Skip to main content

Stem Cell Proliferation Versus Meiotic Fate Decision in Caenorhabditis elegans

  • Chapter
  • First Online:
Germ Cell Development in C. elegans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 757))

Abstract

The C. elegans germ line has emerged as an important model for ­understanding how a stem cell population is maintained throughout the life of the animal while still producing the gametes necessary for propagation of the species. The stem cell population in the adult hermaphrodite is relatively large, with stem cells giving rise to daughters that appear intrinsically equivalent; however, some of the daughters retain the proliferative fate while others enter meiotic prophase. While machinery exists for cells to progress through the mitotic cell cycle and machinery exists for cells to progress through meiotic prophase, central to understanding germ line development is identifying the genes and regulatory processes that determine whether the mitotic cell cycle or meiotic prophase machinery will be utilized; in other words, the genes that regulate the switch of germ cells from the proliferative stem cell fate to the meiotic development fate. Whether a germ cell self-renews or enters meiotic prophase is largely determined by its proximity to the distal tip cell (DTC), which is the somatic niche cell that caps the distal end of the gonad. Germ cells close to the DTC have high levels of GLP-1 Notch signaling, which promotes the proliferative fate, while cells further from the DTC have high activity levels of the GLD-1 and GLD-2 redundant RNA regulatory pathways, as well as a third uncharacterized pathway, each of which direct cells to enter meiotic prophase. Other factors and pathways modulate this core genetic pathway, or work in parallel to it, presumably to ensure that a tight balance is maintained between proliferation and meiotic entry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson ER, Sandberg R, Lendahl U (2011) Notch signaling: simplicity in design, versatility in function. Development 138(17):3593–3612. doi:10.1242/dev.063610

    PubMed  CAS  Google Scholar 

  • Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51(4):589–599

    PubMed  CAS  Google Scholar 

  • Austin J, Kimble J (1989) Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell 58(3):565–571

    PubMed  CAS  Google Scholar 

  • Bailly A, Gartner A (2012) Germ cell apoptosis and DNA damage responses. Advances in Experimental Medicine and Biology 757:249–276. (Chap. 9, this volume) Springer, New York

    Google Scholar 

  • Baltus AE, Menke DB, Hu YC, Goodheart ML, Carpenter AE, de Rooij DG, Page DC (2006) In germ cells of mouse embryonic ovaries, the decision to enter meiosis precedes premeiotic DNA replication. Nat Genet 38(12):1430–1434. doi:10.1038/ng1919

    PubMed  CAS  Google Scholar 

  • Belfiore M, Pugnale P, Saudan Z, Puoti A (2004) Roles of the C. elegans cyclophilin-like protein MOG-6 in MEP-1 binding and germline fates. Development 131(12):2935–2945

    PubMed  CAS  Google Scholar 

  • Berry LW, Westlund B, Schedl T (1997) Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124:925

    PubMed  CAS  Google Scholar 

  • Bessler JB, Reddy KC, Hayashi M, Hodgkin J, Villeneuve AM (2007) A role for Caenorhabditis elegans chromatin-associated protein HIM-17 in the proliferation vs. meiotic entry decision. Genetics 175(4):2029–2037. doi:10.1534/genetics.107.070987

    PubMed  CAS  Google Scholar 

  • Bianco P (2011) Minireview: the stem cell next door: skeletal and hematopoietic stem cell “niches” in bone. Endocrinology 152(8):2957–2962. doi:10.1210/en.2011-0217

    PubMed  CAS  Google Scholar 

  • Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R (2009) Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 17(3):355–364. doi:10.1016/j.devcel.2009.08.003

    PubMed  CAS  Google Scholar 

  • Brawley C, Matunis E (2004) Regeneration of male germline stem cells by spermatogonial ­dedifferentiation in vivo. Science 304(5675):1331–1334

