian cancer: results with iodine-131-labeled murine and humanized MN-14 anti-carcinoembryonic antigen monoclonal antibodies. Gynecol Oncol. 1997;67:259–71.

    Article  PubMed  CAS  Google Scholar 

  153. Juweid ME, Hajjar G, Swayne LC, Sharkey RM, Suleiman S, Herskovic T, et al. Phase I/II trial of 131I-MN-14F(ab)2 anti-carcinoembryonic antigen monoclonal antibody in the treatment of patients with metastatic medullary thyroid carcinoma. Cancer. 1999;85:1828–42.

    Article  PubMed  CAS  Google Scholar 

  154. Juweid M, Sharkey RM, Behr T, Swayne LC, Herskovic T, Pereira M, et al. Radioimmunotherapy of medullary thyroid cancer with iodine-131-labeled anti-CEA antibodies. J Nucl Med. 1996;37:905–11.

    PubMed  CAS  Google Scholar 

  155. Juweid ME, Hajjar G, Stein R, Sharkey RM, Herskovic T, Swayne LC, et al. Initial experience with high-dose radioimmunotherapy of metastatic medullary thyroid cancer using 131I-MN-14 F(ab)2 anti-carcinoembryonic antigen MAb and AHSCR. J Nucl Med. 2000;41:93–103.

    PubMed  CAS  Google Scholar 

  156. Bernstein ID, Eary JF, Badger CC, Press OW, Appelbaum FR, Martin PJ, et al. High dose radiolabeled antibody therapy of lymphoma. Cancer Res. 1990;50:1017s–21.

    PubMed  CAS  Google Scholar 

  157. Press OW, Eary JF, Appelbaum FR, Martin PJ, Badger CC, Nelp WB, et al. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med. 1993;329:1219–24.

    Article  PubMed  CAS  Google Scholar 

  158. Sharkey RM, Juweid M, Shevitz J, Behr T, Dunn R, Swayne LC, et al. Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res. 1995;55: 5935s–45.

    PubMed  CAS  Google Scholar 

  159. Hajjar G, Sharkey RM, Burton J, Zhang CH, Yeldell D, Matthies A, et al. Phase I radioimmunotherapy trial with iodine-131-labeled humanized MN-14 anti-carcinoembryonic antigen monoclonal antibody in patients with metastatic gastrointestinal and colorectal cancer. Clin Colorectal Cancer. 2002;2: 31–42.

    Article  PubMed  CAS  Google Scholar 

  160. Humm JL. Dosimetric aspects of radiolabeled antibodies for tumor therapy. J Nucl Med. 1986;27: 1490–7.

    PubMed  CAS  Google Scholar 

  161. Siegel JA. Revised Nuclear Regulatory Commission regulations for release of patients administered radioactive materials: outpatient iodine-131 anti-B1 therapy. J Nucl Med. 1998;39:28S–33.

    PubMed  CAS  Google Scholar 

  162. Beckers C. Regulations and policies on radioiodine 131I therapy in Europe. Thyroid. 1997;7:221–4.

    Article  PubMed  CAS  Google Scholar 

  163. Grigsby PW, Siegel BA, Baker S, Eichling JO. Radiation exposure from outpatient radioactive iodine 131I therapy for thyroid carcinoma. JAMA. 2000;283:2272–4.

    Article  PubMed  CAS  Google Scholar 

  164. Wrixon AD. New ICRP recommendations. J Radiol Prot. 2008;28:161–8.

    Article  PubMed  CAS  Google Scholar 

  165. Sharkey RM, Kaltovich FA, Shih LB, Fand I, Govelitz G, Goldenberg DM. Radioimmunotherapy of human colonic cancer xenografts with 90Y labeled monoclonal antibodies to carcinoembryonic antigen. Cancer Res. 1988;48:3270–5.

    PubMed  CAS  Google Scholar 

  166. Sharkey RM, Motta-Hennessy C, Gansow OA, Brechbiel MW, Fand I, Griffiths GL, et al. Selection of a DTPA chelate conjugate for monoclonal antibody targeting to a human colonic tumor in nude mice. Int J Cancer. 1990;46:79–85.

    Article  PubMed  CAS  Google Scholar 

  167. Fand I, Sharkey RM, Goldenberg DM. Use of whole-body autoradiography in cancer targeting with radiolabeled antibodies. Cancer Res. 1990;50:885s–91.

    PubMed  CAS  Google Scholar 

  168. Gansow OA, Brechbiel MW, Mirzadeh S, Colcher D, Roselli M. Chelates and antibodies: current methods and new directions. Cancer Treat Res. 1990;51:153–71.

    Article  PubMed  CAS  Google Scholar 

  169. Roselli M, Schlom J, Gansow OA, Raubitschek A, Mirzadeh S, Brechbiel MW, et al. Comparative biodistributions of yttrium- and indium-labeled monoclonal antibody B72.3 in athymic mice bearing human colon carcinoma xenografts. J Nucl Med. 1989;30:672–82.

    PubMed  CAS  Google Scholar 

  170. Sharkey RM, Motta-Hennessy C, Pawlyk D, Siegel JA, Goldenberg DM. Biodistribution and radiation dose estimates for yttrium- and iodine-labeled monoclonal antibody IgG and fragments in nude mice bearing human colonic tumor xenografts. Cancer Res. 1990;50:2330–6.

    PubMed  CAS  Google Scholar 

  171. Deshpande SV, DeNardo SJ, Kukis DL, Moi MK, McCall MJ, DeNardo GL, et al. Yttrium-90-labeled monoclonal antibody for therapy: labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med. 1990;31:473–9.

    PubMed  CAS  Google Scholar 

  172. Meares CF, Moi MK, Diril H, Kukis DL, McCall MJ, Deshpande SV, et al. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer Suppl. 1990;10:21–6.

    PubMed  CAS  Google Scholar 

  173. Moi MK, DeNardo SJ, Meares CF. Stable bifunctional chelates of metals used in radiotherapy. Cancer Res. 1990;50:789s–93.

    PubMed  CAS  Google Scholar 

  174. Subramanian R, Meares CF. Bifunctional chelating agents for radiometal-labeled monoclonal antibodies. Cancer Treat Res. 1990;51:183–99.

    Article  PubMed  CAS  Google Scholar 

  175. DeNardo GL, Kroger LA, DeNardo SJ, Miers LA, Salako Q, Kukis DL, et al. Comparative toxicity studies of yttrium-90 MX-DTPA and 2-IT-BAD conjugated monoclonal antibody (BrE-3). Cancer. 1994;73:1012–22.

    Article  PubMed  CAS  Google Scholar 

  176. Buchsbaum DJ, Lawrence TS, Roberson PL, Heidorn DB, Ten Haken RK, Steplewski Z. Comparison of 131I- and 90Y-labeled monoclonal antibody 17-1A for treatment of human colon cancer xenografts. Int J Radiat Oncol Biol Phys. 1993;25:629–38.

    Article  PubMed  CAS  Google Scholar 

  177. Kyriakos RJ, Shih LB, Ong GL, Patel K, Goldenberg DM, Mattes MJ. The fate of antibodies bound to the surface of tumor cells in vitro. Cancer Res. 1992; 52:835–42.

    PubMed  CAS  Google Scholar 

  178. Mattes MJ, Griffiths GL, Diril H, Goldenberg DM, Ong GL, Shih LB. Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells. Cancer. 1994;73:787–93.

    Article  PubMed  CAS  Google Scholar 

  179. Wong JY, Williams LE, Yamauchi DM, Odom-Maryon T, Esteban JM, Neumaier M, et al. Initial experience evaluating 90yttrium-radiolabeled anti-carcinoembryonic antigen chimeric T84.66 in a phase I radioimmunotherapy trial. Cancer Res. 1995;55:5929s–34.

    PubMed  CAS  Google Scholar 

  180. Fairweather DS, Bradwell AR, Dykes PW, Vaughan AT, Watson-James SF, Chandler S. Improved tumour localisation using indium-111 labelled antibodies. Br Med J (Clin Res Ed). 1983;287:167–70.

    Article  CAS  Google Scholar 

  181. Abdel-Nabi HH, Schwartz AN, Goldfogel G, Ortman-Nabi JA, Matsuoka DM, Unger MW, et al. Colorectal tumors: scintigraphy with In-111 anti-CEA monoclonal antibody and correlation with surgical, histopathologic, and immunohistochemical findings. Radiology. 1988;166:747–52.

    PubMed  CAS  Google Scholar 

  182. Halpern SE, Haindl W, Beauregard J, Hagan P, Clutter M, Amox D, et al. Scintigraphy with In-111-labeled monoclonal antitumor antibodies: kinetics, biodistribution, and tumor detection. Radiology. 1988;168:529–36.

    PubMed  CAS  Google Scholar 

  183. Patt YZ, Lamki LM, Haynie TP, Unger MW, Rosenblum MG, Shirkhoda A, et al. Improved tumor localization with increasing dose of indium-111-labeled anti-carcinoembryonic antigen monoclonal antibody ZCE-025 in metastatic colorectal cancer. J Clin Oncol. 1988;6:1220–30.

