Germ Cell Specification

Part of the Advances in Experimental Medicine and Biology book series (volume 757)


The germline of Caenorhabditis elegans derives from a single founder cell, the germline blastomere P4. P4 is the product of four asymmetric cleavages that divide the zygote into distinct somatic and germline (P) lineages. P4 inherits a specialized cytoplasm (“germ plasm”) containing maternally encoded proteins and RNAs. The germ plasm has been hypothesized to specify germ cell fate, but the mechanisms involved remain unclear. Three processes stand out: (1) inhibition of mRNA transcription to prevent activation of somatic development, (2) translational regulation of the nanos homolog nos-2 and of other germ plasm mRNAs, and (3) establishment of a unique, partially repressive chromatin. Together, these processes ensure that the daughters of P4, the primordial germ cells Z2 and Z3, gastrulate inside the embryo, associate with the somatic gonad, initiate the germline transcriptional program, and proliferate during larval development to generate ∼2,000 germ cells by adulthood.


Germ plasm Polarity Germ granules Cell fate Transcriptional repression Germline blastomeres Primordial germ cells P lineage Maternal RNA 



We thank members of the Seydoux lab for helpful discussions. We gratefully acknowledge funding from NIH (T32 HD007276 to J.W. and HD037047 to G.S.) and the Howard Hughes Medical Institute.


  1. Arata Y, Lee J-Y, Goldstein B, Sawa H (2010) Extracellular control of PAR protein localization during asymmetric cell division in the C. elegans embryo. Development 137:3337–3345. doi: 10.1242/dev.054742 PubMedCrossRefGoogle Scholar
  2. Barbee SA, Evans TC (2006) The Sm proteins regulate germ cell specification during early C. elegans embryogenesis. Dev Biol 291:132–143. doi: 10.1016/j.ydbio.2005.12.011 PubMedCrossRefGoogle Scholar
  3. Barbee SA, Lublin A, Evans TC (2002) A novel function for the Sm proteins in germ granule localization during C. elegans embryogenesis. Curr Biol 12:1502–1506PubMedCrossRefGoogle Scholar
  4. Batchelder C, Dunn MA, Choy B et al (1999) Transcriptional repression by the Caenorhabditis elegans germ-line protein PIE-1. Genes Dev 13:202–212PubMedCrossRefGoogle Scholar
  5. Baugh LR, Hill AA, Slonim DK et al (2003) Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development 130:889–900. doi: 10.1242/dev.00302 PubMedCrossRefGoogle Scholar
  6. Bei Y, Hogan J, Berkowitz LA et al (2002) SRC-1 and Wnt signaling act together to specify endoderm and to control cleavage orientation in early C. elegans embryos. Dev cell 3:113–125PubMedCrossRefGoogle Scholar
  7. Bender L, Cao R, Zhang Y, Strome S (2004) The MES-2/MES-3/MES-6 complex and regulation of histone H3 methylation in C. elegans. Curr Biol 14:1639–1643. doi: 10.1016/j PubMedCrossRefGoogle Scholar
  8. Bender LB, Suh J, Carroll CR et al (2006) MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line. Development 133:3907–3917. doi: 10.1242/dev.02584 PubMedCrossRefGoogle Scholar
  9. Berkowitz LA, Strome S (2000) MES-1, a protein required for unequal divisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the ­boundary between the germline and gut cells. Development 127:4419–4431PubMedGoogle Scholar
  10. Bowerman B, Draper BW, Mello CC, Priess JR (1993) The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74:443–452PubMedCrossRefGoogle Scholar
  11. Boyd L, Guo S, Levitan D et al (1996) PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in C. elegans embryos. Development 122:3075–3084PubMedGoogle Scholar
  12. Brangwynne CP, Eckmann CR, Courson DS et al (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732. doi: 10.1126/science.1172046 PubMedCrossRefGoogle Scholar
  13. Brauchle M, Baumer K, Gönczy P (2003) Differential activation of the DNA replication checkpoint contributes to asynchrony of cell division in C. elegans embryos. Curr Biol 13:819–827. doi: 10.1016/S PubMedCrossRefGoogle Scholar
  14. Budirahardja Y, Gönczy P (2008) PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos. Development 135:1303–1313. doi: 10.1242/dev.019075 PubMedCrossRefGoogle Scholar
