Skip to main content

Rapid Kinetic Analysis of Protein Synthesis

  • Chapter
  • First Online:
Biophysical approaches to translational control of gene expression

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 1))

  • 1324 Accesses

Abstract

Transient kinetic techniques provide information about chemical reactions, compositional dynamics, and conformational rearrangements of complex macromolecular assemblages. The use of those techniques has proven to be crucial in deciphering mechanisms of translation. To date, essentially every step of protein synthesis has been probed by rapid kinetic techniques. Understanding the functional mechanisms required specific methods to determine the timing and order of events, identify crucial intermediates, and understand the chemical and dynamic nature of the reactions involved. Here we describe the basics of rapid kinetic analysis and present two case studies that demonstrate how quench-flow and stopped-flow studies contribute to solving complex mechanisms. Analysis of chemical reactions at the active site of the ribosome revealed catalytic mechanisms of peptide bond formation and peptide release, while the analysis of conformational dynamics using fluorescence reporters provided insights into the function of elongation factor G in tRNA-mRNA translocation and ribosome recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agirrezabala X, Frank J (2009) Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Q Rev Biophys 42:159–200

    Article  PubMed  CAS  Google Scholar 

  • Agirrezabala X, Lei J, Brunelle JL et al (2008) Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol Cell 32:190–197

    Article  PubMed  CAS  Google Scholar 

  • Agrawal RK, Penczek P, Grassucci RA et al (1998) Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc Natl Acad Sci U S A 95:6134–6138

    Article  PubMed  CAS  Google Scholar 

  • Agrawal RK, Linde J, Sengupta J et al (2001) Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J Mol Biol 311:777–787

    Article  PubMed  CAS  Google Scholar 

  • Antoun A, Pavlov MY, Lovmar M et al (2006) How initiation factors tune the rate of initiation of protein synthesis in bacteria. EMBO J 25:2539–2550

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Rodnina MV (2007) Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs. Biol Chem 388:687–691

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Adio S, Wintermeyer W et al (2003) The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9:919–922

    Article  PubMed  CAS  Google Scholar 

  • Beringer M, Bruell C, Xiong L et al (2005) Essential mechanisms in the catalysis of peptide bond formation on the ribosome. J Biol Chem 280:36065–36072

    Article  PubMed  CAS  Google Scholar 

  • Bieling P, Beringer M, Adio S et al (2006) Peptide bond formation does not involve acid–base catalysis by ribosomal residues. Nat Struct Mol Biol 13:423–428

    Article  PubMed  CAS  Google Scholar 

  • Bokov K, Steinberg SV (2009) A hierarchical model for evolution of 23S ribosomal RNA. Nature 457:977–980

    Article  PubMed  CAS  Google Scholar 

  • Brune M, Hunter JL, Howell SA et al (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380

    Article  PubMed  CAS  Google Scholar 

  • Brunelle JL, Youngman EM, Sharma D et al (2006) The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12:33–39

    Article  PubMed  CAS  Google Scholar 

  • Brunelle JL, Shaw JJ, Youngman EM et al (2008) Peptide release on the ribosome depends critically on the 2′ OH of the peptidyl-tRNA substrate. RNA 14:1526–1531

    Article  PubMed  CAS  Google Scholar 

  • Dincbas-Renqvist V, Engstrom A, Mora L et al (2000) A post-translational modification in the GGQ motif of RF2 from Escherichia coli stimulates termination of translation. EMBO J 19:6900–6907

    Article  PubMed  CAS  Google Scholar 

  • Dorywalska M, Blanchard SC, Gonzalez RL et al (2005) Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res 33:182–189

    Article  PubMed  CAS  Google Scholar 

  • Dunkle JA, Cate JH (2010) Ribosome structure and dynamics during translocation and termination. Annu Rev Biophys 39:227–244

    Article  PubMed  CAS  Google Scholar 

  • Dunkle JA, Wang L, Feldman MB et al (2011) Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–984

    Article  PubMed  CAS  Google Scholar 

  • Fabbretti A, Milon P, Giuliodori AM et al (2007) Real-time dynamics of ribosome-ligand interaction by time-resolved chemical probing methods. Methods Enzymol 430:45–58