    PubMed  CAS  Google Scholar 

  184. Andrew SM, Perkins AC, Pimm MV, Baldwin RW. A comparison of iodine and indium labelled anti CEA intact antibody, F(ab)2 and Fab fragments by imaging tumour xenografts. Eur J Nucl Med. 1988;13:598–604.

    Article  PubMed  CAS  Google Scholar 

  185. Wong JY, Williams LE, Hill LR, Paxton RJ, Beatty BG, Shively JE, et al. The effects of tumor mass, tumor age, and external beam radiation on tumor-specific antibody uptake. Int J Radiat Oncol Biol Phys. 1989;16:715–20.

    Article  PubMed  CAS  Google Scholar 

  186. Divgi CR, McDermott K, Johnson DK, Schnobrich KE, Finn RD, Cohen AM, et al. Detection of hepatic metastases from colorectal carcinoma using indium-111 (111In) labeled monoclonal antibody (mAb): MSKCC experience with mAb 111In-C110. Int J Rad Appl Instrum B. 1991;18:705–10.

    PubMed  CAS  Google Scholar 

  187. Patt YZ, Podoloff DA, Curley S, Smith R, Badkhamkar VA, Lamki LM, et al. Monoclonal ­antibody imaging in patients with colorectal cancer and increasing levels of serum carcinoembryonic antigen. Experience with ZCE-025 and IMMU-4 monoclonal antibodies and proposed directions for clinical trials. Cancer. 1993;71:4293–7.

    Article  PubMed  CAS  Google Scholar 

  188. Wong JY, Thomas GE, Yamauchi D, Williams LE, Odom-Maryon TL, Liu A, et al. Clinical evaluation of indium-111-labeled chimeric anti-CEA monoclonal antibody. J Nucl Med. 1997;38:1951–9.

    PubMed  CAS  Google Scholar 

  189. Wong JYC, Chu DZ, Yamauchi DM, Williams LE, Liu A, Wilczynski S, et al. A phase I radioimmunotherapy trial evaluating 90yttrium-labeled anti-carcinoembryonic antigen (CEA) chimeric T84.66 in patients with metastatic CEA-producing malignancies. Clin Cancer Res. 2000;6:3855–63.

    PubMed  CAS  Google Scholar 

  190. Lewis MR, Raubitschek A, Shively JE. A facile, water-soluble method for modification of proteins with DOTA. Use of elevated temperature and optimized pH to achieve high specific activity and high chelate stability in radiolabeled immunoconjugates. Bioconj Chem. 1994;5:565–76.

    Article  CAS  Google Scholar 

  191. Wong JY, Chu DZ, Williams LE, Liu A, Zhan J, Yamauchi DM, et al. A phase I trial of 90Y-DOTA-anti-CEA chimeric T84.66 (cT84.66) radioimmunotherapy in patients with metastatic CEA-producing malignancies. Cancer Biother Radiopharm. 2006;21:88–100.

    Article  PubMed  CAS  Google Scholar 

  192. Fagnani R, Halpern S, Hagan M. Altered pharmacokinetic and tumour localization properties of Fab’ fragments of a murine monoclonal anti-CEA antibody by covalent modification with low molecular weight dextran. Nucl Med Commun. 1995; 16:362–9.

    Article  PubMed  CAS  Google Scholar 

  193. Siler K, Eggensperger D, Hand PH, Milenic DE, Miller LS, Houchens DP, et al. Therapeutic efficacy of a high-affinity anticarcinoembryonic antigen monoclonal antibody (COL-1). Biotechnol Ther. 1993;4:163–81.

    PubMed  CAS  Google Scholar 

  194. Yu B, Carrasquillo J, Milenic D, Chung Y, Perentesis P, Feuerestein I, et al. Phase I trial of iodine 131-labeled COL-1 in patients with gastrointestinal malignancies: influence of serum carcinoembryonic antigen and tumor bulk on pharmacokinetics. J Clin Oncol. 1996;14:1798–809.

    PubMed  CAS  Google Scholar 

  195. Meredith RF, Khazaeli MB, Plott WE, Grizzle WE, Liu T, Schlom J, et al. Phase II study of dual 131I-labeled monoclonal antibody therapy with interferon in patients with metastatic colorectal cancer. Clin Cancer Res. 1996;2:1811–8.

    PubMed  CAS  Google Scholar 

  196. Delaloye AB, Delaloye B, Buchegger F, Vogel CA, Gillet M, Mach JP, et al. Comparison of copper-67- and iodine-125-labeled anti-CEA monoclonal antibody biodistribution in patients with colorectal tumors. J Nucl Med. 1997;38:847–53.

    PubMed  CAS  Google Scholar 

  197. Boxer GM, Begent RH, Kelly AM, Southall PJ, Blair SB, Theodorou NA, et al. Factors influencing variability of localisation of antibodies to carcinoembryonic antigen (CEA) in patients with colorectal carcinoma–implications for radioimmunotherapy. Br J Cancer. 1992;65:825–31.

    Article  PubMed  CAS  Google Scholar 

  198. Lane DM, Eagle KF, Begent RH, Hope-Stone LD, Green AJ, Casey JL, et al. Radioimmunotherapy of metastatic colorectal tumours with iodine-131-labelled antibody to carcinoembryonic antigen: phase I/II study with comparative biodistribution of intact and F(ab’)2 antibodies. Br J Cancer. 1994;70: 521–5.

    Article  PubMed  CAS  Google Scholar 

  199. Pedley RB, Begent RH, Boden JA, Boxer GM, Boden R, Keep PA. Enhancement of radioimmunotherapy by drugs modifying tumour blood flow in a colonic xenograft model. Int J Cancer. 1994; 57:830–5.

    Article  PubMed  CAS  Google Scholar 

  200. Delgado C, Pedley RB, Herraez A, Boden R, Boden JA, Keep PA, et al. Enhanced tumour specificity of an anti-carcinoembrionic antigen Fab’ fragment by poly(ethylene glycol) (PEG) modification. Br J Cancer. 1996;73:175–82.

    Article  PubMed  CAS  Google Scholar 

  201. Casey JL, Pedley RB, King DJ, Green AJ, Yarranton GT, Begent RH. Dosimetric evaluation and radioimmunotherapy of anti-tumour multivalent Fab’ fragments. Br J Cancer. 1999;81:972–80.

    Article  PubMed  CAS  Google Scholar 

  202. Lu QJ, Bian GX, Chen YY, Zhang M, Guo SM, Wen LQ. Radioimmunotherapy of carcinoma of colon with 131I-labeled recombinant chimeric monoclonal antibodies to carcinoembryonic antigen. Acta Pharmacol Sin. 2005;26:1259–64.

    Article  PubMed  CAS  Google Scholar 

  203. Sundin A, Enblad P, Ahlstrom H, Carlsson J, Maripuu E, Hedin A. Radioimmunolocalization of human colonic cancer xenografts; aspects of extensive purification of monoclonal anti-CEA-antibodies. Int J Rad Appl Instrum B. 1991;18:891–9.

    PubMed  CAS  Google Scholar 

  204. Mahteme H, Lovqvist A, Graf W, Lundqvist H, Carlsson J, Sundin A. Adjuvant 131I-anti-CEA-antibody radioimmunotherapy inhibits the development of experimental colonic carcinoma liver metastases. Anticancer Res. 1998;18:843–8.

    PubMed  CAS  Google Scholar 

  205. Mahteme H, Sundin A, Larsson B, Khamis H, Arow K, Graf W. 5-FU uptake in peritoneal metastases after pretreatment with radioimmunotherapy or vasoconstriction: an autoradiographic study in the rat. Anticancer Res. 2005;25:917–22.

    PubMed  CAS  Google Scholar 

  206. Watanabe N, Oriuchi N, Endo K, Inoue T, Kuroki M, Matsuoka Y, et al. CaNa2EDTA for improvement of radioimmunodetection and radioimmunotherapy with 111In and 90Y-DTPA-anti-CEA MAbs in nude mice bearing human colorectal cancer. J Nucl Med. 2000;41:337–44.

    PubMed  CAS  Google Scholar 

  207. Saga T, Sakahara H, Nakamoto Y, Sato N, Zhao S, Iida Y, et al. Radioimmunotherapy for liver micrometastases in mice: pharmacokinetics, dose estimation, and long-term effect. Jpn J Cancer Res. 1999;90:342–8.

    Article  PubMed  CAS  Google Scholar 

  208. Liu Z, Jin C, Yu Z, Zhang J, Liu Y, Zhao H, et al. Radioimmunotherapy of human colon cancer xenografts with 131I-labeled anti-CEA monoclonal antibody. Bioconjug Chem. 2010;21:314–8.

    Article  PubMed  CAS  Google Scholar 

  209. Kamigaki T, Ajiki T, Yamamoto M, Kuroda Y. Enhancement of tumor uptakes by stabilized Fab homo-oligomers of a chimeric monoclonal antibody against carcinoembryonic antigen. Int J Oncol. 1999;14:139–44.