  15. Capowski EE, Martin P, Garvin C, Strome S (1991) Identification of grandchildless loci whose products are required for normal germ-line development in the nematode Caenorhabditis ­elegans. Genetics 129:1061–1072PubMedGoogle Scholar
  16. Cheeks RJ, Canman JC, Gabriel WN et al (2004) C. elegans PAR proteins function by mobilizing and stabilizing asymmetrically localized protein complexes. Curr Biol 14:851–862. doi: 10.1016/j PubMedCrossRefGoogle Scholar
  17. Cuenca AA, Schetter A, Aceto D et al (2003) Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 130:1255–1265. doi: 10.1242/dev.00284 PubMedCrossRefGoogle Scholar
  18. D’Agostino I, Merritt C, Chen P-L et al (2006) Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev Biol 292:244–252. doi: 10.1016/j.ydbio.2005.11.046 PubMedCrossRefGoogle Scholar
  19. Daniels BR, Perkins EM, Dobrowsky TM et al (2009) Asymmetric enrichment of PIE-1 in the Caenorhabditis elegans zygote mediated by binary counter diffusion. J Cell Biol 184:473–479. doi: 10.1083/jcb.200809077 PubMedCrossRefGoogle Scholar
  20. DeRenzo C, Reese KJ, Seydoux G (2003) Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 424:685–689. doi: 10.1038/nature01887 PubMedCrossRefGoogle Scholar
  21. Doniach T, Hodgkin J (1984) A sex-determining gene, fem-1, required for both male and hermaphrodite development in Caenorhabditis elegans. Dev Biol 106:223–235PubMedCrossRefGoogle Scholar
  22. Draper BW, Mello CC, Bowerman B et al (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87:205–216PubMedCrossRefGoogle Scholar
  23. Encalada SE, Martin PR, Phillips JB et al (2000) DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos. Dev Biol 228:225–238. doi: 10.1006/dbio.2000.9965 PubMedCrossRefGoogle Scholar
  24. Farley BM, Pagano JM, Ryder SP (2008) RNA target specificity of the embryonic cell fate ­determinant POS-1. RNA 14:2685–2697. doi: 10.1261/rna.1256708 PubMedCrossRefGoogle Scholar
  25. Fong Y, Bender L, Wang W, Strome S (2002) Regulation of the different chromatin states of ­autosomes and X chromosomes in the germ line of C. elegans. Science 296:2235–2238. doi: 10.1126/science.1070790 PubMedCrossRefGoogle Scholar
  26. Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16:773–779. doi: 10.1016/j.cub.2006.02.073 PubMedCrossRefGoogle Scholar
  27. Furuhashi H, Takasaki T, Rechtsteiner A et al (2010) Trans-generational epigenetic regulation of C. elegans primordial germ cells. Epigenetics chromatin 3:15. doi: 10.1186/1756-8935-3-15 PubMedCrossRefGoogle Scholar
  28. Gallo CM, Munro E, Rasoloson D et al (2008) Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos. Dev Biol 323:76–87. doi: 10.1016/j.ydbio.2008.07.008 PubMedCrossRefGoogle Scholar
  29. Gallo CM, Wang JT, Motegi F, Seydoux G (2010) Cytoplasmic partitioning of P granule components is not required to specify the germline in C. elegans. Science 330:1685–1689. doi: 10.1126/science.1193697 PubMedCrossRefGoogle Scholar
  30. Gerstein MB, Lu ZJ, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787. doi: 10.1126/science.1196914 PubMedCrossRefGoogle Scholar
  31. Ghosh D, Seydoux G (2008) Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 178:235–243. doi: 10.1534/genetics.107.083212 PubMedCrossRefGoogle Scholar
  32. Gönczy P, Rose LS (2005) Asymmetric cell division and axis formation in the embryo. Wormbook, ed. The C elegans Research Community, Wormbook 1–20. doi: 10.1895/wormbook.1.30.1Google Scholar
  33. Griffin EE, Odde DJ, Seydoux G (2011) Regulation of the MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. Cell 146:955–968. doi: 10.1016/j.cell.2011.08.012 PubMedCrossRefGoogle Scholar
  34. Guedes S, Priess JR (1997) The C. elegans MEX-1 protein is present in germline blastomeres and is a P granule component. Development 124:731–739PubMedGoogle Scholar
  35. Guo S, Kemphues K (1995) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611PubMedCrossRefGoogle Scholar
  36. Guven-Ozkan T, Nishi Y, Robertson SM, Lin R (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135:149–160. doi: 10.1016/j.cell.2008.07.040 PubMedCrossRefGoogle Scholar
  37. Guven-Ozkan T, Robertson SM, Nishi Y, Lin R (2010) zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 137:3373–3382. doi: 10.1242/dev.055327 PubMedCrossRefGoogle Scholar
  38. Hanazawa M, Yonetani M, Sugimoto A (2011) PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J Cell Biol 192:929–937PubMedCrossRefGoogle Scholar
  39. Hanyu-Nakamura K, Sonobe-Nojima H, Tanigawa A et al (2008) Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Nature 451:730–733. doi: 10.1038/nature06498 PubMedCrossRefGoogle Scholar
  40. Harrell JR, Goldstein B (2011) Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. Dev Biol 350:1–12. doi: 10.1016/j.ydbio.2010.09.012 PubMedCrossRefGoogle Scholar
  41. Hird SN, Paulsen JE, Strome S (1996) Segregation of germ granules in living Caenorhabditis elegans embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development 122:1303–1312PubMedGoogle Scholar
  42. Jadhav S, Rana M, Subramaniam K (2008) Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 135:1803–1812. doi: 10.1242/dev.013656 PubMedCrossRefGoogle Scholar
  43. Johnson CL, Spence AM (2011) Epigenetic licensing of germline gene expression by maternal RNA in C. elegans. Science 333:1311–1314. doi: 10.1126/science.1208178 PubMedCrossRefGoogle Scholar
  44. Kapelle WS, Reinke V (2011) C. elegans meg-1 and meg-2 differentially interact with nanos family members to either promote or inhibit germ cell proliferation and survival. Genesis 49:380–391. doi: 10.1002/dvg.20726 PubMedCrossRefGoogle Scholar
  45. Kawasaki I, Shim YH, Kirchner J et al (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94:635–645PubMedCrossRefGoogle Scholar
  46. Kawasaki I, Amiri A, Fan Y et al (2004) The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167:645–661. doi: 10.1534/genetics.103.023093 PubMedCrossRefGoogle Scholar
  47. Kemphues KJ, Priess JR, Morton DG, Cheng NS (1988) Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52:311–320PubMedCrossRefGoogle Scholar
  48. Kimble JE, White JG (1981) On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81:208–219PubMedCrossRefGoogle Scholar
  49. Kumano G, Takatori N, Negishi T et al (2011) A maternal factor unique to ascidians silences the germline via binding to P-TEFb and RNAP II regulation. Curr Biol 21:1308–1313. doi: 10.1016/j.cub.2011.06.050 PubMedCrossRefGoogle Scholar
  50. Kuznicki KA, Smith PA, Leung-Chiu WM et al (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127:2907–2916PubMedGoogle Scholar
  51. Leacock SW, Reinke V (2008) MEG-1 and MEG-2 are embryo-specific P-granule components required for germline development in Caenorhabditis elegans. Genetics 178:295–306. doi: 10.1534/genetics.107.080218 PubMedCrossRefGoogle Scholar
  52. Li W, DeBella LR, Guven-Ozkan T, Lin R, Rose LS (2009) An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. J Cell Biol 187:33–42PubMedCrossRefGoogle Scholar
  53. Mahowald A, Illmensee K (1974) Transplantation of posterior polar plasm in drosophila. Induction of germ cells at the anterior pole of the egg. PNAS 71:1016–1020PubMedCrossRefGoogle Scholar
  54. Mello CC, Draper BW, Weintraub H, Priess JF (1992) The pie-1 and mex-1 genes and maternal control of blastomere in early C. elegans embryos. Cell 70:163–176PubMedCrossRefGoogle Scholar
  55. Mello CC, Schubert C, Draper B et al (1996) The PIE-1 protein and germline specification in C. elegans embryos. Nature 382:710–712PubMedCrossRefGoogle Scholar
  56. Nakamura A, Seydoux G (2008) Less is more: specification of the germline by transcriptional repression. Development 135:3817–3827PubMedCrossRefGoogle Scholar
  57. Nishi Y, Lin R (2005) DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Dev Biol 288:139–149. doi: 10.1016/j.ydbio.2005.09.053 PubMedCrossRefGoogle Scholar
  58. Nishi Y, Rogers E, Robertson SM, Lin R (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135:687–697. doi: 10.1242/dev.013425 PubMedCrossRefGoogle Scholar
  59. Nousch M, Eckmann CR (2012) Translational control in the C. elegans germ line. Advances in Experimental Medicine and Biology 757:205–247. (Chap. 8, this volume) Springer, New YorkGoogle Scholar