    Article  PubMed  CAS  Google Scholar 

  • Feinberg JS, Joseph S (2001) Identification of molecular interactions between P-site tRNA and the ribosome essential for translocation. Proc Natl Acad Sci U S A 98:11120–11125

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Konevega AL, Wintermeyer W et al (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Gonzalez RL Jr (2010) Structure and dynamics of a processive Brownian motor: the translating ribosome. Annu Rev Biochem 79:381–412

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Zavialov AV, Ehrenberg M et al (2007) Specific interaction between EF-G and RRF and its implication for GTP-dependent ribosome splitting into subunits. J Mol Biol 374:1345–1358

    Article  PubMed  CAS  Google Scholar 

  • Gao YG, Selmer M, Dunham CM et al (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–699

    Article  PubMed  CAS  Google Scholar 

  • Grunberg-Manago M, Dessen P, Pantaloni D et al (1975) Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J Mol Biol 94:461–478

    Article  PubMed  CAS  Google Scholar 

  • Hesslein AE, Katunin VI, Beringer M et al (2004) Exploration of the conserved A  +  C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Nucleic Acids Res 32:3760–3770

    Article  PubMed  CAS  Google Scholar 

  • Hickerson R, Majumdar ZK, Baucom A et al (2005) Measurement of internal movements within the 30S ribosomal subunit using Forster resonance energy transfer. J Mol Biol 354:459–472

    Article  PubMed  CAS  Google Scholar 

  • Hiller DA, Singh V, Zhong M et al (2011) A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Nature 476:236–239

    Article  PubMed  CAS  Google Scholar 

  • Hirashima A, Kaji A (1973) Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem 248:7580–7587

    PubMed  CAS  Google Scholar 

  • Huang KS, Carrasco N, Pfund E et al (2008) Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction. Biochemistry 47:8822–8827

    Article  PubMed  CAS  Google Scholar 

  • Ishino T, Atarashi K, Uchiyama S et al (2000) Interaction of ribosome recycling factor and elongation factor EF-G with E. coli ribosomes studied by the surface plasmon resonance technique. Genes Cells 5:953–963

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Kelley AC, Loakes D et al (2010) Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc Natl Acad Sci U S A 107:8593–8598

    Article  PubMed  CAS  Google Scholar 

  • Johnson AE (2003) Kinetic analysis of macromolecules. Oxford University Press, Oxford

    Google Scholar 

  • Johnson AE, Adkins HJ, Matthews EA et al (1982) Distance moved by transfer RNA during translocation from the A site to the P site on the ribosome. J Mol Biol 156:113–140

    Article  PubMed  CAS  Google Scholar 

  • Julian P, Konevega AL, Scheres SH et al (2008) Structure of ratcheted ribosomes with tRNAs in hybrid states. Proc Natl Acad Sci U S A 105:16924–16927

    Article  PubMed  CAS  Google Scholar 

  • Karimi R, Pavlov MY, Buckingham RH et al (1999) Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 3:601–609

    Article  PubMed  CAS  Google Scholar 

  • Katunin VI, Muth GW, Strobel SA et al (2002a) Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol Cell 10:339–346

    Article  PubMed  CAS  Google Scholar 

  • Katunin VI, Savelsbergh A, Rodnina MV et al (2002b) Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41: 12806–12812

    Article  PubMed  CAS  Google Scholar 

  • Kingery DA, Pfund E, Voorhees RM et al (2008) An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Chem Biol 15:493–500

    Article  PubMed  CAS  Google Scholar 

  • Konevega AL, Fischer N, Semenkov YP et al (2007) Spontaneous reverse movement of mRNA-bound tRNA through the ribosome. Nat Struct Mol Biol 14:318–324

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Asahara H, Lancaster L et al (2008) Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci U S A 105:19684–19689

    Article  PubMed  CAS  Google Scholar 

  • Kuhlenkoetter S, Wintermeyer W, Rodnina MV (2011) Different substrate-dependent transition states in the active site of the ribosome. Nature 476:351–354

    Article  PubMed  CAS  Google Scholar 

  • Lancaster L, Kiel MC, Kaji A et al (2002) Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111:129–140

    Article  PubMed  CAS  Google Scholar 

  • Lancaster LE, Savelsbergh A, Kleanthous C et al (2008) Colicin E3 cleavage of 16S rRNA impairs decoding and accelerates tRNA translocation on Escherichia coli ribosomes. Mol Microbiol 69:390–401

    Article  PubMed  CAS  Google Scholar 

  • Laurberg M, Asahara H, Korostelev A et al (2008) Structural basis for translation termination on the 70S ribosome. Nature 454:852–857

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142–148

    Article  PubMed  CAS  Google Scholar 

  • Mora L, Heurgue-Hamard V, Champ S et al (2003a) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 47:267–275

    Article  PubMed  CAS  Google Scholar 

  • Mora L, Zavialov A, Ehrenberg M et al (2003b) Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli. Mol Microbiol 50:1467–1476

    Article  PubMed  CAS  Google Scholar 

  • Munro JB, Wasserman MR, Altman RB et al (2010) Correlated conformational events in EF-G and the ribosome regulate translocation. Nat Struct Mol Biol 17:1470–1477

    Article  PubMed  CAS  Google Scholar 

  • Nechifor R, Murataliev M, Wilson KS (2007) Functional interactions between the G′ subdomain of bacterial translation factor EF-G and ribosomal protein L7/L12. J Biol Chem 282: 36998–37005

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N et al (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  PubMed  CAS  Google Scholar 

  • Pan D, Kirillov SV, Cooperman BS (2007) Kinetically competent intermediates in the translocation step of protein synthesis. Mol Cell 25:519–529

    Article  PubMed  CAS  Google Scholar 

  • Peske F, Savelsbergh A, Katunin VI et al (2004) Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J Mol Biol 343:1183–1194

    Article  PubMed  CAS  Google Scholar 

  • Peske F, Rodnina MV, Wintermeyer W (2005) Sequence of steps in ribosome recycling as defined by kinetic analysis. Mol Cell 18:403–412

    Article  PubMed  CAS  Google Scholar 

  • Polacek N, Gomez MJ, Ito K et al (2003) The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Mol Cell 11:103–112

    Article  PubMed  CAS  Google Scholar 

  • Rangelov MA, Vayssilov GN, Yomtova VM et al (2006) The syn-oriented 2-OH provides a favorable proton transfer geometry in 1,2-diol monoester aminolysis: implications for the ribosome mechanism. J Am Chem Soc 128:4964–4965

    Article  PubMed  CAS  Google Scholar 

  • Robertson JM, Wintermeyer W (1981) Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. J Mol Biol 151:57–59

    Article  PubMed  CAS  Google Scholar 

  • Robertson JM, Paulsen H, Wintermeyer W (1986) Pre-steady-state kinetics of ribosomal translocation. J Mol Biol 192:351–360

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Wintermeyer W (2001) Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu Rev Biochem 70:415–435

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Savelsbergh A, Katunin VI et al (1997) Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385:37–41

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Beringer M, Wintermeyer W (2006) Mechanism of peptide bond formation on the ribosome. Q Rev Biophys 39:203–225

    Article  PubMed  CAS  Google Scholar 

  • Satterthwait AC, Jencks WP (1974) The mechanism of the aminolysis of acetate esters. J Am Chem Soc 96:7018–7031

    Article  PubMed  CAS  Google Scholar 

  • Savelsbergh A, Matassova NB, Rodnina MV et al (2000) Role of domains 4 and 5 in elongation factor G functions on the ribosome. J Mol Biol 300:951–961

    Article  PubMed  CAS  Google Scholar 

  • Savelsbergh A, Katunin VI, Mohr D et al (2003) An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol Cell 11:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Savelsbergh A, Mohr D, Kothe U et al (2005) Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J 24:4316–4323

    Article  PubMed  CAS  Google Scholar 

  • Savelsbergh A, Rodnina MV, Wintermeyer W (2009) Distinct functions of elongation factor G in ribosome recycling and translocation. RNA 15:772–780

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Kitchen DE et al (2005a) Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol Cell 20:437–448

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Huang KS, Strobel SA et al (2005b) An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Nature 438:520–524

    Article  PubMed  CAS  Google Scholar 

  • Seo HS, Abedin S, Kamp D et al (2006) EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition. Biochemistry 45:2504–2514

    Article  PubMed  CAS  Google Scholar 

  • Sharma PK, Xiang Y, Kato M et al (2005) What are the roles of substrate-assisted catalysis and proximity effects in peptide bond formation by the ribosome? Biochemistry 44:11307–11314

    Article  PubMed  CAS  Google Scholar 

  • Shaw JJ, Green R (2007) Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol Cell 28:458–467

    Article  PubMed  CAS  Google Scholar 

  • Shoji S, Walker SE, Fredrick K (2006) Reverse translocation of tRNA in the ribosome. Mol Cell 24:931–942

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Beringer M, Rodnina MV et al (2004) The ribosome as an entropy trap. Proc Natl Acad Sci U S A 101:7897–7901

    Article  PubMed  CAS  Google Scholar 

  • Stark H, Rodnina MV, Wieden H-J et al (2000) Large-scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100:301–309

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Nilsson J, Merrill AR et al (2007) Structures of modified eEF2.80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26:2421–2431

    Article  PubMed  CAS  Google Scholar 

  • Ticu C, Nechifor R, Nguyen B et al (2009) Conformational changes in switch I of EF-G drive its directional cycling on and off the ribosome. EMBO J 28:2053–2065

    Article  PubMed  CAS  Google Scholar 

  • Trobro S, Ã…qvist J (2006) Analysis of predictions for the catalytic mechanism of ribosomal peptidyl transfer. Biochemistry 45:7049–7056

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Zavialov A, Sengupta J et al (2003) Locking and unlocking of ribosomal motions. Cell 114:123–134

    Article  PubMed  CAS  Google Scholar 

  • Walker SE, Shoji S, Pan D et al (2008) Role of hybrid tRNA-binding states in ribosomal translocation. Proc Natl Acad Sci U S A 105:9192–9197

    Article  PubMed  CAS  Google Scholar 

  • Wallin G, Aqvist J (2010) The transition state for peptide bond formation reveals the ribosome as a water trap. Proc Natl Acad Sci U S A 107:1888–1893

    Article  PubMed  CAS  Google Scholar 

  • Weinger JS, Parnell KM, Dorner S et al (2004) Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11:1101–1106

    Article  PubMed  CAS  Google Scholar 

  • Weixlbaumer A, Jin H, Neubauer C et al (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322:953–956

    Article  PubMed  CAS  Google Scholar 

  • Wilden B, Savelsbergh A, Rodnina MV et al (2006) Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome. Proc Natl Acad Sci U S A 103:13670–13675

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer W, Zachau HG (1974) Replacement of odd bases in tRNA by fluorescent dyes. Methods Enzymol 29:667–673

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer W, Savelsbergh A, Konevega AL et al (2011) Function of elongation factor G in translocation and ribosome recycling. In: Rodnina MV, Wintermeyer W, Green R (eds) Ribosomes structure, function, and dynamics. Springer, New York, pp 329–338

    Google Scholar 

  • Wohlgemuth I, Brenner S, Beringer M et al (2008) Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. J Biol Chem 283:32229–32235

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, Brunelle JL, Kochaniak AB et al (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117:589–599

    Article  PubMed  CAS  Google Scholar 

  • Zaher HS, Shaw JJ, Strobel SA et al (2011) The 2′-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC. EMBO J 30:2445–2453

    Article  PubMed  CAS  Google Scholar 

  • Zavialov AV, Hauryliuk VV, Ehrenberg M (2005) Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol Cell 18:675–686

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work in our labs was supported by the Deutsche Forschungsgemeinschaft and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina V. Rodnina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rodnina, M.V., Wintermeyer, W. (2012). Rapid Kinetic Analysis of Protein Synthesis. In: Dinman, J. (eds) Biophysical approaches to translational control of gene expression. Biophysics for the Life Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3991-2_7

Download citation

Publish with us

Policies and ethics