    PubMed  CAS  Google Scholar 

  210. Herlyn D, Powe J, Alavi A, Mattis JA, Herlyn M, Ernst C, et al. Radioimmunodetection of human tumor xenografts by monoclonal antibodies. Cancer Res. 1983;43:2731–5.

    PubMed  CAS  Google Scholar 

  211. Douillard JY, Chatal JF, Saccavini JC, Curtet C, Kremer M, Peuvrel P, et al. Pharmacokinetic study of radiolabeled anti-colorectal carcinoma monoclonal antibodies in tumor-bearing nude mice. Eur J Nucl Med. 1985;11:107–13.

    Article  PubMed  CAS  Google Scholar 

  212. Chatal JF, Saccavini JC, Fumoleau P, Douillard JY, Curtet C, Kremer M, et al. Immunoscintigraphy of colon carcinoma. J Nucl Med. 1984;25:307–14.

    PubMed  CAS  Google Scholar 

  213. Mach JP, Chatal JF, Lumbroso JD, Buchegger F, Forni M, Ritschard J, et al. Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma. Cancer Res. 1983;43: 5593–600.

    PubMed  CAS  Google Scholar 

  214. Malesci A, Tommasini MA, Bocchia P, Zerbi A, Beretta E, Vecchi M, et al. Differential diagnosis of pancreatic cancer and chronic pancreatitis by a monoclonal antibody detecting a new cancer-associated antigen (CA 19-9). Ric Clin Lab. 1984;14: 303–6.

    PubMed  CAS  Google Scholar 

  215. Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol. 1990;85:350–5.

    PubMed  CAS  Google Scholar 

  216. Barton JG, Bois JP, Sarr MG, Wood CM, Qin R, Thomsen KM, et al. Predictive and prognostic value of CA 19-9 in resected pancreatic adenocarcinoma. J Gastrointest Surg. 2009;13:2050–8.

    Article  PubMed  Google Scholar 

  217. Buxbaum JL, Eloubeidi MA. Molecular and clinical markers of pancreas cancer. JOP. 2010;11:536–44.

    PubMed  Google Scholar 

  218. Douillard JY, Le Mevel B, Curtet C, Vignoud J, Chatal JF, Koprowski H. Immunotherapy of gastrointestinal cancer with monoclonal antibodies. Med Oncol Tumor Pharmacother. 1986;3:141–6.

    PubMed  CAS  Google Scholar 

  219. Herlyn D, Lubeck M, Sears H, Koprowski H. Specific detection of anti-idiotypic immune responses in cancer patients treated with murine monoclonal antibody. J Immunol Methods. 1985;85: 27–38.

    Article  PubMed  CAS  Google Scholar 

  220. Sears HF, Herlyn D, Steplewski Z, Koprowski H. Effects of monoclonal antibody immunotherapy on patients with gastrointestinal adenocarcinoma. J Biol Response Mod. 1984;3:138–50.

    PubMed  CAS  Google Scholar 

  221. Paul AR, Engstrom PF, Weiner LM, Steplewski Z, Koprowski H. Treatment of advanced measurable or evaluable pancreatic carcinoma with 17-1A murine monoclonal antibody alone or in combination with 5-fluorouracil, adriamycin and mitomycin (FAM). Hybridoma. 1986;5 Suppl 1:S171–4.

    PubMed  Google Scholar 

  222. Sindelar WF, Maher MM, Herlyn D, Sears HF, Steplewski Z, Koprowski H. Trial of therapy with monoclonal antibody 17-1A in pancreatic carcinoma: preliminary results. Hybridoma. 1986;5 Suppl 1:S125–32.

    PubMed  Google Scholar 

  223. Verrill H, Goldberg M, Rosenbaum R, Abbott R, Simunovic L, Steplewski Z, et al. Clinical trial of Wistar Institute 17-1A monoclonal antibody in patients with advanced gastrointestinal adenocarcinoma: a preliminary report. Hybridoma. 1986;5 Suppl 1:S175–83.

    PubMed  Google Scholar 

  224. Buchsbaum DJ, Brubaker PG, Hanna DE, Glatfelter AA, Terry VH, Guilbault DM, et al. Comparative binding and preclinical localization and therapy studies with radiolabeled human chimeric and murine 17-1A monoclonal antibodies. Cancer Res. 1990;50:993s–9.

    PubMed  CAS  Google Scholar 

  225. Meredith RF, Khazaeli MB, Plott WE, Spencer SA, Wheeler RH, Brady LW, et al. Initial clinical evaluation of iodine-125-labeled chimeric 17-1A for metastatic colon cancer. J Nucl Med. 1995;36:2229–33.

    PubMed  CAS  Google Scholar 

  226. Meredith RF, LoBuglio AF, Plott WE, Orr RA, Brezovich IA, Russell CD, et al. Pharmacokinetics, immune response, and biodistribution of iodine-131-labeled chimeric mouse/human IgG1k 17-1A monoclonal antibody. J Nucl Med. 1991;32:1162–8.

    PubMed  CAS  Google Scholar 

  227. Brady LW, Miyamoto C, Woo DV, Rackover M, Emrich J, Bender H, et al. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int J Radiat Oncol Biol Phys. 1992;22:225–30.

    Article  PubMed  CAS  Google Scholar 

  228. Wong KJ, Baidoo KE, Nayak TK, Garmestani K, Brechbiel MW, Milenic DE. In vitro and in vivo pre-clinical analysis of a F(ab’)2 fragment of panitumumab for molecular imaging and therapy of HER1 positive cancers. EJNMMI Res. 2011;1:1.

    Article  PubMed  CAS  Google Scholar 

  229. Milenic DE, Brady ED, Garmestani K, Albert PS, Abdulla A, Brechbiel MW. Improved efficacy of alpha-particle-targeted radiation therapy: dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer. 2010;116:1059–66.

    Article  PubMed  CAS  Google Scholar 

  230. Ray GL, Baidoo KE, Wong KJ, Williams M, Garmestani K, Brechbiel MW, et al. Preclinical ­evaluation of a monoclonal antibody targeting the epidermal growth factor receptor as a radioimmunodiagnostic and radioimmunotherapeutic agent. Br J Pharmacol. 2009;157:1541–8.

    Article  PubMed  CAS  Google Scholar 

  231. Colcher D, Keenan AM, Larson SM, Schlom J. Prolonged binding of a radiolabeled monoclonal antibody (B72.3) used for the in situ radioimmunodetection of human colon carcinoma xenografts. Cancer Res. 1984;44:5744–51.

    PubMed  CAS  Google Scholar 

  232. Abdel-Nabi HH, Doerr RJ. Multicenter clinical trials of monoclonal antibody B72.3-GYK-DTPA 111In (111In-CYT-103; OncoScint CR103) in patients with colorectal carcinoma. Targeted Diagn Ther. 1992;6:73–88.

    PubMed  CAS  Google Scholar 

  233. Doerr RJ, Abdel-Nabi H, Krag D, Mitchell E. Radiolabeled antibody imaging in the management of colorectal cancer. Results of a multicenter clinical study. Ann Surg. 1991;214:118–24.

    Article  PubMed  CAS  Google Scholar 

  234. Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol. 2009;7:11.

    Article  PubMed  Google Scholar 

  235. Esteban JM, Schlom J, Mornex F, Colcher D. Radioimmunotherapy of athymic mice bearing human colon carcinomas with monoclonal antibody B72.3: histological and autoradiographic study of effects on tumors and normal organs. Eur J Cancer Clin Oncol. 1987;23:643–55.

    Article  PubMed  CAS  Google Scholar 

  236. Colcher DM, Milenic DE, Schlom J. Generation and characterization of monoclonal antibody B72.3. Experimental and preclinical studies. Targeted Diagn Ther. 1992;6:23–44.

    PubMed  CAS  Google Scholar 

  237. Meredith RF, Khazaeli MB, Plott WE, Saleh MN, Liu T, Allen LF, et al. Phase I trial of iodine-131-chimeric B72.3 (human IgG4) in metastatic colorectal cancer. J Nucl Med. 1992;33:23–9.

    PubMed  CAS  Google Scholar 

  238. Colcher D, Carrasquillo JA, Esteban JM, Sugarbaker P, Reynolds JC, Siler K, et al. Radiolabeled monoclonal antibody B72.3 localization in metastatic lesions of colorectal cancer patients. Int J Rad Appl Instrum B. 1987;14:251–62.

    PubMed  CAS  Google Scholar 

  239. Colcher D, Minelli MF, Roselli M, Muraro R, Simpson-Milenic D, Schlom J. Radioimmunolocalization of human carcinoma xenografts with B72.3 second generation monoclonal antibodies. Cancer Res. 1988;48:4597–603.

    PubMed  CAS  Google Scholar 

  240. Schlom J, Colcher D, Roselli M, Carrasquillo JA, Reynolds JC, Larson SM, et al. Tumor targeting with monoclonal antibody B72.3. Int J Rad Appl Instrum B. 1989;16:137–42.

    PubMed  CAS  Google Scholar 

  241. Muraro R, Kuroki M, Wunderlich D, Poole DJ, Colcher D, Thor A, et al. Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen. Cancer Res. 1988;48:4588–96.