  60. Oldenbroek M, Robertson SM, Guven-Ozkan T et al (2012) Multiple RNA-binding proteins function combinatorially to control the soma-restricted expression pattern of the E3 ligase subunit ZIF-1. Dev Biol 363:388–398. doi: 10.1016/j.ydbio.2012.01.002 PubMedCrossRefGoogle Scholar
  61. Pagano JM, Farley BM, McCoig LM, Ryder SP (2007) Molecular basis of RNA recognition by the embryonic polarity determinant MEX-5. J Biol Chem 282:8883–8894. doi: 10.1074/jbc.M700079200 PubMedCrossRefGoogle Scholar
  62. Pagano JM, Farley BM, Essien KI, Ryder SP (2009) RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci USA 106:20252–20257. doi: 10.1073/pnas.0907916106 PubMedCrossRefGoogle Scholar
  63. Parisi M, Lin H (2000) Translational repression: a duet of Nanos and Pumilio. Curr Biol 10:R81–R83PubMedCrossRefGoogle Scholar
  64. Paulsen JE, Capowski EE, Strome S (1995) Phenotypic and molecular analysis of mes-3, a maternal-effect gene required for proliferation and viability of the germ line in C. elegans. Genetics 141:1383–1398PubMedGoogle Scholar
  65. Pellettieri J, Reinke V, Kim SK, Seydoux G (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 5:451–462PubMedCrossRefGoogle Scholar
  66. Petrella LN, Wang W, Spike CA et al (2011) synMuv B proteins antagonize germline fate in the intestine and ensure C. elegans survival. Development 138:1069–1079. doi: 10.1242/dev.059501 PubMedCrossRefGoogle Scholar
  67. Rechtsteiner A, Ercan S, Takasaki T et al (2010) The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny. PLoS Genetics. doi: 10.1371/journal.pgen.1001091
  68. Reinke V (2006) Germline genomics. WormBook, ed. The C elegans Research Community, Wormbook 1–10. doi: 10.1895/wormbook.1.74.1Google Scholar
  69. Rivers DM, Moreno S, Abraham M, Ahringer J (2008) PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25. J Cell Biol 180:877–885. doi: 10.1083/jcb.200710018 PubMedCrossRefGoogle Scholar
  70. Robertson S, Lin R (2012) The oocyte-to-embryo transition. Advances in Experimental Medicine and Biology 757:351–372. (Chap. 12, this volume) Springer, New YorkGoogle Scholar
  71. Roussell DL, Bennett KL (1993) glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci USA 90:9300–9304PubMedCrossRefGoogle Scholar
  72. Schaner CE, Kelly WG (2006) Germline chromatin. Wormbook, ed. The C elegans Research Community, Wormbook 1–14. doi: 10.1895/wormbook.1.73.1Google Scholar
  73. Schaner CE, Deshpande G, Schedl PD, Kelly WG (2003) A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev Cell 5:747–757PubMedCrossRefGoogle Scholar
  74. Schierenberg E (1987) Reversal of cellular polarity and early cell-cell interaction in the embryo of Caenorhabditis elegans. Dev Biol 122:452–463. doi: 10.1016/0012-1606(87)90309-5 PubMedCrossRefGoogle Scholar
  75. Schierenberg E (1988) Localization and segregation of lineage-specific cleavage potential in embryos of Caenorhabditis elegans. Roux’s Arch Dev Biol 197:282–293CrossRefGoogle Scholar
  76. Schubert CM, Lin R, de Vries CJ et al (2000) MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5:671–682PubMedCrossRefGoogle Scholar
  77. Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–904. doi: 10.1016/j.cell.2006.11.016 PubMedCrossRefGoogle Scholar
  78. Seydoux G, Dunn MA (1997) Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124:2191–2201PubMedGoogle Scholar
  79. Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120:2823–2834PubMedGoogle Scholar
  80. Seydoux G, Mello CC, Pettitt J et al (1996) Repression of gene expression in the embryonic germ lineage of C. elegans. Nature 382:713–716PubMedCrossRefGoogle Scholar
  81. Shirae-Kurabayashi M, Matsuda K, Nakamura A (2011) Ci-Pem-1 localizes to the nucleus and represses somatic gene transcription in the germline of Ciona intestinalis embryos. Development 138:2871–2881. doi: 10.1242/dev.058131 PubMedCrossRefGoogle Scholar
  82. Shirayama M, Soto MC, Ishidate T et al (2006) The conserved kinases CDK-1, GSK-3, KIN-19, and MBK-2 promote OMA-1 destruction to regulate the oocyte-to-embryo transition in C. elegans. Curr Biol 16:47–55. doi: 10.1016/j.cub.2005.11.070 PubMedCrossRefGoogle Scholar
  83. Spencer WC, Zeller G, Watson JD et al (2011) A spatial and temporal map of C. elegans gene expression. Genome Res 21:325–341. doi: 10.1101/gr.114595.110 PubMedCrossRefGoogle Scholar
  84. Spike C, Meyer N, Racen E et al (2008) Genetic analysis of the Caenorhabditis elegans GLH ­family of P-granule proteins. Genetics 178:1973–1987. doi: 10.1534/genetics.107.083469 PubMedCrossRefGoogle Scholar
  85. Spilker AC, Rabilotta A, Zbinden C et al (2009) MAP kinase signaling antagonizes PAR-1 function during polarization of the early Caenorhabditis elegans embryo. Genetics 183:965–977. doi: 10.1534/genetics.109.106716 PubMedCrossRefGoogle Scholar
  86. Stitzel ML, Pellettieri J, Seydoux G (2006) The C. elegans DYRK kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr Biol 16:56–62. doi: 10.1016/j.cub.2005.11.063 PubMedCrossRefGoogle Scholar
  87. Strome S (2005) Specification of the germ line. Wormbook, ed. The C elegans Research Community, Wormbook 1–10. doi: 10.1895/wormbook.1.9.1Google Scholar
  88. Strome S, Lehmann R (1997) Germ versus soma decisions: lessons from flies and worms. Science 316:392–393. doi: 10.1126/science.1140846 CrossRefGoogle Scholar
  89. Strome S, Martin P, Schierenberg E, Paulsen J (1995) Transformation of the germ line into muscle in mes-1 mutant embryos of C. elegans. Development 121:2961–2972PubMedGoogle Scholar
  90. Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126:4861–4871PubMedGoogle Scholar
  91. Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119PubMedCrossRefGoogle Scholar
  92. Tabara H, Hill RJ, Mello CC et al (1999) pos-1 encodes a cytoplasmic zinc-finger protein essential for germline specification in C. elegans. Development 126:1–11PubMedGoogle Scholar
  93. Takasaki T, Liu Z, Habara Y et al (2007) MRG-1, an autosome-associated protein, silences X-linked genes and protects germline immortality in Caenorhabditis elegans. Development 134:757–767. doi: 10.1242/dev.02771 PubMedCrossRefGoogle Scholar
  94. Tenenhaus C, Subramaniam K, Dunn MA, Seydoux G (2001) PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans. Genes Dev 15:1031–1040. doi: 10.1101/gad.876201 PubMedCrossRefGoogle Scholar
  95. Tenlen JR, Molk JN, London N et al (2008) MEX-5 asymmetry in one-cell C. elegans embryos requires PAR-4- and PAR-1-dependent phosphorylation. Development 135:3665–3675. doi: 10.1242/dev.027060 PubMedCrossRefGoogle Scholar
  96. Unhavaithaya Y, Shin TH, Miliaras N et al (2002) MEP-1 and a homolog of the NURD complex component Mi-2 act together to maintain germline-soma distinctions in C. elegans. Cell 111:991–1002PubMedCrossRefGoogle Scholar
  97. Updike D, Strome S (2010) P granule assembly and function in Caenorhabditis elegans germ cells. J Androl 31:53–60. doi: 10.2164/jandrol.109.008292 PubMedCrossRefGoogle Scholar
  98. Updike DL, Hachey SJ, Kreher J, Strome S (2011) P granules extend the nuclear pore complex environment in the C. elegans germ line. J Cell Biol 192:939–948. doi: 10.1083/jcb.201010104 PubMedCrossRefGoogle Scholar
  99. Venkatarama T, Lai F, Luo X et al (2010) Repression of zygotic gene expression in the Xenopus germline. Development 137:651–660. doi: 10.1242/dev.038554 PubMedCrossRefGoogle Scholar
  100. Wang D, Kennedy S, Conte D et al (2005) Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436:593–597. doi: 10.1038/nature04010 PubMedCrossRefGoogle Scholar
  101. Wolf N, Priess J, Hirsh D (1983) Segregation of germline granules in early embryos of Caenorhabditis elegans: an electron microscopic analysis. J Embryol Exp Morphol 73:297–306PubMedGoogle Scholar
  102. Xu L, Fong Y, Strome S (2001) The Caenorhabditis elegans maternal-effect sterile proteins, MES-2, MES-3, and MES-6, are associated in a complex in embryos. Proc Natl Acad Sci USA 98:5061PubMedCrossRefGoogle Scholar
  103. Zhang Y, Yan L, Zhou Z et al (2009) SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136:308–321. doi: 10.1016/j.cell.2008.12.022 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Molecular Biology and GeneticsHoward Hughes Medical Institute, Center for Cell Dynamics, Johns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations