Skip to main content

Germ Cell Specification

  • Chapter
  • First Online:
Germ Cell Development in C. elegans

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 757))

Abstract

The germline of Caenorhabditis elegans derives from a single founder cell, the germline blastomere P4. P4 is the product of four asymmetric cleavages that divide the zygote into distinct somatic and germline (P) lineages. P4 inherits a specialized cytoplasm (“germ plasm”) containing maternally encoded proteins and RNAs. The germ plasm has been hypothesized to specify germ cell fate, but the mechanisms involved remain unclear. Three processes stand out: (1) inhibition of mRNA transcription to prevent activation of somatic development, (2) translational regulation of the nanos homolog nos-2 and of other germ plasm mRNAs, and (3) establishment of a unique, partially repressive chromatin. Together, these processes ensure that the daughters of P4, the primordial germ cells Z2 and Z3, gastrulate inside the embryo, associate with the somatic gonad, initiate the germline transcriptional program, and proliferate during larval development to generate ∼2,000 germ cells by adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arata Y, Lee J-Y, Goldstein B, Sawa H (2010) Extracellular control of PAR protein localization during asymmetric cell division in the C. elegans embryo. Development 137:3337–3345. doi:10.1242/dev.054742

    Article  PubMed  CAS  Google Scholar 

  • Barbee SA, Evans TC (2006) The Sm proteins regulate germ cell specification during early C. elegans embryogenesis. Dev Biol 291:132–143. doi:10.1016/j.ydbio.2005.12.011

    Article  PubMed  CAS  Google Scholar 

  • Barbee SA, Lublin A, Evans TC (2002) A novel function for the Sm proteins in germ granule localization during C. elegans embryogenesis. Curr Biol 12:1502–1506

    Article  PubMed  CAS  Google Scholar 

  • Batchelder C, Dunn MA, Choy B et al (1999) Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev 13:202–212

    Article  PubMed  CAS  Google Scholar 

  • Baugh LR, Hill AA, Slonim DK et al (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130:889–900. doi:10.1242/dev.00302

    Article  PubMed  CAS  Google Scholar 

  • Bei Y, Hogan J, Berkowitz LA et al (2002) SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. Dev cell 3:113–125

    Article  PubMed  CAS  Google Scholar 

  • Bender L, Cao R, Zhang Y, Strome S (2004) The MES-2/MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans. Curr Biol 14:1639–1643. doi:10.1016/j

    Article  PubMed  CAS  Google Scholar 

  • Bender LB, Suh J, Carroll CR et al (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133:3907–3917. doi:10.1242/dev.02584

    Article  PubMed  CAS  Google Scholar 

  • Berkowitz LA, Strome S (2000) MES-1, a protein required for unequal divisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the ­boundary between the germline and gut cells. Development 127:4419–4431

    PubMed  CAS  Google Scholar 

  • Bowerman B, Draper BW, Mello CC, Priess JR (1993) The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74:443–452

    Article  PubMed  CAS  Google Scholar 

  • Boyd L, Guo S, Levitan D et al (1996) PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122:3075–3084

    PubMed  CAS  Google Scholar 

  • Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732. doi:10.1126/science.1172046

    Article  PubMed  CAS  Google Scholar 

  • Brauchle M, Baumer K, Gönczy P (2003) Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr Biol 13:819–827. doi:10.1016/S

    Article  PubMed  CAS  Google Scholar 

  • Budirahardja Y, Gönczy P (2008) PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos. Development 135:1303–1313. doi:10.1242/dev.019075

    Article  PubMed  CAS  Google Scholar 

  • Capowski EE, Martin P, Garvin C, Strome S (1991) Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis ­elegans. Genetics 129:1061–1072

    PubMed  CAS  Google Scholar 

  • Cheeks RJ, Canman JC, Gabriel WN et al (2004) C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 14:851–862. doi:10.1016/j

    Article  PubMed  CAS  Google Scholar 

  • Cuenca AA, Schetter A, Aceto D et al (2003) Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130:1255–1265. doi:10.1242/dev.00284

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino I, Merritt C, Chen P-L et al (2006) Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev Biol 292:244–252. doi:10.1016/j.ydbio.2005.11.046

    Article  PubMed  Google Scholar 

  • Daniels BR, Perkins EM, Dobrowsky TM et al (2009) Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counter diffusion. J Cell Biol 184:473–479. doi:10.1083/jcb.200809077

    Article  PubMed  CAS  Google Scholar 

  • DeRenzo C, Reese KJ, Seydoux G (2003) Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424:685–689. doi:10.1038/nature01887

    Article  PubMed  CAS  Google Scholar 

  • Doniach T, Hodgkin J (1984) A sex-determining gene, fem-1, required for both male and hermaphrodite development in Caenorhabditis elegans. Dev Biol 106:223–235

    Article  PubMed  CAS  Google Scholar 

  • Draper BW, Mello CC, Bowerman B et al (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87:205–216

    Article  PubMed  CAS  Google Scholar 

  • Encalada SE, Martin PR, Phillips JB et al (2000) DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Dev Biol 228:225–238. doi:10.1006/dbio.2000.9965

    Article  PubMed  CAS  Google Scholar 

  • Farley BM, Pagano JM, Ryder SP (2008) RNA target specificity of the embryonic cell fate ­determinant POS-1. RNA 14:2685–2697. doi:10.1261/rna.1256708

    Article  PubMed  CAS  Google Scholar 

  • Fong Y, Bender L, Wang W, Strome S (2002) Regulation of the different chromatin states of ­autosomes and X chromosomes in the germ line of C. elegans. Science 296:2235–2238. doi:10.1126/science.1070790

    Article  PubMed  CAS  Google Scholar 

  • Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16:773–779. doi:10.1016/j.cub.2006.02.073

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi H, Takasaki T, Rechtsteiner A et al (2010) Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics chromatin 3:15. doi:10.1186/1756-8935-3-15

    Article  PubMed  Google Scholar 

  • Gallo CM, Munro E, Rasoloson D et al (2008) Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos. Dev Biol 323:76–87. doi:10.1016/j.ydbio.2008.07.008

    Article  PubMed  CAS  Google Scholar 

  • Gallo CM, Wang JT, Motegi F, Seydoux G (2010) Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science 330:1685–1689. doi:10.1126/science.1193697

    Article  PubMed  CAS  Google Scholar 

  • Gerstein MB, Lu ZJ, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787. doi:10.1126/science.1196914

    Article  PubMed  CAS  Google Scholar 

  • Ghosh D, Seydoux G (2008) Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 178:235–243. doi:10.1534/genetics.107.083212

    Article  PubMed  CAS  Google Scholar 

  • Gönczy P, Rose LS (2005) Asymmetric cell division and axis formation in the embryo. Wormbook, ed. The C elegans Research Community, Wormbook 1–20. doi: 10.1895/wormbook.1.30.1

    Google Scholar 

  • Griffin EE, Odde DJ, Seydoux G (2011) Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 146:955–968. doi:10.1016/j.cell.2011.08.012

    Article  PubMed  CAS  Google Scholar 

  • Guedes S, Priess JR (1997) The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 124:731–739

    PubMed  CAS  Google Scholar 

  • Guo S, Kemphues K (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611

    Article  PubMed  CAS  Google Scholar 

  • Guven-Ozkan T, Nishi Y, Robertson SM, Lin R (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135:149–160. doi:10.1016/j.cell.2008.07.040

    Article  PubMed  CAS  Google Scholar 

  • Guven-Ozkan T, Robertson SM, Nishi Y, Lin R (2010) zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 137:3373–3382. doi:10.1242/dev.055327

    Article  PubMed  CAS  Google Scholar 

  • Hanazawa M, Yonetani M, Sugimoto A (2011) PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J Cell Biol 192:929–937

    Article  PubMed  CAS  Google Scholar 

  • Hanyu-Nakamura K, Sonobe-Nojima H, Tanigawa A et al (2008) Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Nature 451:730–733. doi:10.1038/nature06498

    Article  PubMed  CAS  Google Scholar 

  • Harrell JR, Goldstein B (2011) Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. Dev Biol 350:1–12. doi:10.1016/j.ydbio.2010.09.012

    Article  PubMed  CAS  Google Scholar 

  • Hird SN, Paulsen JE, Strome S (1996) Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 122:1303–1312

    PubMed  CAS  Google Scholar 

  • Jadhav S, Rana M, Subramaniam K (2008) Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 135:1803–1812. doi:10.1242/dev.013656

    Article  PubMed  CAS  Google Scholar 

  • Johnson CL, Spence AM (2011) Epigenetic licensing of germline gene expression by maternal RNA in C. elegans. Science 333:1311–1314. doi:10.1126/science.1208178

    Article  PubMed  CAS  Google Scholar 

  • Kapelle WS, Reinke V (2011) C. elegans meg-1 and meg-2 differentially interact with nanos family members to either promote or inhibit germ cell proliferation and survival. Genesis 49:380–391. doi:10.1002/dvg.20726

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki I, Shim YH, Kirchner J et al (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94:635–645

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki I, Amiri A, Fan Y et al (2004) The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167:645–661. doi:10.1534/genetics.103.023093

    Article  PubMed  CAS  Google Scholar 

  • Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52:311–320

    Article  PubMed  CAS  Google Scholar 

  • Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219

    Article  PubMed  CAS  Google Scholar 

  • Kumano G, Takatori N, Negishi T et al (2011) A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr Biol 21:1308–1313. doi:10.1016/j.cub.2011.06.050

    Article  PubMed  CAS  Google Scholar 

  • Kuznicki KA, Smith PA, Leung-Chiu WM et al (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127:2907–2916

    PubMed  CAS  Google Scholar 

  • Leacock SW, Reinke V (2008) MEG-1 and MEG-2 are embryo-specific P-granule components required for germline development in Caenorhabditis elegans. Genetics 178:295–306. doi:10.1534/genetics.107.080218

    Article  PubMed  CAS  Google Scholar 

  • Li W, DeBella LR, Guven-Ozkan T, Lin R, Rose LS (2009) An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. J Cell Biol 187:33–42

    Article  PubMed  CAS  Google Scholar 

  • Mahowald A, Illmensee K (1974) Transplantation of posterior polar plasm in drosophila. Induction of germ cells at the anterior pole of the egg. PNAS 71:1016–1020

    Article  PubMed  Google Scholar 

  • Mello CC, Draper BW, Weintraub H, Priess JF (1992) The pie-1 and mex-1 genes and maternal control of blastomere in early C. elegans embryos. Cell 70:163–176

    Article  PubMed  CAS  Google Scholar 

  • Mello CC, Schubert C, Draper B et al (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382:710–712

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Seydoux G (2008) Less is more: specification of the germline by transcriptional repression. Development 135:3817–3827

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Lin R (2005) DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev Biol 288:139–149. doi:10.1016/j.ydbio.2005.09.053

    Article  PubMed  CAS  Google Scholar 

  • Nishi Y, Rogers E, Robertson SM, Lin R (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135:687–697. doi:10.1242/dev.013425

    Article  PubMed  CAS  Google Scholar 

  • Nousch M, Eckmann CR (2012) Translational control in the C. elegans germ line. Advances in Experimental Medicine and Biology 757:205–247. (Chap. 8, this volume) Springer, New York

    Google Scholar 

  • Oldenbroek M, Robertson SM, Guven-Ozkan T et al (2012) Multiple RNA-binding proteins function combinatorially to control the soma-restricted expression pattern of the E3 ligase subunit ZIF-1. Dev Biol 363:388–398. doi:10.1016/j.ydbio.2012.01.002

    Article  PubMed  CAS  Google Scholar 

  • Pagano JM, Farley BM, McCoig LM, Ryder SP (2007) Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J Biol Chem 282:8883–8894. doi:10.1074/jbc.M700079200

    Article  PubMed  CAS  Google Scholar 

  • Pagano JM, Farley BM, Essien KI, Ryder SP (2009) RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci USA 106:20252–20257. doi:10.1073/pnas.0907916106

    Article  PubMed  CAS  Google Scholar 

  • Parisi M, Lin H (2000) Translational repression: a duet of Nanos and Pumilio. Curr Biol 10:R81–R83

    Article  PubMed  CAS  Google Scholar 

  • Paulsen JE, Capowski EE, Strome S (1995) Phenotypic and molecular analysis of mes-3, a maternal-effect gene required for proliferation and viability of the germ line in C. elegans. Genetics 141:1383–1398

    PubMed  CAS  Google Scholar 

  • Pellettieri J, Reinke V, Kim SK, Seydoux G (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 5:451–462

    Article  PubMed  CAS  Google Scholar 

  • Petrella LN, Wang W, Spike CA et al (2011) synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 138:1069–1079. doi:10.1242/dev.059501

    Article  PubMed  CAS  Google Scholar 

  • Rechtsteiner A, Ercan S, Takasaki T et al (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genetics. doi:10.1371/journal.pgen.1001091

  • Reinke V (2006) Germline genomics. WormBook, ed. The C elegans Research Community, Wormbook 1–10. doi: 10.1895/wormbook.1.74.1

    Google Scholar 

  • Rivers DM, Moreno S, Abraham M, Ahringer J (2008) PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25. J Cell Biol 180:877–885. doi:10.1083/jcb.200710018

    Article  PubMed  CAS  Google Scholar 

  • Robertson S, Lin R (2012) The oocyte-to-embryo transition. Advances in Experimental Medicine and Biology 757:351–372. (Chap. 12, this volume) Springer, New York

    Google Scholar 

  • Roussell DL, Bennett KL (1993) glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci USA 90:9300–9304

    Article  PubMed  CAS  Google Scholar 

  • Schaner CE, Kelly WG (2006) Germline chromatin. Wormbook, ed. The C elegans Research Community, Wormbook 1–14. doi: 10.1895/wormbook.1.73.1

    Google Scholar 

  • Schaner CE, Deshpande G, Schedl PD, Kelly WG (2003) A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5:747–757

    Article  PubMed  CAS  Google Scholar 

  • Schierenberg E (1987) Reversal of cellular polarity and early cell-cell interaction in the embryo of Caenorhabditis elegans. Dev Biol 122:452–463. doi:10.1016/0012-1606(87)90309-5

    Article  PubMed  CAS  Google Scholar 

  • Schierenberg E (1988) Localization and segregation of lineage-specific cleavage potential in embryos of Caenorhabditis elegans. Roux’s Arch Dev Biol 197:282–293

    Article  Google Scholar 

  • Schubert CM, Lin R, de Vries CJ et al (2000) MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5:671–682

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–904. doi:10.1016/j.cell.2006.11.016

    Article  PubMed  CAS  Google Scholar 

  • Seydoux G, Dunn MA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124:2191–2201

    PubMed  CAS  Google Scholar 

  • Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120:2823–2834

    PubMed  CAS  Google Scholar 

  • Seydoux G, Mello CC, Pettitt J et al (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713–716

    Article  PubMed  CAS  Google Scholar 

  • Shirae-Kurabayashi M, Matsuda K, Nakamura A (2011) Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 138:2871–2881. doi:10.1242/dev.058131

    Article  PubMed  CAS  Google Scholar 

  • Shirayama M, Soto MC, Ishidate T et al (2006) The conserved kinases CDK-1, GSK-3, KIN-19, and MBK-2 promote OMA-1 destruction to regulate the oocyte-to-embryo transition in C. elegans. Curr Biol 16:47–55. doi:10.1016/j.cub.2005.11.070

    Article  PubMed  CAS  Google Scholar 

  • Spencer WC, Zeller G, Watson JD et al (2011) A spatial and temporal map of C. elegans gene expression. Genome Res 21:325–341. doi:10.1101/gr.114595.110

    Article  PubMed  CAS  Google Scholar 

  • Spike C, Meyer N, Racen E et al (2008) Genetic analysis of the Caenorhabditis elegans GLH ­family of P-granule proteins. Genetics 178:1973–1987. doi:10.1534/genetics.107.083469

    Article  PubMed  CAS  Google Scholar 

  • Spilker AC, Rabilotta A, Zbinden C et al (2009) MAP kinase signaling antagonizes PAR-1 function during polarization of the early Caenorhabditis elegans embryo. Genetics 183:965–977. doi:10.1534/genetics.109.106716

    Article  PubMed  CAS  Google Scholar 

  • Stitzel ML, Pellettieri J, Seydoux G (2006) The C. elegans DYRK kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr Biol 16:56–62. doi:10.1016/j.cub.2005.11.063

    Article  PubMed  CAS  Google Scholar 

  • Strome S (2005) Specification of the germ line. Wormbook, ed. The C elegans Research Community, Wormbook 1–10. doi: 10.1895/wormbook.1.9.1

    Google Scholar 

  • Strome S, Lehmann R (1997) Germ versus soma decisions: lessons from flies and worms. Science 316:392–393. doi:10.1126/science.1140846

    Article  Google Scholar 

  • Strome S, Martin P, Schierenberg E, Paulsen J (1995) Transformation of the germ line into muscle in mes-1 mutant embryos of C. elegans. Development 121:2961–2972

    PubMed  CAS  Google Scholar 

  • Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126:4861–4871

    PubMed  CAS  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Article  PubMed  CAS  Google Scholar 

  • Tabara H, Hill RJ, Mello CC et al (1999) pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 126:1–11

    PubMed  CAS  Google Scholar 

  • Takasaki T, Liu Z, Habara Y et al (2007) MRG-1, an autosome-associated protein, silences X-linked genes and protects germline immortality in Caenorhabditis elegans. Development 134:757–767. doi:10.1242/dev.02771

    Article  PubMed  CAS  Google Scholar 

  • Tenenhaus C, Subramaniam K, Dunn MA, Seydoux G (2001) PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans. Genes Dev 15:1031–1040. doi:10.1101/gad.876201

    Article  PubMed  CAS  Google Scholar 

  • Tenlen JR, Molk JN, London N et al (2008) MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1-dependent phosphorylation. Development 135:3665–3675. doi:10.1242/dev.027060

    Article  PubMed  CAS  Google Scholar 

  • Unhavaithaya Y, Shin TH, Miliaras N et al (2002) MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Updike D, Strome S (2010) P granule assembly and function in Caenorhabditis elegans germ cells. J Androl 31:53–60. doi:10.2164/jandrol.109.008292

    Article  PubMed  CAS  Google Scholar 

  • Updike DL, Hachey SJ, Kreher J, Strome S (2011) P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 192:939–948. doi:10.1083/jcb.201010104

    Article  PubMed  CAS  Google Scholar 

  • Venkatarama T, Lai F, Luo X et al (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137:651–660. doi:10.1242/dev.038554

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Kennedy S, Conte D et al (2005) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436:593–597. doi:10.1038/nature04010

    Article  PubMed  CAS  Google Scholar 

  • Wolf N, Priess J, Hirsh D (1983) Segregation of germline granules in early embryos of Caenorhabditis elegans: an electron microscopic analysis. J Embryol Exp Morphol 73:297–306

    PubMed  CAS  Google Scholar 

  • Xu L, Fong Y, Strome S (2001) The Caenorhabditis elegans maternal-effect sterile proteins, MES-2, MES-3, and MES-6, are associated in a complex in embryos. Proc Natl Acad Sci USA 98:5061

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Yan L, Zhou Z et al (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:308–321. doi:10.1016/j.cell.2008.12.022

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Seydoux lab for helpful discussions. We gratefully acknowledge funding from NIH (T32 HD007276 to J.W. and HD037047 to G.S.) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine Seydoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, J.T., Seydoux, G. (2013). Germ Cell Specification. In: Schedl, T. (eds) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, vol 757. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4015-4_2

Download citation

Publish with us

Policies and ethics