    PubMed  CAS  Google Scholar 

  • Brodigan TM, Liu J, Park M, Kipreos ET, Krause M (2003) Cyclin E expression during development in Caenorhabditis elegans. Dev Biol 254(1):102–115

    PubMed  CAS  Google Scholar 

  • Buck SH, Chiu D, Saito RM (2009) The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell cycle quiescence during C. elegans development. Cell Cycle 8(16):2613–2620

    PubMed  CAS  Google Scholar 

  • Christensen S, Kodoyianni V, Bosenberg M, Friedman L, Kimble J (1996) lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 122(5):1373–1383

    PubMed  CAS  Google Scholar 

  • Cinquin O, Crittenden SL, Morgan DE, Kimble J (2010) Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci USA 107(5):2048–2053. doi:10.1073/pnas.0912704107

    PubMed  CAS  Google Scholar 

  • Ciosk R, DePalma M, Priess JR (2004) ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 131(19):4831–4841

    PubMed  CAS  Google Scholar 

  • Ciosk R, DePalma M, Priess JR (2006) Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 311(5762):851–853

    PubMed  CAS  Google Scholar 

  • Crittenden SL, Troemel ER, Evans TC, Kimble J (1994) GLP-1 is localized to the mitotic region of the C. elegans germ line. Development 120:2901

    PubMed  CAS  Google Scholar 

  • Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417:660

    PubMed  CAS  Google Scholar 

  • Crittenden SL, Eckmann CR, Wang L, Bernstein DS, Wickens M, Kimble J (2003) Regulation of the mitosis/meiosis decision in the Caenorhabditis elegans germline. Philos Trans R Soc Lond B Biol Sci 358(1436):1359–1362

    PubMed  CAS  Google Scholar 

  • Crittenden SL, Leonhard KA, Byrd DT, Kimble J (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell 17(7):3051–3061

    PubMed  CAS  Google Scholar 

  • Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM (1998) Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94(3):387–398

    PubMed  CAS  Google Scholar 

  • Dorsett M, Westlund B, Schedl T (2009) METT-10, a putative methyltransferase, inhibits germ cell proliferative fate in Caenorhabditis elegans. Genetics 183(1):233–247. doi:10.1534/genetics.109.105270

    PubMed  CAS  Google Scholar 

  • Doyle TG, Wen C, Greenwald I (2000) SEL-8, a nuclear protein required for LIN-12 and GLP-1 signaling in Caenorhabditis elegans. Proc Natl Acad Sci USA 97(14):7877–7881

    PubMed  CAS  Google Scholar 

  • Eckmann CR, Kraemer B, Wickens M, Kimble J (2002) GLD-3, a bicaudal-C homolog that ­inhibits FBF to control germline sex determination in C. elegans. Dev Cell 3(5):697–710

    PubMed  CAS  Google Scholar 

  • Eckmann C, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168:147

    PubMed  CAS  Google Scholar 

  • Fitzgerald K, Greenwald I (1995) Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo. Development 121(12): 4275–4282

    PubMed  CAS  Google Scholar 

  • Fox PM, Vought VE, Hanazawa M, Lee MH, Maine E, Schedl T (2011) Cyclin E and CDK-2 ­regulate proliferative cell fate and cell cycle progression in the C. elegans germline. Development 138:2223–2234. doi:10.1242/dev.059535

    PubMed  CAS  Google Scholar 

  • Francis R, Barton MK, Kimble J, Schedl T (1995a) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139(2):579–606

    PubMed  CAS  Google Scholar 

  • Francis R, Maine E, Schedl T (1995b) Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 139(2):607–630

    PubMed  CAS  Google Scholar 

  • Fuchs E (2009) The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137(5):811–819. doi:10.1016/j.cell.2009.05.002

    PubMed  CAS  Google Scholar 

  • Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16(8):773–779. doi:10.1016/j.cub.2006.02.073

    PubMed  CAS  Google Scholar 

  • Hall DH, Winfrey VP, Blaeuer G, Hoffman LH, Furuta T, Rose KL, Hobert O, Greenstein D (1999) Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 212(1):101–123

    PubMed  CAS  Google Scholar 

  • Hansen D, Schedl T (2006) The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 76:185–215

    PubMed  CAS  Google Scholar 

  • Hansen D, Hubbard EJ, Schedl T (2004a) Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegans germline. Dev Biol 268(2):342–357

    PubMed  CAS  Google Scholar 

  • Hansen D, Wilson-Berry L, Dang T, Schedl T (2004b) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131(1):93–104. doi:10.1242/dev.00916

    PubMed  CAS  Google Scholar 

  • Henderson ST, Gao D, Lambie EJ, Kimble J (1994) lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120(10):2913–2924

    PubMed  CAS  Google Scholar 

  • Honigberg SM, Purnapatre K (2003) Signal pathway integration in the switch from the mitotic cell cycle to meiosis in yeast. J Cell Sci 116(Pt 11):2137–2147. doi:10.1242/jcs.00460

    PubMed  CAS  Google Scholar 

  • Hubbard EJA (2007) Caenorhabditis elegans germ line: a model for stem cell biology. Dev Dyn 236(12):3343–3357

    PubMed  CAS  Google Scholar 

  • Hubbard EJ, Korta DZ, Dalfó D (2012) Physiological control of germline development. Advances in Experimental Medicine and Biology 757:101–131. (Chap. 5, this volume) Springer, New York

    Google Scholar 

  • Jan E, Motzny CK, Graves LE, Goodwin EB (1999) The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J 18:258

    PubMed  CAS  Google Scholar 

  • Jaramillo-Lambert A, Ellefson M, Villeneuve AM, Engebrecht J (2007) Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line. Dev Biol 308(1):206–221. doi:10.1016/j.ydbio.2007.05.019

    PubMed  CAS  Google Scholar 

  • Jeong J, Verheyden JM, Kimble J (2011) Cyclin E and Cdk2 control GLD-1, the mitosis/meiosis decision, and germline stem cells in Caenorhabditis elegans. PLoS Genet 7(3):e1001348. doi:10.1371/journal.pgen.1001348

    PubMed  CAS  Google Scholar 

  • Jin SW, Kimble J, Ellis RE (2001) Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev Biol 229(2):537–553

    PubMed  CAS  Google Scholar 

  • Jones AR, Schedl T (1995) Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev 9(12):1491–1504

    PubMed  CAS  Google Scholar 

  • Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180:165

    PubMed  CAS  Google Scholar 

  • Jungkamp AC, Stoeckius M, Mecenas D, Grun D, Mastrobuoni G, Kempa S, Rajewsky N (2011) In vivo and transcriptome-wide identification of RNA binding protein target sites. Mol Cell 44(5):828–840. doi:10.1016/j.molcel.2011.11.009

    PubMed  CAS  Google Scholar 

  • Kadyk LC, Kimble J (1998) Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125(10):1803–1813

    PubMed  CAS  Google Scholar 

  • Kai T, Spradling A (2004) Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428(6982):564–569

    PubMed  CAS  Google Scholar 

  • Kalchhauser I, Farley BM, Pauli S, Ryder SP, Ciosk R (2011) FBF represses the Cip/Kip cell-cycle inhibitor CKI-2 to promote self-renewal of germline stem cells in C. elegans. EMBO J. doi:10.1038/emboj.2011.263

  • Kerins JA, Hanazawa M, Dorsett M, Schedl T (2010) PRP-17 and the pre-mRNA splicing pathway are preferentially required for the proliferation versus meiotic development decision and ­germline sex determination in Caenorhabditis elegans. Dev Dyn 239(5):1555–1572. doi:10.1002/dvdy.22274

    PubMed  CAS  Google Scholar 

  • Kershner AM, Kimble J (2010) Genome-wide analysis of mRNA targets for Caenorhabditis ­elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci USA. doi:1000495107 [pii] 10.1073/pnas.1000495107

    Google Scholar 

  • Killian DJ, Hubbard EJ (2004) C. elegans pro-1 activity is required for soma/germline interactions that influence proliferation and differentiation in the germ line. Development 131(6):1267–1278

    PubMed  CAS  Google Scholar 

  • Killian DJ, Hubbard EJ (2005) Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Dev Biol 279(2):322–335

    PubMed  CAS  Google Scholar 

  • Kim S, Spike CA, Greenstein D (2012) Control of oocyte growth and meiotic maturation in C. elegans. Advances in Experimental Medicine and Biology 757:277–320. (Chap. 10, this volume). Springer, New York

    Google Scholar 

  • Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433

    PubMed  CAS  Google Scholar 

  • Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81(2):208–219

    PubMed  CAS  Google Scholar 

  • Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018

    PubMed  CAS  Google Scholar 

  • Lai EC (2002) Protein degradation: four E3s for the notch pathway. Curr Biol 12(2):R74–R78

    PubMed  CAS  Google Scholar 

  • Lambie EJ, Kimble J (1991) Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development 112(1):231–240

    PubMed  CAS  Google Scholar 

  • Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7(5):697–707

    PubMed  CAS  Google Scholar 

  • Lee MH, Schedl T (2001) Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev 15(18):2408–2420

    PubMed  CAS  Google Scholar 

  • Lee MH, Schedl T (2004) Translation repression by GLD-1 protects its mRNA targets from nonsense-mediated mRNA decay in C. elegans. Genes Dev 18(9):1047–1059

    PubMed  CAS  Google Scholar 

  • Lee MH, Schedl T (2010) C. elegans star proteins, GLD-1 and ASD-2, regulate specific RNA targets to control development. Advances in Experimental Medicine and Biology 693:106–122

    PubMed  CAS  Google Scholar 

  • Losick VP, Morris LX, Fox DT, Spradling A (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21(1):159–171. doi:10.1016/j.devcel.2011.06.018

    PubMed  CAS  Google Scholar 

  • Lui DY, Colaiácovo MP (2012) Meiotic development in C. elegans. Advances in Experimental Medicine and Biology 757:133–170. (Chap. 6, this volume) Springer, New York

    Google Scholar 

  • Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M (2000) CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 14(20):2596–2609

    PubMed  CAS  Google Scholar 

  • MacDonald LD, Knox A, Hansen D (2008) Proteasomal regulation of the proliferation vs. meiotic entry decision in the C. elegans germ line. Genetics 180(2):905–920

    PubMed  CAS  Google Scholar 

  • Maciejowski J, Ugel N, Mishra B, Isopi M, Hubbard EJ (2006) Quantitative analysis of germline mitosis in adult C. elegans. Dev Biol 292(1):142–151

    PubMed  CAS  Google Scholar 

  • MacQueen AJ, Villeneuve AM (2001) Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev 15(13):1674–1687

    PubMed  CAS  Google Scholar 

  • Maine EM, Hansen D, Springer D, Vought VE (2004) Caenorhabditis elegans atx-2 promotes germline proliferation and the oocyte fate. Genetics 168(2):817–830

    PubMed  CAS  Google Scholar 

  • Maine EM, Hauth J, Ratliff T, Vought VE, She X, Kelly WG (2005) EGO-1, a putative RNA-dependent RNA polymerase, is required for heterochromatin assembly on unpaired dna during C. elegans meiosis. Curr Biol 15(21):1972–1978

    PubMed  CAS  Google Scholar 

  • Mantina P, Macdonald L, Kulaga A, Zhao L, Hansen D (2009) A mutation in teg-4, which encodes a protein homologous to the SAP130 pre-mRNA splicing factor, disrupts the balance between proliferation and differentiation in the C. elegans germ line. Mech Dev 126(5–6):417–429. doi:S0925-4773(09)00007-0 [pii] 10.1016/j.mod.2009.01.006

    PubMed  CAS  Google Scholar 

  • Marin VA, Evans TC (2003) Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130(12):2623–2632

    PubMed  CAS  Google Scholar 

  • McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205(1):111–128

    PubMed  CAS  Google Scholar 

  • McGovern M, Voutev R, Maciejowski J, Corsi AK, Hubbard EJ (2009) A “latent niche” mechanism for tumor initiation. Proc Natl Acad Sci USA 106(28):11617–11622. doi:10.1073/pnas.0903768106

    PubMed  CAS  Google Scholar 

  • Merritt C, Seydoux G (2010) The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells. Development 137(11):1787–1798. doi:10.1242/dev.050799

    PubMed  CAS  Google Scholar 

  • Mootz D, Ho DM, Hunter CP (2004) The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development 131(14):3263–3272. doi:10.1242/dev.01196

    PubMed  CAS  Google Scholar 

  • Mumm JS, Kopan R (2000) Notch signaling: from the outside in. Dev Biol 228(2):151–165

    PubMed  CAS  Google Scholar 

  • Nadarajan S, Govindan JA, McGovern M, Hubbard EJ, Greenstein D (2009) MSP and GLP-1/Notch signaling coordinately regulate actomyosin-dependent cytoplasmic streaming and oocyte growth in C. elegans. Development 136(13):2223–2234. doi:10.1242/dev.034603

    PubMed  CAS  Google Scholar 

  • Narbonne P, Roy R (2006) Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 133(4):611–619. doi:10.1242/dev.02232

    PubMed  CAS  Google Scholar 

  • Nousch M, Eckmann CR (2012) Translational control in the C. elegans germ line. Advances in Experimental Medicine and Biology 757:205–247. (Chap. 8, this volume) Springer, New York

    Google Scholar 

  • Pasierbek P, Jantsch M, Melcher M, Schleiffer A, Schweizer D, Loidl J (2001) A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev 15(11):1349–1360

    PubMed  CAS  Google Scholar 

  • Pepper AS, Lo TW, Killian DJ, Hall DH, Hubbard EJ (2003) The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 259(2):336–350

    PubMed  CAS  Google Scholar 

  • Petcherski AG, Kimble J (2000) LAG-3 is a putative transcriptional activator in the C. elegans Notch pathway. Nature 405(6784):364–368

    PubMed  CAS  Google Scholar 

  • Puoti A, Kimble J (1999) The Caenorhabditis elegans sex determination gene mog-1 encodes a member of the DEAH-Box protein family. Mol Cell Biol 19(3):2189–2197

    PubMed  CAS  Google Scholar 

  • Puoti A, Kimble J (2000) The hermaphrodite sperm/oocyte switch requires the Caenorhabditis elegans homologs of PRP2 and PRP22. Proc Natl Acad Sci USA 97(7):3276–3281

    PubMed  CAS  Google Scholar 

  • Qiao L, Lissemore JL, Shu P, Smardon A, Gelber MB, Maine EM (1995) Enhancers of glp-1, a gene required for cell-signaling in Caenorhabditis elegans, define a set of genes required for germline development. Genetics 141(2):551–569

    PubMed  CAS  Google Scholar 

  • Reddy KC, Villeneuve AM (2004) C. elegans HIM-17 links chromatin modification and competence for initiation of meiotic recombination. Cell 118(4):439–452. doi:10.1016/j.cell.2004.07.026

    PubMed  CAS  Google Scholar 

  • Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14(3):277–284. doi:10.1038/ng1196-277

    PubMed  CAS  Google Scholar 

  • Seydoux G, Schedl T (2001) The germline in C. elegans: origins, proliferation, and silencing. Int Rev Cytol 203:139–185

    PubMed  CAS  Google Scholar 

  • Seydoux G, Schedl T, Greenwald I (1990) Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell 61(6):939–951

    PubMed  CAS  Google Scholar 

  • Sheng XR, Brawley CM, Matunis EL (2009) Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell 5(2):191–203. doi:10.1016/j.stem.2009.05.024

    PubMed  CAS  Google Scholar 

  • Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM (2000) EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 10(4):169–178

    PubMed  CAS  Google Scholar 

  • Subramaniam K, Seydoux G (2003) Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr Biol 13(2):134–139

    PubMed  CAS  Google Scholar 

  • Suh N, Jedamzik B, Eckmann CR, Wickens M, Kimble J (2006) The GLD-2 poly(A) polymerase activates gld-1 mRNA in the Caenorhabditis elegans germ line. Proc Natl Acad Sci USA 103(41):15108–15112

    PubMed  CAS  Google Scholar 

  • Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J (2009) FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181(4):1249–1260. doi:10.1534/genetics.108.099440

    PubMed  CAS  Google Scholar 

  • Tax FE, Yeargers JJ, Thomas JH (1994) Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature 368(6467):150–154

    PubMed  CAS  Google Scholar 

  • Thompson BE, Bernstein DS, Bachorik JL, Petcherski AG, Wickens M, Kimble J (2005) Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 132(15):3471–3481

    PubMed  CAS  Google Scholar 

  • Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331(6015):304–308. doi:10.1126/science.1199082

    PubMed  CAS  Google Scholar 

  • Vought VE, Ohmachi M, Lee MH, Maine EM (2005) EGO-1, a putative RNA-directed RNA polymerase, promotes germline proliferation in parallel with GLP-1/notch signaling and regulates the spatial organization of nuclear pore complexes and germline P granules in Caenorhabditis elegans. Genetics 170(3):1121–1132. doi:10.1534/genetics.105.042135

    PubMed  CAS  Google Scholar 

  • Voutev R, Killian DJ, Ahn JH, Hubbard EJ (2006) Alterations in ribosome biogenesis cause specific defects in C. elegans hermaphrodite gonadogenesis. Dev Biol 298(1):45–58

    PubMed  CAS  Google Scholar 

  • Wang L, Eckmann CR, Kadyk LC, Wickens M, Kimble J (2002) A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419(6904):312–316

    PubMed  CAS  Google Scholar 

  • Wang C, Wilson-Berry L, Schedl T, Hansen D (2012) TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor. Dev Dynamics 241(3):505–521. doi:10.1002/dvdy.23735

    CAS  Google Scholar 

  • Wright JE, Gaidatzis D, Senften M, Farley BM, Westhof E, Ryder SP, Ciosk R (2011) A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J 30(3):533–545. doi:10.1038/emboj.2010.334

    PubMed  CAS  Google Scholar 

  • Yochem J, Greenwald I (1989) glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins. Cell 58(3):553–563

    PubMed  CAS  Google Scholar 

  • Zanetti S, Meola M, Bochud A, Puoti A (2011) Role of the C. elegans U2 snRNP protein MOG-2 in sex determination, meiosis, and splice site selection. Dev Biol 354(2):232–241. doi:10.1016/j.ydbio.2011.04.001

    PubMed  CAS  Google Scholar 

  • Zetka MC, Kawasaki I, Strome S, Muller F (1999) Synapsis and chiasma formation in Caenorhabditis elegans require HIM-3, a meiotic chromosome core component that functions in chromosome segregation. Genes Dev 13(17):2258–2270

    PubMed  CAS  Google Scholar 

  • Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390(6659):477–484

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in DH’s lab is funded by grants from the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institutes of Health Research. TS is funded by R01 GM085150 from the National Institutes of Health. We thank Lindsay Leahul for assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, D., Schedl, T. (2013). Stem Cell Proliferation Versus Meiotic Fate Decision in Caenorhabditis elegans . In: Schedl, T. (eds) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, vol 757. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4015-4_4

Download citation

Publish with us

Policies and ethics