Skip to main content

Methods for Studying the Interactions of Translation Factors with the Ribosome

  • Chapter
  • First Online:
Biophysical approaches to translational control of gene expression

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 1))

  • 1299 Accesses

Abstract

Understanding the structure of the ribosomal complexes is critical for elucidating the mechanisms of translation, and scientists have been working for decades toward this goal. Cross-linking and footprinting were among the first methods used to probe the interactions of translation factors with the ribosome and the structures of ribosomal complexes. Since publication of the first high-resolution structures, these methods have continued to provide valuable structural information, while complementing and building on results from X-ray crystallography and Cryo-electron microscopy (Cryo-EM). The aim of this chapter is to provide descriptions of the diverse group of experimental methods that yield information about the structure of ribosomal complexes, without being methods for structure determination per se. Biochemical and biophysical methods that provide information about the binding of proteins but not about their ribosomal position will not be discussed, while X-ray crystallography and Cryo-EM are described in Chaps. 1 and 2, respectively. Special emphasis is given to directed hydroxyl radical probing, since this approach can provide not only information about the overall binding site of a translation factor, but also provide low-resolution models for the structure of a complex with the ribosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-thioU:

4-Thiouracil

5′-UTR:

5′-Untranslated region

6-thioG:

6-Thioguanine

Cryo-EM:

Cryo-electron microscopy

CTD:

C-terminal domain

CTT:

C-terminal tail

dsRNA:

Double-stranded RNA

eIF:

Eukaryotic translation initiation factor

E-site:

Exit site

Fe(II)-BABE:

Fe(II) 1-(p-bromoacetamidobenzyl)-EDTA

FRET:

Fluorescence resonance energy transfer

IRES:

Internal ribosome entry site

NTD:

N-terminal domain

NTT:

N-terminal tail

OB-fold:

Oligonucleotide/oligosaccharide binding fold

P-site:

Peptidyl-tRNA site

Ribosomal A-site:

Ribosomal aminoacyl-tRNA site

rRNA:

Ribosomal RNA

RT:

Reverse transcriptase

ssRNA:

Single-stranded RNA

tRNA:

Transfer RNA

References

  • Agrawal RK, Penczek P, Grassucci RA, Frank J (1998) Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc Natl Acad Sci U S A 95(11):6134–6138

    Article  PubMed  CAS  Google Scholar 

  • Agrawal RK, Sharma MR, Kiel MC, Hirokawa G, Booth TM, Spahn CM, Grassucci RA, Kaji A, Frank J (2004) Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc Natl Acad Sci U S A 101(24):8900–8905. doi:10.1073/pnas.04019041010401904101[pii]

    Article  PubMed  CAS  Google Scholar 

  • Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J (2005) The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121(5):703–712. doi:S0092-8674(05)00295-3 [pii]10.1016/j.cell.2005.03.023

    Article  PubMed  CAS  Google Scholar 

  • Battiste JL, Pestova TV, Hellen CU, Wagner G (2000) The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol Cell 5(1):109–119. doi: S1097-2765(00)80407-4[pii]

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Jenner L, Yusupova G, Yusupov M (2010) Crystal structure of the eukaryotic ribosome. Science 330(6008):1203–1209. doi:330/6008/1203 [pii]10.1126/science.1194294

    Article  PubMed  CAS  Google Scholar 

  • Boileau G, Butler P, Hershey JW, Traut RR (1983) Direct cross-links between initiation factors 1, 2, and 3 and ribosomal proteins promoted by 2-iminothiolane. Biochemistry 22(13):3162–3170

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM Jr, Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291(5503):498–501

    Article  PubMed  CAS  Google Scholar 

  • Chiu WL, Wagner S, Herrmannova A, Burela L, Zhang F, Saini AK, Valasek L, Hinnebusch AG (2010) The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Mol Cell Biol 30(18):4415–4434. doi:MCB.00280-10 [pii] 10.1128/MCB.00280-10

    Article  PubMed  CAS  Google Scholar 

  • Dallas A, Noller HF (2001) Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Mol Cell 8(4):855–864. doi:S1097-2765(01)00356-2[pii]

    Article  PubMed  CAS  Google Scholar 

  • Datwyler SA, Meares CF (2000) Protein-protein interactions mapped by artificial proteases: where sigma factors bind to RNA polymerase. Trends Biochem Sci 25(9):408–414. doi:S0968-0004(00)01652-2

    Article  PubMed  CAS  Google Scholar 

  • Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15(22):9109–9128

    Article  PubMed  CAS  Google Scholar 

  • Elantak L, Wagner S, Herrmannova A, Karaskova M, Rutkai E, Lukavsky PJ, Valasek L (2010) The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection. J Mol Biol 396(4):1097–1116. doi:S0022-2836(09)01554-X [pii] 10.1016/j.jmb.2009.12.047

    Article  PubMed  CAS  Google Scholar 

  • Ermolenko DN, Spiegel PC, Majumdar ZK, Hickerson RP, Clegg RM, Noller HF (2007) The antibiotic viomycin traps the ribosome in an intermediate state of translocation. Nat Struct Mol Biol 14(6):493–497. doi:nsmb1243 [pii] 10.1038/nsmb1243

    Article  PubMed  CAS  Google Scholar 

  • Favre A, Saintome C, Fourrey JL, Clivio P, Laugaa P (1998) Thionucleobases as intrinsic photoaffinity probes of nucleic acid structure and nucleic acid-protein interactions. J Photochem Photobiol B 42(2):109–124. doi:S1011134497001164 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Fraser CS, Doudna JA (2007) Quantitative studies of ribosome conformational dynamics. Q Rev Biophys 40(2):163–189. doi:S0033583507004647 [pii] 10.1017/S0033583507004647

    Article  PubMed  CAS  Google Scholar 

  • Fraser CS, Berry KE, Hershey JW, Doudna JA (2007) eIF3j is located in the decoding center of the human 40S ribosomal subunit. Mol Cell 26(6):811–819. doi:S1097-2765(07)00320-6 [pii] 10.1016/j.molcel.2007.05.019

    Article  PubMed  CAS  Google Scholar 

  • Green R, Noller HF (1997) Ribosomes and translation. Annu Rev Biochem 66:679–716. doi:10.1146/annurev.biochem.66.1.679

    Article  PubMed  CAS  Google Scholar 

  • Heilek GM, Noller HF (1996a) Directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S13 using tethered Fe(II). RNA 2(6):597–602

    PubMed  CAS  Google Scholar 

  • Heilek GM, Noller HF (1996b) Site-directed hydroxyl radical probing of the rRNA neighborhood of ribosomal protein S5. Science 272(5268):1659–1662

    Article  PubMed  CAS  Google Scholar 

  • Heilek GM, Marusak R, Meares CF, Noller HF (1995) Directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to ribosomal protein S4. Proc Natl Acad Sci U S A 92(4):1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Joseph S, Weiser B, Noller HF (1997) Mapping the inside of the ribosome with an RNA helical ruler. Science 278(5340):1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Kafasla P, Morgner N, Poyry TA, Curry S, Robinson CV, Jackson RJ (2009) Polypyrimidine tract binding protein stabilizes the encephalomyocarditis virus IRES structure via binding multiple sites in a unique orientation. Mol Cell 34(5):556–568. doi:S1097-2765(09)00268-8 [pii] 10.1016/j.molcel.2009.04.015

    Article  PubMed  CAS  Google Scholar 

  • Kafasla P, Morgner N, Robinson CV, Jackson RJ (2010) Polypyrimidine tract-binding protein stimulates the poliovirus IRES by modulating eIF4G binding. EMBO J 29(21):3710–3722. doi:emboj2010231 [pii] 10.1038/emboj.2010.231

    Article  PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CU (2000a) An enzymatic footprinting analysis of the interaction of 40S ribosomal subunits with the internal ribosomal entry site of hepatitis C virus. J Virol 74(14):6242–6250

    Article  PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Pestova TV, Hellen CU (2000b) Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA 6(12):1791–1807

    Article  PubMed  CAS  Google Scholar 

  • Kolupaeva VG, Lomakin IB, Pestova TV, Hellen CU (2003) Eukaryotic initiation factors 4G and 4A mediate conformational changes downstream of the initiation codon of the encephalomyocarditis virus internal ribosomal entry site. Mol Cell Biol 23(2):687–698

    Article  PubMed  CAS  Google Scholar 

  • Kolupaeva VG, de Breyne S, Pestova TV, Hellen CU (2007) In vitro reconstitution and biochemical characterization of translation initiation by internal ribosomal entry. Methods Enzymol 430:409–439. doi:S0076-6879(07)30016-5 [pii] 10.1016/S0076-6879(07)30016-5

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292. doi:0092-8674(86)90762-2 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (1999) Energy transfer. In: Lakowicz JR (ed) principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New York, NY, pp 368–394

    Google Scholar 

  • Lancaster L, Kiel MC, Kaji A, Noller HF (2002) Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 111(1):129–140. doi:S0092867402009388 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lomakin IB, Kolupaeva VG, Marintchev A, Wagner G, Pestova TV (2003) Position of eukaryotic initiation factor eIF1 on the 40S ribosomal subunit determined by directed hydroxyl radical probing. Genes Dev 17(22):2786–2797. doi:10.1101/gad.11418031141803 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV (2006) The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. EMBO J 25(1):196–210. doi:7600904 [pii] 10.1038/sj.emboj.7600904

    Article  PubMed  CAS  Google Scholar 

  • Maag D, Lorsch JR (2003) Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J Mol Biol 330(5):917–924. doi:S002228360300665X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Maag D, Fekete CA, Gryczynski Z, Lorsch JR (2005) A conformational change in the eukaryotic translation preinitiation complex and release of eIF1 signal recognition of the start codon. Mol Cell 17(2):265–275. doi:S1097276504007737 [pii] 10.1016/j.molcel.2004.11.051

    Article  PubMed  CAS  Google Scholar 

  • Majumdar R, Bandyopadhyay A, Maitra U (2003) Mammalian translation initiation factor eIF1 functions with eIF1A and eIF3 in the formation of a stable 40S preinitiation complex. J Biol Chem 278(8):6580–6587. doi:10.1074/jbc.M210357200M210357200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Marintchev A, Wagner G (2004) Translation initiation: structures, mechanisms and evolution. Q Rev Biophys 37(3–4):197–284. doi:S0033583505004026 [pii] 10.1017/S0033583505004026

    PubMed  CAS  Google Scholar 

  • Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS (2003) Ribosomal localization of translation initiation factor IF2. RNA 9(8):958–969

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Agrawal RK, Philips SM, Grassucci RA, Gerchman SE, Clemons WM Jr, Ramakrishnan V, Frank J (1999) Location of translational initiation factor IF3 on the small ribosomal subunit. Proc Natl Acad Sci U S A 96(8):4301–4306

    Article  PubMed  CAS  Google Scholar 

  • Myasnikov AG, Marzi S, Simonetti A, Giuliodori AM, Gualerzi CO, Yusupova G, Yusupov M, Klaholz BP (2005) Conformational transition of initiation factor 2 from the GTP- to GDP-bound state visualized on the ribosome. Nat Struct Mol Biol 12(12):1145–1149. doi:nsmb1012 [pii] 10.1038/nsmb1012

    Article  PubMed  CAS  Google Scholar 

  • Passmore LA, Schmeing TM, Maag D, Applefield DJ, Acker MG, Algire MA, Lorsch JR, Ramakrishnan V (2007) The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell 26(1):41–50. doi:S1097-2765(07)00188-8 [pii] 10.1016/j.molcel.2007.03.018

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Pestova TV, Kolupaeva VG, Khitrina EV, Poperechnaya AN, Agol VI, Hellen CU (2000) A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev 14(16):2028–2045

    PubMed  CAS  Google Scholar 

  • Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F (2001) Crystal structures of ­complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J 20(8):1829–1839. doi:10.1093/emboj/20.8.1829

    Article  PubMed  CAS  Google Scholar 

  • Pisarev AV, Kolupaeva VG, Pisareva VP, Merrick WC, Hellen CU, Pestova TV (2006) Specific functional interactions of nucleotides at key −3 and +4 positions flanking the initiation codon with components of the mammalian 48S translation initiation complex. Genes Dev 20(5):624–636. doi:20/5/624 [pii] 10.1101/gad.1397906

    Article  PubMed  CAS  Google Scholar 

  • Pisarev AV, Unbehaun A, Hellen CU, Pestova TV (2007) Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol 430:147–177. doi:S0076-6879(07)30007-4 [pii] 10.1016/S0076-6879(07)30007-4

    Article  PubMed  CAS  Google Scholar 

  • Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CU, Pestova TV (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J 27(11):1609–1621. doi:emboj200890 [pii] 10.1038/emboj.2008.90

    Article  PubMed  CAS  Google Scholar 

  • Pisareva VP, Pisarev AV, Komar AA, Hellen CU, Pestova TV (2008) Translation initiation on mammalian mRNAs with structured 5′UTRs requires DExH-box protein DHX29. Cell 135(7):1237–1250. doi:S0092-8674(08)01374-3 [pii] 10.1016/j.cell.2008.10.037

    Article  PubMed  CAS  Google Scholar 

  • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331(6018):730–736. doi:science.1198308 [pii] 10.1126/science.1198308

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461(7268):1234–1242. doi:nature08403 [pii] 10.1038/nature08403

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313(5795):1935–1942. doi:1131127 [pii] 10.1126/science.1131127

    Article  PubMed  CAS  Google Scholar 

  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310(5753):1513–1515. doi:310/5753/1513 [pii] 10.1126/science.1118977

    Article  PubMed  CAS  Google Scholar 

  • Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CU (1998) Specific interaction of eukaryotic translation initiation factor 3 with the 5′ nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72(6):4775–4782

    PubMed  CAS  Google Scholar 

  • Spiegel PC, Ermolenko DN, Noller HF (2007) Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome. RNA 13(9):1473–1482. doi:rna.601507 [pii] 10.1261/rna.601507

    Article  PubMed  CAS  Google Scholar 

  • Stevenson AL, Juanes PP, McCarthy JE (2010) Elucidating mechanistic principles underpinning eukaryotic translation initiation using quantitative fluorescence methods. Biochem Soc Trans 38(6):1587–1592. doi:BST0381587 [pii] 10.1042/BST0381587

    Article  PubMed  CAS  Google Scholar 

  • Taylor DJ, Nilsson J, Merrill AR, Andersen GR, Nissen P, Frank J (2007) Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J 26(9):2421–2431. doi:7601677 [pii] 10.1038/sj.emboj.7601677

    Article  PubMed  CAS  Google Scholar 

  • Unbehaun A, Marintchev A, Lomakin IB, Didenko T, Wagner G, Hellen CU, Pestova TV (2007) Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J 26(13):3109–3123. doi:7601751 [pii] 10.1038/sj.emboj.7601751

    Article  PubMed  CAS  Google Scholar 

  • Valasek L, Mathew AA, Shin BS, Nielsen KH, Szamecz B, Hinnebusch AG (2003) The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev 17(6):786–799. doi:10.1101/gad.1065403

    Article  PubMed  CAS  Google Scholar 

  • Vallejos M, Deforges J, Plank TD, Letelier A, Ramdohr P, Abraham CG, Valiente-Echeverria F, Kieft JS, Sargueil B, Lopez-Lastra M (2011) Activity of the human immunodeficiency virus type 1 cell cycle-dependent internal ribosomal entry site is modulated by IRES trans-acting factors. Nucleic Acids Res 39(14):6186–6200. doi: gkr189[pii]10.1093/nar/gkr189

    Google Scholar 

  • Westermann P, Nygard O (1983) The spatial arrangement of the complex between eukaryotic initiation factor eIF-3 and 40S ribosomal subunit. Cross-linking between factor and ribosomal proteins. Biochim Biophys Acta 741(1):103–108

    Article  PubMed  CAS  Google Scholar 

  • Westermann P, Heumann W, Bommer UA, Bielka H, Nygard O, Hultin T (1979) Crosslinking of initiation factor eIF-2 to proteins of the small subunit of rat liver ribosomes. FEBS Lett 97(1):101–104. doi: 0014-5793(79)80061-7[pii]

    Article  PubMed  CAS  Google Scholar 

  • Westermann P, Nygard O, Bielka H (1981) Cross-linking of Met-tRNAf to eIF-2 beta and to the ribosomal proteins S3a and S6 within the eukaryotic inhibition complex, eIF-2.GMPPCP.Met-tRNAf.small ribosomal subunit. Nucleic Acids Res 9(10):2387–2396

    Article  PubMed  CAS  Google Scholar 

  • Whirl-Carrillo M, Gabashvili IS, Bada M, Banatao DR, Altman RB (2002) Mining biochemical information: lessons taught by the ribosome. RNA 8(3):279–289

    Article  PubMed  CAS  Google Scholar 

  • Wilson KS, Noller HF (1998) Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92(1):131–139. doi: S0092-8674(00)80905-8[pii]

    Article  PubMed  CAS  Google Scholar 

  • Wilson KS, Ito K, Noller HF, Nakamura Y (2000) Functional sites of interaction between release factor RF1 and the ribosome. Nat Struct Biol 7(10):866–870. doi:10.1038/82818

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, He SL, Nikstad LJ, Green R (2007) Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 28(4):533–543. doi: S1097-2765(07)00627-2[pii]10.1016/j.molcel.2007.09.015

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Marintchev A, Kolupaeva VG, Unbehaun A, Veryasova T, Lai SC, Hong P, Wagner G, Hellen CU, Pestova TV (2009) Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Nucleic Acids Res 37(15):5167–5182. doi: gkp519[pii]10.1093/nar/gkp519

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Abaeva IS, Marintchev A, Pestova TV, Hellen CU (2011) Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res 39(11):4851–4865. doi: gkr045[pii]10.1093/nar/gkr045

    Article  PubMed  CAS  Google Scholar 

  • Yusupova GZ, Yusupov MM, Cate JH, Noller HF (2001) The path of messenger RNA through the ribosome. Cell 106(2):233–241. doi: S0092-8674(01)00435-4[pii]

    Article  PubMed  CAS  Google Scholar 

  • Zucker FH, Hershey JW (1986) Binding of Escherichia coli protein synthesis initiation factor IF1 to 30S ribosomal subunits measured by fluorescence polarization. Biochemistry 25(12): 3682–3690

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Howard Temin award K01 CA119107 from the NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assen Marintchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marintchev, A. (2012). Methods for Studying the Interactions of Translation Factors with the Ribosome. In: Dinman, J. (eds) Biophysical approaches to translational control of gene expression. Biophysics for the Life Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3991-2_5

Download citation

Publish with us

Policies and ethics