Skip to main content

Simulating Vortex Wakes of Flapping Plates

  • Conference paper
  • First Online:

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 155))

Abstract

We compare different models to simulate two-dimensional vortex wakes behind oscillating plates. In particular, we compare solutions using a vortex sheet model and the simpler Brown–Michael model to solutions of the full Navier–Stokes equations obtained using a penalization method. The goal is to determine whether simpler models can be used to obtain good approximations to the form of the wake and the induced forces on the body.

Primary 76B47

AMS(MOS) subject classifications. Primary 76B47

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alben S (2010) Passive and active bodies in vortex-street wakes. J Fluid Mech 642:92–125

    Article  MathSciNet  Google Scholar 

  2. Alben S, Shelley M (2005) Coherent locomotion as an attracting state for a free flapping body. PNAS 102:11163–11166

    Article  Google Scholar 

  3. Angot P, Bruneau C-H, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numer Math 81:497–520

    Article  MathSciNet  MATH  Google Scholar 

  4. Aref H, Stremler M, Ponta F (2006) Exotic vortex wakes – point vortex solutions. J Fluids Struct 22:929–940

    Article  Google Scholar 

  5. Carbou G, Fabrie P (2003) Boundary layer for a penalization method for viscous incompressible flow. Adv Differ Equ 8:1453–1480

    MathSciNet  MATH  Google Scholar 

  6. Cortelezzi L, Leonard A (1993) Point vortex model of the undsteady separated flow past a semi-infinted plate with transverse motion. Fluid Dyn Res 11:264–295

    Article  Google Scholar 

  7. Eldredge JD (2005) Efficient tools for the simulation of flapping wing flows. In: AIAA 2005–0085, Reno, pp 1–11

    Google Scholar 

  8. Eldredge JD, Wang C (2010) High-fidelity simulations and low-order modeling of a rapidly pitching plate. In: AIAA 2010–4281, Chicago, pp 1–19

    Google Scholar 

  9. Godoy-Diana R, Aider J-L, Wesfreid JE (2008) Transitions in the wake of a flapping foil. Phys Rev E 77:016308

    Article  Google Scholar 

  10. Kanso E (2009) Swimming due to transverse shape deformations. J Fluid Mech 631:127–148

    Article  MathSciNet  MATH  Google Scholar 

  11. Kanso E, Marsden JE, Rowley CW, Melli-Huber JB (2005) Locomotion of articulated bodies in a perfect fluid. J Nonlinear Sci 15:255–289

    Article  MathSciNet  MATH  Google Scholar 

  12. Kern S, Koumoutsakos P (2006) Simulations of optimized anguilliform swimming. J Exp Biol 209:4841–4857

    Article  Google Scholar 

  13. Krasny R (1989) Desingularization of periodic vortex sheet roll-up. J Comput Phys 65:292–313

    Article  Google Scholar 

  14. Kolomenskiy D, Schneider K (2009) A Fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J Comp Phys 228:5687–5709

    Article  MathSciNet  MATH  Google Scholar 

  15. Jones MA (2003) The separated flow of an invisicd fluid around a moving flat plate. J Fluid Mech 496:405–441

    Article  MathSciNet  MATH  Google Scholar 

  16. Jones MA, Shelley MJ (2005) Falling cards. J Fluid Mech 540:393–425

    Article  MathSciNet  MATH  Google Scholar 

  17. Michelin S, Llewellyn Smith SG (2009) An unsteady point vortex method for coupled fluid-solid problems. Theor Comput Fluid Dyn 23:127–153

    Article  MATH  Google Scholar 

  18. Nitsche M, Krasny R (1994) A numerical study of vortex ring formation at the edge of a circular tube. J Fluid Mech 276:139–161

    Article  MathSciNet  MATH  Google Scholar 

  19. Pullin DI, Wang ZJ (2004) Unsteady forces on an accelerating plate and applications to hovering insect flight. J Fluid Mech 509:1–21

    Article  MathSciNet  MATH  Google Scholar 

  20. Rohr JJ, Fish FE (2004) Strouhal numbers and optimization of swimming by odontocete cetaceans. J Exp Biol 206:1633–1642

    Article  Google Scholar 

  21. Schneider K (2005) Numerical simulation of the transient flow behaviour in chemical reactors using a penalization method. Comput Fluid 34:1223–1238

    Article  MATH  Google Scholar 

  22. Schnipper T, Andersen A, Bohr T (2009) Vortex wakes of a flapping foil. J Fluid Mech 633:411–423

    Article  MATH  Google Scholar 

  23. Shelley M, Alben S (2008) Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys Rev Lett 100:074301

    Article  Google Scholar 

  24. Shukla RK, Eldredge JD (2007) An inviscid model for vortex shedding from a deforming body. Theor Comput Fluid Dyn 21:343–368

    Article  Google Scholar 

  25. Triantafyllou MS, Triantafyllou GS, Gophalkrishnan R (1991) Wake mechanics for thrust generation in oscillation foils. Phys Fluid A 3(12):2835–2837

    Article  Google Scholar 

  26. Triantafyllou MS, Triantafyllou GS, Yue DKP (2000) Hydrodynamics of fishlike swimming. Annu Rev Fluid Mech 32:33–53

    Article  MathSciNet  Google Scholar 

  27. Wang ZJ (2000) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341

    Article  MATH  Google Scholar 

  28. Ysasi A, Kanso E, Newton PK (2011) Wake structure of a deformable Joukowski airfoil. Physica D 240(20):1574–1582

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of AY and EK is supported by the NSF CAREER award CMMI 06-44925 and the grant CCF08-11480.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Sheng, J.X., Ysasi, A., Kolomenskiy, D., Kanso, E., Nitsche, M., Schneider, K. (2012). Simulating Vortex Wakes of Flapping Plates. In: Childress, S., Hosoi, A., Schultz, W., Wang, J. (eds) Natural Locomotion in Fluids and on Surfaces. The IMA Volumes in Mathematics and its Applications, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3997-4_21

Download citation

Publish with us

Policies and ethics