    PubMed  CAS  Google Scholar 

  242. Hanisch FG, Uhlenbruck G, Egge H, Peter-Katalinic J. A B72.3 second-generation-monoclonal antibody (CC49) defines the mucin-carried carbohydrate epitope Gal beta(1-3) [NeuAc alpha(2-6)]GalNAc. Biol Chem Hoppe Seyler. 1989;370:21–6.

    Article  PubMed  CAS  Google Scholar 

  243. Molinolo A, Simpson JF, Thor A, Schlom J. Enhanced tumor binding using immunohistochemical analyses by second generation anti-tumor-associated glycoprotein 72 monoclonal antibodies versus monoclonal antibody B72.3 in human tissue. Cancer Res. 1990;50:1291–8.

    PubMed  CAS  Google Scholar 

  244. Schlom J, Eggensperger D, Colcher D, Molinolo A, Houchens D, Miller LS, et al. Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res. 1992;52:1067–72.

    PubMed  CAS  Google Scholar 

  245. Kashmiri SV, Iwahashi M, Tamura M, Padlan EA, Milenic DE, Schlom J. Development of a minimally immunogenic variant of humanized anti-carcinoma monoclonal antibody CC49. Crit Rev Oncol Hematol. 2001;38:3–16.

    Article  PubMed  CAS  Google Scholar 

  246. Kashmiri SV, Shu L, Padlan EA, Milenic DE, Schlom J, Hand PH. Generation, characterization, and in vivo studies of humanized anticarcinoma antibody CC49. Hybridoma. 1995;14:461–73.

    Article  PubMed  CAS  Google Scholar 

  247. Divgi CR, Scott AM, Dantis L, Capitelli P, Siler K, Hilton S, et al. Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma. J Nucl Med. 1995;36:586–92.

    PubMed  CAS  Google Scholar 

  248. Divgi CR, Scott AM, McDermott K, Fallone PS, Hilton S, Siler K, et al. Clinical comparison of radiolocalization of two monoclonal antibodies (mAbs) against the TAG-72 antigen. Nucl Med Biol. 1994;21:9–15.

    Article  PubMed  CAS  Google Scholar 

  249. Tempero M, Leichner P, Dalrymple G, Harrison K, Augustine S, Schlam J, et al. High-dose therapy with iodine-131-labeled monoclonal antibody CC49 in patients with gastrointestinal cancers: a phase I trial. J Clin Oncol. 1997;15:1518–28.

    PubMed  CAS  Google Scholar 

  250. Tempero M, Leichner P, Baranowska-Kortylewicz J, Harrison K, Augustine S, Schlom J, et al. High-dose therapy with 90Yttrium-labeled monoclonal antibody CC49: a phase I trial. Clin Cancer Res. 2000;6:3095–102.

    PubMed  CAS  Google Scholar 

  251. Greiner JW, Guadagni F, Roselli M, Ullmann CD, Nieroda C, Schlom J. Improved experimental radioimmunotherapy of colon xenografts by combining 131I-CC49 and interferon-gamma. Dis Colon Rectum. 1994;37:S100–5.

    Article  PubMed  CAS  Google Scholar 

  252. Greiner JW, Ullmann CD, Nieroda C, Qi CF, Eggensperger D, Shimada S, et al. Improved radioimmunotherapeutic efficacy of an anticarcinoma monoclonal antibody (131I-CC49) when given in combination with gamma-interferon. Cancer Res. 1993;53:600–8.

    PubMed  CAS  Google Scholar 

  253. Triozzi PL, Kim JA, Martin Jr EW, Colcher D, Heffelfinger M, Rucker R. Clinical and immunologic effects of monoclonal antibody CC49 and interleukin-2 in patients with metastatic colorectal cancer. Hybridoma. 1997;16:147–51.

    Article  PubMed  CAS  Google Scholar 

  254. Macey DJ, Grant EJ, Kasi L, Rosenblum MG, Zhang HZ, Katz RL, et al. Effect of recombinant alpha-interferon on pharmacokinetics, biodistribution, toxicity, and efficacy of 131I-labeled monoclonal antibody CC49 in breast cancer: a phase II trial. Clin Cancer Res. 1997;3:1547–55.

    PubMed  CAS  Google Scholar 

  255. Nocera MA, Shochat D, Primus FJ, Krupey J, Jespersen DL, Goldenberg DM. Representation of epitopes on colon-specific antigen-p defined by monoclonal antibodies. J Natl Cancer Inst. 1987;79:943–8.

    PubMed  CAS  Google Scholar 

  256. Sharkey RM, Gold DV, Aninipot R, Vagg R, Ballance C, Newman ES, et al. Comparison of tumor targeting in nude mice by murine monoclonal antibodies directed against different human colorectal cancer antigens. Cancer Res. 1990;50:828s–34.

    PubMed  CAS  Google Scholar 

  257. Sharkey RM, Goldenberg DM, Vagg R, Pawlyk D, Wong GY, Siegel JA, et al. Phase I clinical evaluation of a new murine monoclonal antibody (Mu-9) against colon-specific antigen-p for targeting gastrointestinal carcinomas. Cancer. 1994;73:864–77.

    Article  PubMed  CAS  Google Scholar 

  258. Heath JK, White SJ, Johnstone CN, Catimel B, Simpson RJ, Moritz RL, et al. The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. Proc Natl Acad Sci U S A. 1997;94:469–74.

    Article  PubMed  CAS  Google Scholar 

  259. Sakamoto J, Kojima H, Kato J, Hamashima H, Suzuki H. Organ-specific expression of the intestinal epithelium-related antigen A33, a cell surface target for antibody-based imaging and treatment in gastrointestinal cancer. Cancer Chemother Pharmacol. 2000;46 Suppl:S27–32.

    Google Scholar 

  260. Ritter G, Cohen LS, Nice EC, Catimel B, Burgess AW, Moritz RL, et al. Characterization of posttranslational modifications of human A33 antigen, a novel palmitoylated surface glycoprotein of human gastrointestinal epithelium. Biochem Biophys Res Commun. 1997;236:682–6.

    Article  PubMed  CAS  Google Scholar 

  261. Welt S, Divgi CR, Real FX, Yeh SD, Garin-Chesa P, Finstad CL, et al. Quantitative analysis of antibody localization in human metastatic colon cancer: a phase I study of monoclonal antibody A33. J Clin Oncol. 1990;8:1894–906.

    PubMed  CAS  Google Scholar 

  262. Welt S, Divgi CR, Kemeny N, Finn RD, Scott AM, Graham M, et al. Phase I/II study of iodine 131-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 1994;12:1561–71.

    PubMed  CAS  Google Scholar 

  263. Daghighian F, Barendswaard E, Welt S, Humm J, Scott A, Willingham MC, et al. Enhancement of radiation dose to the nucleus by vesicular internalization of iodine-125-labeled A33 monoclonal antibody. J Nucl Med. 1996;37:1052–7.

    PubMed  CAS  Google Scholar 

  264. Welt S, Scott AM, Divgi CR, Kemeny NE, Finn RD, Daghighian F, et al. Phase I/II study of iodine 125-labeled monoclonal antibody A33 in patients with advanced colon cancer. J Clin Oncol. 1996; 14:1787–97.

    PubMed  CAS  Google Scholar 

  265. Barendswaard EC, Humm JL, O’Donoghue JA, Sgouros G, Finn RD, Scott AM, et al. Relative therapeutic efficacy of 125I- and 131I-labeled monoclonal antibody A33 in a human colon cancer xenograft. J Nucl Med. 2001;42:1251–6.

    PubMed  CAS  Google Scholar 

  266. Barendswaard EC, Scott AM, Divgi CR, Williams Jr C, Coplan K, Riedel E, et al. Rapid and specific targeting of monoclonal antibody A33 to a colon cancer xenograft in nude mice. Int J Oncol. 1998;12: 45–53.

    PubMed  CAS  Google Scholar 

  267. Lee FT, Hall C, Rigopoulos A, Zweit J, Pathmaraj K, O’Keefe GJ, et al. Immuno-PET of human colon xenograft- bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med. 2001;42:764–9.

    PubMed  CAS  Google Scholar 

  268. Ruan S, O’Donoghue JA, Larson SM, Finn RD, Jungbluth A, Welt S, et al. Optimizing the sequence of combination therapy with radiolabeled antibodies and fractionated external beam. J Nucl Med. 2000;41:1905–12.

    PubMed  CAS  Google Scholar 

  269. Tschmelitsch J, Barendswaard E, Williams Jr C, Yao TJ, Cohen AM, Old LJ, et al. Enhanced antitumor activity of combination radioimmunotherapy (131I-labeled monoclonal antibody A33) with chemotherapy (fluorouracil). Cancer Res. 1997;57:2181–6.

    PubMed  CAS  Google Scholar 

  270. Almqvist Y, Orlova A, Sjostrom A, Jensen HJ, Lundqvist H, Sundin A, et al. In vitro characterization of 211At-labeled antibody A33-a potential therapeutic agent against metastatic colorectal carcinoma. Cancer Biother Radiopharm. 2005;20:514–23.

    Article  PubMed  CAS  Google Scholar 

  271. Almqvist Y, Steffen AC, Lundqvist H, Jensen H, Tolmachev V, Sundin A. Biodistribution of 211At-labeled humanized monoclonal antibody A33. Cancer Biother Radiopharm. 2007;22:480–7.

    Article  PubMed  CAS  Google Scholar 

  272. Scott AM, Lee FT, Jones R, Hopkins W, MacGregor D, Cebon JS, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: biodistribution, pharmacokinetics, and quantitative tumor uptake. Clin Cancer Res. 2005;11:4810–7.

    Article  PubMed  CAS  Google Scholar 

  273. Chong G, Lee FT, Hopkins W, Tebbutt N, Cebon JS, Mountain AJ, et al. Phase I trial of 131I-huA33 in patients with advanced colorectal carcinoma. Clin Cancer Res. 2005;11:4818–26.

    Article  PubMed  CAS  Google Scholar 

  274. Welt S, Ritter G, Williams Jr C, Cohen LS, John M, Jungbluth A, et al. Phase I study of anticolon cancer humanized antibody A33. Clin Cancer Res. 2003;9:1338–46.

    PubMed  CAS  Google Scholar 

  275. Carrasquillo JA, Pandit-Taskar N, O’Donoghue JA, Humm JL, Zanzonico P, Smith-Jones PM, et al. 124I-huA33 antibody PET of colorectal cancer. J Nucl Med. 2011;52:1173–80.

    Article  PubMed  Google Scholar 

  276. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;87:7235–9.

    Article  PubMed  CAS  Google Scholar 

  277. Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol. 1994;12:1193–203.

    PubMed  CAS  Google Scholar 

  278. Scott AM, Wiseman G, Welt S, Adjei A, Lee FT, Hopkins W, et al. A Phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res. 2003;9:1639–47.

    PubMed  CAS  Google Scholar 

  279. Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jager D, Renner C, et al. Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26:44–8.

    Article  PubMed  CAS  Google Scholar 

  280. Wahl RL, Parker CW, Philpott GW. Improved radioimaging and tumor localization with monoclonal F(ab’)2. J Nucl Med. 1983;24:316–25.

    PubMed  CAS  Google Scholar 

  281. Sharkey RM, Blumenthal RD, Hansen HJ, Goldenberg DM. Biological considerations for radioimmunotherapy. Cancer Res. 1990;50:964s–9.

    PubMed  CAS  Google Scholar 

  282. Goldenberg DM, Blumenthal RD, Sharkey RM. Biological and clinical perspectives of cancer imaging and therapy with radiolabeled antibodies. Semin Cancer Biol. 1990;1:217–25.

    PubMed  CAS  Google Scholar 

  283. Garkavij M, Tennvall J, Strand SE, Norrgren K, Nilsson R, Lindgren L, et al. Improving radioimmonotargeting of tumors. Variation in the amount of L6 MAb administered, combined with an immunoadsorption system (ECIA). Acta Oncol. 1993;32:853–9.

    Article  PubMed  CAS  Google Scholar 

  284. Hartmann C, Bloedow DC, Dienhart DG, Kasliwal R, Johnson TK, Gonzalez R, et al. A pharmacokinetic model describing the removal of circulating radiolabeled antibody by extracorporeal immunoadsorption. J Pharmacokinet Biopharm. 1991; 19:385–403.

    PubMed  CAS  Google Scholar 

  285. Martensson L, Nilsson R, Ohlsson T, Sjogren HO, Strand SE, Tennvall J. Improved tumor targeting and decreased normal tissue accumulation through extracorporeal affinity adsorption in a two-step pretargeting strategy. Clin Cancer Res. 2007;13:5572s–6.

    Article  PubMed  CAS  Google Scholar 

  286. Martensson L, Nilsson R, Ohlsson T, Sjogren HO, Strand SE, Tennvall J. Reduced myelotoxicity with sustained tumor concentration of radioimmunoconjugates in rats after extracorporeal depletion. J Nucl Med. 2007;48:269–76.

    PubMed  Google Scholar 

  287. Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res. 1986;46:3969–78.

    PubMed  CAS  Google Scholar 

  288. Holton III OD, Black CD, Parker RJ, Covell DG, Barbet J, Sieber SM, et al. Biodistribution of monoclonal IgG1, F(ab’)2, and Fab’ in mice after intravenous injection. Comparison between anti-B cell (anti-Lyb8.2) and irrelevant (MOPC-21) antibodies. J Immunol. 1987;139:3041–9.

    PubMed  CAS  Google Scholar 

  289. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A. 1988;85:5879–83.

    Article  PubMed  CAS  Google Scholar 

  290. Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, et al. Single-chain antigen-binding proteins. Science. 1988;242:423–6.

    Article  PubMed  CAS  Google Scholar 

  291. Colcher D, Bird R, Roselli M, Hardman KD, Johnson S, Pope S, et al. In vivo tumor targeting of a recombinant single-chain antigen-binding protein. J Natl Cancer Inst. 1990;82:1191–7.

    Article  PubMed  CAS  Google Scholar 

  292. Schlom J, Milenic DE, Roselli M, Colcher D, Bird R, Johnson S, et al. New concepts in monoclonal antibody based radioimmunodiagnosis and radioimmunotherapy of carcinoma. Int J Rad Appl Instrum B. 1991;18:425–35.

    PubMed  CAS  Google Scholar 

  293. Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991; 51:6363–71.

    PubMed  CAS  Google Scholar 

  294. Colcher D, Pavlinkova G, Beresford G, Booth BJ, Choudhury A, Batra SK. Pharmacokinetics and biodistribution of genetically-engineered antibodies. Q J Nucl Med. 1998;42:225–41.

    PubMed  CAS  Google Scholar 

  295. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90:6444–8.

    Article  PubMed  CAS  Google Scholar 

  296. Pluckthun A, Pack P. New protein engineering approaches to multivalent and bispecific antibody fragments. Immunotechnology. 1997;3:83–105.

    Article  PubMed  CAS  Google Scholar 

  297. King DJ, Turner A, Farnsworth AP, Adair JR, Owens RJ, Pedley RB, et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 1994;54:6176–85.

    PubMed  CAS  Google Scholar 

  298. Wang D, Berven E, Li Q, Uckun F, Kersey JH. Optimization of conditions for formation and analysis of anti-CD19 FVS191 single-chain Fv homodimer (scFv’)2. Bioconj Chem. 1997;8:64–70.

    Article  CAS  Google Scholar 

  299. Goel A, Baranowska-Kortylewicz J, Hinrichs SH, Wisecarver J, Pavlinkova G, Augustine S, et al. 99mTc-labeled divalent and tetravalent CC49 single-chain Fv’s: novel imaging agents for rapid in vivo localization of human colon carcinoma. J Nucl Med. 2001;42:1519–27.

    PubMed  CAS  Google Scholar 

  300. Chauhan SC, Jain M, Moore ED, Wittel UA, Li J, Gwilt PR, et al. Pharmacokinetics and biodistribution of 177Lu-labeled multivalent single-chain Fv construct of the pancarcinoma monoclonal antibody CC49. Eur J Nucl Med Mol Imaging. 2005;32:264–73.

    Article  PubMed  CAS  Google Scholar 

  301. Wittel UA, Jain M, Goel A, Chauhan SC, Colcher D, Batra SK. The in vivo characteristics of genetically engineered divalent and tetravalent single-chain antibody constructs. Nucl Med Biol. 2005;32: 157–64.

    Article  PubMed  CAS  Google Scholar 

  302. Hu S, Shively L, Raubitschek A, Sherman M, Williams LE, Wong JY, et al. Minibody: a novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid, high-level targeting of xenografts. Cancer Res. 1996;56:3055–61.

    PubMed  CAS  Google Scholar 

  303. Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res. 2005;65:622–31.

    PubMed  CAS  Google Scholar 

  304. Kenanova VE, Olafsen T, Salazar FB, Williams LE, Knowles S, Wu AM. Tuning the serum persistence of human serum albumin domain III: diabody fusion proteins. Protein Eng Des Sel. 2010;23:789–98.

    Article  PubMed  CAS  Google Scholar 

  305. Kenanova V, Olafsen T, Williams LE, Ruel NH, Longmate J, Yazaki PJ, et al. Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res. 2007;67: 718–26.

    Article  PubMed  CAS  Google Scholar 

  306. Olafsen T, Kenanova VE, Wu AM. Tunable pharmacokinetics: modifying the in vivo half-life of antibodies by directed mutagenesis of the Fc fragment. Nat Protoc. 2006;1:2048–60.

    Article  PubMed  CAS  Google Scholar 

  307. Mueller BM, Reisfeld RA, Gillies SD. Serum half-life and tumor localization of a chimeric antibody deleted of the CH2 domain and directed against the disialoganglioside GD2. Proc Natl Acad Sci U S A. 1990;87:5702–5.

    Article  PubMed  CAS  Google Scholar 

  308. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol. 1996;26:690–6.

    Article  PubMed  CAS  Google Scholar 

  309. Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9.

    Article  PubMed  CAS  Google Scholar 

  310. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem. 2004;279:6213–6.

    Article  PubMed  CAS  Google Scholar 

  311. Dumont JA, Low SC, Peters RT, Bitonti AJ. Monomeric Fc fusions: impact on pharmacokinetic and biological activity of protein therapeutics. BioDrugs. 2006;20:151–60.

    Article  PubMed  CAS  Google Scholar 

  312. Slavin-Chiorini DC, Horan Hand PH, Kashmiri SV, Calvo B, Zaremba S, Schlom J. Biologic properties of a CH2 domain-deleted recombinant immunoglobulin. Int J Cancer. 1993;53:97–103.

    Article  PubMed  CAS  Google Scholar 

  313. Slavin-Chiorini DC, Kashmiri SV, Schlom J, Calvo B, Shu LM, Schott ME, et al. Biological properties of chimeric domain-deleted anticarcinoma immunoglobulins. Cancer Res. 1995;55:5957s–67.

    PubMed  CAS  Google Scholar 

  314. Slavin-Chiorini DC, Kashmiri SV, Lee HS, Milenic DE, Poole DJ, Bernon E, et al. A CDR-grafted (humanized) domain-deleted antitumor antibody. Cancer Biother Radiopharm. 1997;12:305–16.

    Article  PubMed  CAS  Google Scholar 

  315. Agnese DM, Abdessalam SF, Burak Jr WE, Arnold MW, Soble D, Hinkle GH, et al. Pilot study using a humanized CC49 monoclonal antibody (HuCC49DeltaCH2) to localize recurrent colorectal carcinoma. Ann Surg Oncol. 2004;11:197–202.

    Article  PubMed  Google Scholar 

  316. Forero A, Meredith RF, Khazaeli MB, Carpenter DM, Shen S, Thornton J, et al. A novel monoclonal antibody design for radioimmunotherapy. Cancer Biother Radiopharm. 2003;18:751–9.

    Article  PubMed  CAS  Google Scholar 

  317. Xiao J, Horst S, Hinkle G, Cao X, Kocak E, Fang J, et al. Pharmacokinetics and clinical evaluation of 125I-radiolabeled humanized CC49 monoclonal antibody (HuCC49deltaCH2) in recurrent and metastatic colorectal cancer patients. Cancer Biother Radiopharm. 2005;20:16–26.

    Article  PubMed  CAS  Google Scholar 

  318. Shen S, Forero A, Meredith RF, LoBuglio AF. Biodistribution and dosimetry of In-111/Y-90- HuCC49DeltaCh2 (IDEC-159) in patients with metastatic colorectal adenocarcinoma. Cancer Biother Radiopharm. 2011;26:127–33.

    Article  PubMed  CAS  Google Scholar 

  319. Blumenthal RD, Sharkey RM, Natale AM, Kashi R, Wong G, Goldenberg DM. Comparison of equitoxic radioimmunotherapy and chemotherapy in the treatment of human colonic cancer xenografts. Cancer Res. 1994;54:142–51.

    PubMed  CAS  Google Scholar 

  320. Chalandon Y, Mach JP, Pelegrin A, Folli S, Buchegger F. Combined radioimmunotherapy and chemotherapy of human colon carcinoma grafted in nude mice, advantages and limitations. Anticancer Res. 1992;12:1131–9.

    PubMed  CAS  Google Scholar 

  321. Remmenga SW, Colcher D, Gansow O, Pippen CG, Raubitschek A. Continuous infusion chemotherapy as a radiation-enhancing agent for yttrium-90-radiolabeled monoclonal antibody therapy of a human tumor xenograft. Gynecol Oncol. 1994;55: 115–22.

    Article  PubMed  CAS  Google Scholar 

  322. Kinuya S, Yokoyama K, Konishi S, Hiramatsu T, Watanabe N, Shuke N, et al. Enhanced efficacy of radioimmunotherapy combined with systemic chemotherapy and local hyperthermia in xenograft model. Jpn J Cancer Res. 2000;91:573–8.

    Article  PubMed  CAS  Google Scholar 

  323. Blumenthal RD, Taylor A, Osorio L, Ochakovskaya R, Raleigh JA, Papadopoulou M, et al. Optimizing the use of combined radioimmunotherapy and hypoxic cytotoxin therapy as a function of tumor hypoxia. Int J Cancer. 2001;94:564–71.

    Article  PubMed  CAS  Google Scholar 

  324. Pedley RB, Hill SA, Boxer GM, Flynn AA, Boden R, Watson R, et al. Eradication of colorectal ­xenografts by combined radioimmunotherapy and combretastatin a-4 3-O-phosphate. Cancer Res. 2001;61:4716–22.

    PubMed  CAS  Google Scholar 

  325. Kinuya S, Kawashima A, Yokoyama K, Kudo M, Kasahara Y, Watanabe N, et al. Anti-angiogenic therapy and radioimmunotherapy in colon cancer xenografts. Eur J Nucl Med. 2001;28:1306–12.

    Article  PubMed  CAS  Google Scholar 

  326. Kinuya S, Yokoyama K, Koshida K, Mori H, Shiba K, Watanabe N, et al. Improved survival of mice bearing liver metastases of colon cancer cells treated with a combination of radioimmunotherapy and antiangiogenic therapy. Eur J Nucl Med Mol Imaging. 2004;31:981–5.

    Article  PubMed  CAS  Google Scholar 

  327. Meyer T, Gaya AM, Dancey G, Stratford MR, Othman S, Sharma SK, et al. A phase I trial of radioimmunotherapy with 131I-A5B7 anti-CEA antibody in combination with combretastatin-A4-phosphate in advanced gastrointestinal carcinomas. Clin Cancer Res. 2009;15:4484–92.

    Article  PubMed  CAS  Google Scholar 

  328. Mittal BB, Zimmer MA, Sathiaseelan V, Benson 3rd AB, Mittal RR, Dutta S, et al. Phase I/II trial of combined 131I anti-CEA monoclonal antibody and hyperthermia in patients with advanced colorectal adenocarcinoma. Cancer. 1996;78:1861–70.

    Article  PubMed  CAS  Google Scholar 

  329. Shibata S, Raubitschek A, Leong L, Koczywas M, Williams L, Zhan J, et al. A phase I study of a combination of yttrium-90-labeled anti-carcinoembryonic antigen (CEA) antibody and gemcitabine in patients with CEA-producing advanced malignancies. Clin Cancer Res. 2009;15:2935–41.

    Article  PubMed  CAS  Google Scholar 

  330. Wong JY, Shibata S, Williams LE, Kwok CS, Liu A, Chu DZ, et al. A Phase I trial of 90Y-anti-carcinoembryonic antigen chimeric T84.66 radioimmunotherapy with 5-fluorouracil in patients with metastatic colorectal cancer. Clin Cancer Res. 2003;9:5842–52.

    PubMed  CAS  Google Scholar 

  331. Fisher RI, Kaminski MS, Wahl RL, Knox SJ, Zelenetz AD, Vose JM, et al. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J Clin Oncol. 2005;23:7565–73.

    Article  PubMed  CAS  Google Scholar 

  332. Kaminski MS, Tuck M, Estes J, Kolstad A, Ross CW, Zasadny K, et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N Engl J Med. 2005;352:441–9.

    Article  PubMed  CAS  Google Scholar 

  333. de Jong GM, Bleichrodt RP, Eek A, Oyen WJ, Boerman OC, Hendriks T. Experimental study of radioimmunotherapy versus chemotherapy for colorectal cancer. Br J Surg. 2011;98:436–41.

    Article  PubMed  Google Scholar 

  334. de Jong GM, Hendriks T, Eek A, Oyen WJ, Nagtegaal ID, Bleichrodt RP, et al. Adjuvant radioimmunotherapy improves survival of rats after resection of colorectal liver metastases. Ann Surg. 2011; 253:336–41.

    Article  PubMed  Google Scholar 

  335. Koppe MJ, Hendriks T, Boerman OC, Oyen WJ, Bleichrodt RP. Radioimmunotherapy is an effective adjuvant treatment after cytoreductive surgery of experimental colonic peritoneal carcinomatosis. J Nucl Med. 2006;47:1867–74.

    PubMed  CAS  Google Scholar 

  336. Behr TM, Salib AL, Liersch T, Behe M, Angerstein C, Blumenthal RD, et al. Radioimmunotherapy of small volume disease of colorectal cancer metastatic to the liver: preclinical evaluation in comparison to standard chemotherapy and initial results of a phase I clinical study. Clin Cancer Res. 1999;5:3232s–42.

    PubMed  CAS  Google Scholar 

  337. Behr TM, Liersch T, Greiner-Bechert L, Griesinger F, Behe M, Markus PM, et al. Radioimmunotherapy of small-volume disease of metastatic colorectal cancer. Cancer. 2002;94:1373–81.

    Article  PubMed  CAS  Google Scholar 

  338. Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, et al. Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol. 2005;23:6763–70.

    Article  PubMed  CAS  Google Scholar 

  339. Liersch T, Meller J, Bittrich M, Kulle B, Becker H, Goldenberg DM. Update of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal liver metastases: comparison of outcome to a contemporaneous control group. Ann Surg Oncol. 2007;14:2577–90.

    Article  PubMed  Google Scholar 

  340. Stickney DR, Anderson LD, Slater JB, Ahlem CN, Kirk GA, Schweighardt SA, et al. Bifunctional antibody: a binary radiopharmaceutical delivery system for imaging colorectal carcinoma. Cancer Res. 1991;51:6650–5.

    PubMed  CAS  Google Scholar 

  341. Stickney DR, Slater JB, Kirk GA, Ahlem CN, Chang CH, Frincke JM. Bifunctional antibody: ZCE/CHA 111indium-BLEDTA-IV clinical imaging in colorectal carcinoma. Antibody Immunoconjug Radiopharm. 1989;2:1–13.

    Google Scholar 

  342. Le Doussal JM, Martin M, Gautherot E, Delaage M, Barbet J. In vitro and in vivo targeting of radiolabeled monovalent and divalent haptens with dual specificity monoclonal antibody conjugates: enhanced divalent hapten affinity for cell-bound antibody conjugate. J Nucl Med. 1989;30:1358–66.

    PubMed  Google Scholar 

  343. Chetanneau A, Barbet J, Peltier P, Le Doussal JM, Gruaz-Guyon A, Bernard AM, et al. Pretargetted imaging of colorectal cancer recurrences using an 111In-labelled bivalent hapten and a bispecific antibody conjugate. Nucl Med Commun. 1994;15:972–80.

    Article  PubMed  CAS  Google Scholar 

  344. Gautherot E, Le Doussal JM, Bouhou J, Manetti C, Martin M, Rouvier E, et al. Delivery of therapeutic doses of radioiodine using bispecific antibody-targeted bivalent haptens. J Nucl Med. 1998; 39:1937–43.

    PubMed  CAS  Google Scholar 

  345. Gautherot E, Rouvier E, Daniel L, Loucif E, Bouhou J, Manetti C, et al. Pretargeted radioimmunotherapy of human colorectal xenografts with bispecific antibody and 131I-labeled bivalent hapten. J Nucl Med. 2000;41:480–7.

    PubMed  CAS  Google Scholar 

  346. Kraeber-Bodere F, Bardet S, Hoefnagel CA, Vieira MR, Vuillez JP, Murat A, et al. Radioimmunotherapy in medullary thyroid cancer using bispecific antibody and iodine 131-labeled bivalent hapten: preliminary results of a phase I/II clinical trial. Clin Cancer Res. 1999;5:3190s–8.

    PubMed  CAS  Google Scholar 

  347. Kraeber-Bodere F, Faivre-Chauvet A, Ferrer L, Vuillez JP, Brard PY, Rousseau C, et al. Pharmacokinetics and dosimetry studies for optimization of anti-carcinoembryonic antigen x anti-hapten bispecific antibody-mediated pretargeting of Iodine-131-labeled hapten in a phase I radioimmunotherapy trial. Clin Cancer Res. 2003;9:3973S–81.

    PubMed  CAS  Google Scholar 

  348. Kraeber-Bodere F, Rousseau C, Bodet-Milin C, Ferrer L, Faivre-Chauvet A, Campion L, et al. Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med. 2006;47:247–55.

    PubMed  CAS  Google Scholar 

  349. Kraeber-Bodere F, Salaun PY, Oudoux A, Goldenberg DM, Chatal JF, Barbet J. Pretargeted radioimmunotherapy in rapidly progressing, metastatic, medullary thyroid cancer. Cancer. 2010;116:1118–25.

    Article  PubMed  CAS  Google Scholar 

  350. Chatal JF, Campion L, Kraeber-Bodere F, Bardet S, Vuillez JP, Charbonnel B, et al. Survival improvement in patients with medullary thyroid carcinoma who undergo pretargeted anti-carcinoembryonic-antigen radioimmunotherapy: a collaborative study with the French Endocrine Tumor Group. J Clin Oncol. 2006;24:1705–11.

    Article  PubMed  CAS  Google Scholar 

  351. Knox SJ, Goris ML, Tempero M, Weiden PL, Gentner L, Breitz H, et al. Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res. 2000;6:406–14.

    PubMed  CAS  Google Scholar 

  352. Breitz HB, Fisher DR, Goris ML, Knox S, Ratliff B, Murtha AD, et al. Radiation absorbed dose estimation for 90Y-DOTA-biotin with pretargeted NR-LU-10/streptavidin. Cancer Biother Radiopharm. 1999;14:381–95.

    Article  PubMed  CAS  Google Scholar 

  353. Breitz HB, Weiden PL, Beaumier PL, Axworthy DB, Seiler C, Su FM, et al. Clinical optimization of pretargeted radioimmunotherapy with antibody-streptavidin conjugate and 90Y-DOTA-biotin. J Nucl Med. 2000;41:131–40.

    PubMed  CAS  Google Scholar 

  354. Forero-Torres A, Shen S, Breitz H, Sims RB, Axworthy DB, Khazaeli MB, et al. Pretargeted radioimmunotherapy (RIT) with a novel anti-TAG-72 fusion protein. Cancer Biother Radiopharm. 2005;20:379–90.

    Article  PubMed  CAS  Google Scholar 

  355. Shen S, Forero A, LoBuglio AF, Breitz H, Khazaeli MB, Fisher DR, et al. Patient-specific dosimetry of pretargeted radioimmunotherapy using CC49 fusion protein in patients with gastrointestinal malignancies. J Nucl Med. 2005;46:642–51.

    PubMed  CAS  Google Scholar 

  356. Sharkey RM, Rossi EA, McBride WJ, Chang CH, Goldenberg DM. Recombinant bispecific monoclonal antibodies prepared by the dock-and-lock strategy for pretargeted radioimmunotherapy. Semin Nucl Med. 2010;40:190–203.

    Article  PubMed  Google Scholar 

  357. Karacay H, Brard PY, Sharkey RM, Chang CH, Rossi EA, McBride WJ, et al. Therapeutic advantage of pretargeted radioimmunotherapy using a recombinant bispecific antibody in a human colon cancer xenograft. Clin Cancer Res. 2005;11:7879–85.

    Article  PubMed  CAS  Google Scholar 

  358. Karacay H, Sharkey RM, Gold DV, Ragland DR, McBride WJ, Rossi EA, et al. Pretargeted radioimmunotherapy of pancreatic cancer xenografts: TF10-90Y-IMP-288 alone and combined with gemcitabine. J Nucl Med. 2009;50:2008–16.

    Article  PubMed  Google Scholar 

  359. Sharkey RM, Karacay H, Govindan SV, Goldenberg DM. Combination radioimmunotherapy and chemoimmunotherapy involving different or the same targets improves therapy of human pancreatic carcinoma xenograft models. Mol Cancer Ther. 2011;10:1072–81.

    Article  PubMed  CAS  Google Scholar 

  360. Lawrence TS. Radiation sensitizers and targeted therapies. Oncology (Williston Park). 2003;17:23–8.

    Google Scholar 

  361. Girdhani S, Bhosle SM, Thulsidas SA, Kumar A, Mishra KP. Potential of radiosensitizing agents in cancer chemo-radiotherapy. J Cancer Res Ther. 2005;1:129–31.

    Article  PubMed  CAS  Google Scholar 

  362. Shewach DS, Lawrence TS. Antimetabolite radiosensitizers. J Clin Oncol. 2007;25:4043–50.

    Article  PubMed  CAS  Google Scholar 

  363. Hermann RM, Rave-Frank M, Pradier O. Combining radiation with oxaliplatin: a review of experimental results. Cancer Radiother. 2008;12:61–7.

    Article  PubMed  CAS  Google Scholar 

  364. Morgan MA, Parsels LA, Maybaum J, Lawrence TS. Improving gemcitabine-mediated radiosensitization using molecularly targeted therapy: a review. Clin Cancer Res. 2008;14:6744–50.

    Article  PubMed  CAS  Google Scholar 

  365. Karar J, Maity A. Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 2009;8:1994–2001.

    Article  PubMed  CAS  Google Scholar 

  366. Illum H. Irinotecan and radiosensitization in rectal cancer. Anticancer Drugs. 2011;22:324–9.

    Article  PubMed  CAS  Google Scholar 

  367. Graves SS, Dearstyne E, Lin Y, Zuo Y, Sanderson J, Schultz J, et al. Combination therapy with pretarget CC49 radioimmunotherapy and gemcitabine prolongs tumor doubling time in a murine xenograft model of colon cancer more effectively than either monotherapy. Clin Cancer Res. 2003;9:3712–21.

    PubMed  CAS  Google Scholar 

  368. Kraeber-Bodere F, Sai-Maurel C, Campion L, Faivre-Chauvet A, Mirallie E, Cherel M, et al. Enhanced antitumor activity of combined pretargeted radioimmunotherapy and paclitaxel in medullary thyroid cancer xenograft. Mol Cancer Ther. 2002;1:267–74.

    PubMed  CAS  Google Scholar 

  369. Al-Ejeh F, Darby JM, Brown MP. Chemotherapy synergizes with radioimmunotherapy targeting La autoantigen in tumors. PLoS One. 2009;4:e4630.

    Article  PubMed  CAS  Google Scholar 

  370. Blumenthal RD, Leone E, Goldenberg DM, Rodriguez M, Modrak D. An in vitro model to optimize dose scheduling of multimodal radioimmunotherapy and chemotherapy: effects of p53 expression. Int J Cancer. 2004;108:293–300.

    Article  PubMed  CAS  Google Scholar 

  371. Burke PA, DeNardo SJ, Miers LA, Kukis DL, DeNardo GL. Combined modality radioimmunotherapy. Promise and peril. Cancer. 2002;94: 1320–31.

    Article  PubMed  CAS  Google Scholar 

  372. Crow DM, Williams L, Colcher D, Wong JY, Raubitschek A, Shively JE. Combined radioimmunotherapy and chemotherapy of breast tumors with Y-90-labeled anti-Her2 and anti-CEA antibodies with taxol. Bioconj Chem. 2005;16:1117–25.

    Article  CAS  Google Scholar 

  373. DeNardo SJ, Kroger LA, Lamborn KR, Miers LA, O’Donnell RT, Kukis DL, et al. Importance of temporal relationships in combined modality radioimmunotherapy of breast carcinoma. Cancer. 1997;80: 2583–90.

    Article  PubMed  CAS  Google Scholar 

  374. Gold DV, Modrak DE, Schutsky K, Cardillo TM. Combined 90Yttrium-DOTA-labeled PAM4 ­antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft. Int J Cancer. 2004;109: 618–26.

    Article  PubMed  CAS  Google Scholar 

  375. Gold DV, Schutsky K, Modrak D, Cardillo TM. Low-dose radioimmunotherapy (90Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res. 2003; 9:3929S–37.

    PubMed  CAS  Google Scholar 

  376. Kinuya S, Yokoyama K, Tega H, Hiramatsu T, Konishi S, Watanabe N, et al. Efficacy, toxicity and mode of interaction of combination radioimmunotherapy with 5-fluorouracil in colon cancer xenografts. J Cancer Res Clin Oncol. 1999;125:630–6.

    Article  PubMed  CAS  Google Scholar 

  377. Li XF, Kinuya S, Yokoyama K, Koshida K, Mori H, Shiba K, et al. Benefits of combined radioimmunotherapy and anti-angiogenic therapy in a liver metastasis model of human colon cancer cells. Eur J Nucl Med Mol Imaging. 2002;29:1669–74.

    Article  PubMed  CAS  Google Scholar 

  378. O’Donnell RT, DeNardo SJ, Miers LA, Lamborn KR, Kukis DL, DeNardo GL, et al. Combined modality radioimmunotherapy for human prostate cancer xenografts with taxanes and 90yttrium-DOTA-peptide-ChL6. Prostate. 2002;50:27–37.

    Article  PubMed  Google Scholar 

  379. Roffler SR, Chan J, Yeh MY. Potentiation of radioimmunotherapy by inhibition of topoisomerase I. Cancer Res. 1994;54:1276–85.

    PubMed  CAS  Google Scholar 

  380. Santos O, Pant KD, Blank EW, Ceriani RL. 5-Iododeoxyuridine increases the efficacy of the radioimmunotherapy of human tumors growing in nude mice. J Nucl Med. 1992;33:1530–4.

    PubMed  CAS  Google Scholar 

  381. Ocean AJ, Guarino MJ, Pennington KL, Montero AJ, Bekaii-Saab T, Gulec SA, et al. Activity of fractionated radioimmunotherapy with clivatuzumab tetraxetan combined with low-dose gemcitabine (Gem) in advanced pancreatic cancer (APC). J Clin Oncol. 2011;29:abstr 240.

    Google Scholar 

  382. Ocean AJ, Pennington KL, Guarino MJ, Sheikh A, Bekaii-Saab T, Serafini AN, et al. Fractionated radioimmunotherapy with 90Y-clivatuzumab tetraxetan (90Y-hPAM4) and low-dose gemcitabine is active in advanced pancreatic cancer: a Phase I trial. Cancer. 2012 (Epub ahead of print) doi: 10.1002/cncr 27592.

    Google Scholar 

  383. van Gog FB, Brakenhoff RH, Stigter-van Walsum M, Snow GB, van Dongen GA. Perspectives of combined radioimmunotherapy and anti-EGFR antibody therapy for the treatment of residual head and neck cancer. Int J Cancer. 1998;77:13–8.

    Article  PubMed  Google Scholar 

  384. Saleh MN, Raisch KP, Stackhouse MA, Grizzle WE, Bonner JA, Mayo MS, et al. Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother Radiopharm. 1999;14:451–63.

    Article  PubMed  CAS  Google Scholar 

  385. Buchsbaum DJ, Bonner JA, Grizzle WE, Stackhouse MA, Carpenter M, Hicklin DJ, et al. Treatment of pancreatic cancer xenografts with Erbitux (IMC-C225) anti-EGFR antibody, gemcitabine, and radiation. Int J Radiat Oncol Biol Phys. 2002;54: 1180–93.

    Article  PubMed  CAS  Google Scholar 

  386. Bonner JA, Buchsbaum DJ, Russo SM, Fiveash JB, Trummell HQ, Curiel DT, et al. Anti-EGFR-mediated radiosensitization as a result of augmented EGFR expression. Int J Radiat Oncol Biol Phys. 2004;59:2–10.

    Article  PubMed  CAS  Google Scholar 

  387. Macarulla T, Ramos FJ, Elez E, Capdevila J, Peralta S, Tabernero J. Update on novel strategies to optimize cetuximab therapy in patients with metastatic colorectal cancer. Clin Colorectal Cancer. 2008;7: 300–8.

    Article  PubMed  CAS  Google Scholar 

  388. Gerber DE, Choy H. Cetuximab in combination therapy: from bench to clinic. Cancer Metastasis Rev. 2010;29:171–80.

    Article  PubMed  CAS  Google Scholar 

  389. Pini S, Pinto C, Angelelli B, Giampalma E, Blotta A, Di Fabio F, et al. Multimodal sequential approach in colorectal cancer liver metastases: hepatic resection after yttrium-90 selective internal radiation therapy and cetuximab rescue treatment. Tumori. 2010;96:157–9.

    PubMed  Google Scholar 

  390. Glynne-Jones R, Mawdsley S, Harrison M. Antiepidermal growth factor receptor radiosensitizers in rectal cancer. Anticancer Drugs. 2011;22: 330–40.

    Article  PubMed  CAS  Google Scholar 

  391. Arnoletti JP, Frolov A, Eloubeidi M, Keene K, Posey J, Wood T, et al. A phase I study evaluating the role of the anti-epidermal growth factor receptor (EGFR) antibody cetuximab as a radiosensitizer with chemoradiation for locally advanced pancreatic cancer. Cancer Chemother Pharmacol. 2011;67:891–7.

    Article  PubMed  CAS  Google Scholar 

  392. Haggblad Sahlberg S, Spiegelberg D, Lennartsson J, Nygren P, Glimelius B, Stenerlow B. The effect of a dimeric Affibody molecule (ZEGFR:1907)2 targeting EGFR in combination with radiation in colon cancer cell lines. Int J Oncol. 2012;40:176–84.

    PubMed  Google Scholar 

  393. Zhu AX, Willett CG. Chemotherapeutic and biologic agents as radiosensitizers in rectal cancer. Semin Radiat Oncol. 2003;13:454–68.

    Article  PubMed  Google Scholar 

  394. Hosein PJ, Rocha-Lima CM. Role of combined-modality therapy in the management of locally advanced rectal cancer. Clin Colorectal Cancer. 2008;7:369–75.

    Article  PubMed  CAS  Google Scholar 

  395. Koukourakis MI, Giatromanolaki A, Sheldon H, Buffa FM, Kouklakis G, Ragoussis I, et al. Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab. Clin Cancer Res. 2009;15:7069–76.

    Article  PubMed  CAS  Google Scholar 

  396. Willett CG, Duda DG, Ancukiewicz M, Shah M, Czito BG, Bentley R, et al. A safety and survival analysis of neoadjuvant bevacizumab with standard chemoradiation in a phase I/II study compared with standard chemoradiation in locally advanced rectal cancer. Oncologist. 2010;15:845–51.

    Article  PubMed  CAS  Google Scholar 

  397. Salaun PY, Bodet-Milin C, Frampas E, Oudoux A, Sai-Maurel C, Faivre-Chauvet A, et al. Toxicity and efficacy of combined radioimmunotherapy and bevacizumab in a mouse model of medullary thyroid carcinoma. Cancer. 2010;116:1053–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Goldenberg Sc.D., M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharkey, R.M., Goldenberg, D.M. (2013). Antibody-Targeted Therapeutic Radionuclides in the Management of Colorectal Cancer. In: Aktolun, C., Goldsmith, S. (eds) Nuclear Medicine Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4021-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4021-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4020-8

  • Online ISBN: 978-1-4614-4021-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics