Functional Assessment of Microbial and Viral Infections by Real-Time Cellular Analysis System

Chapter

Abstract

Microbes and viruses infect their host cells and in doing so alter the physiological functions of the host cells leading to diseases. Analysis of pathogen-infected cells provides critical information with regards to functional assessment of microbe–host and virus–host interactions in addition to serving as an important diagnosis for infection. As early as 1950s, hemagglutination assay using red blood cells (RBC) were employed to detect the presence of hemagglutinin antigen-bearing virus particles [1]. Recently this assay was also used for bacterial detection [2]. Some viral families and many bacteria have envelope or surface proteins, which are able to agglutinate human or animal RBC and bind to N-acetylneuraminic acid. As each of the agglutinating molecule attaches to multiple RBCs, a lattice structure will form, allowing for visual inspection.

Keywords

Influenza Shrinkage Microbe Vancomycin Neuroblastoma 

References

  1. 1.
    Donald HB, Isaacs A (1954) Counts of influenza virus particles. J Gen Microbiol 10:457–464PubMedCrossRefGoogle Scholar
  2. 2.
    Chen X, Xu J, Shuai J, Chen J, Zhang Z, Fang W (2007) The S-layer proteins of Lactobacillus crispatus strain ZJ001 is responsible for competitive exclusion against Escherichia coli O157:H7 and Salmonella typhimurium. Int J Food Microbiol 115:307–312PubMedCrossRefGoogle Scholar
  3. 3.
    Leland DS, Ginocchio CC (2007) Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 20:49–78PubMedCrossRefGoogle Scholar
  4. 4.
    Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592PubMedCrossRefGoogle Scholar
  5. 5.
    Cossart P, Boquet P, Normark S, Rappuoli R (1996) Cellular microbiology emerging. Science 271:315–316PubMedCrossRefGoogle Scholar
  6. 6.
    Elsinghorst EA (1994) Measurement of invasion by gentamicin resistance. Methods Enzymol 236:405–420PubMedCrossRefGoogle Scholar
  7. 7.
    Pizarro-Cerda J, Lecuit M, Cossart P (2002) In: Sansonetti PJ, Zychlinsky A (eds) Measuring and analyzing invasion of mammalian cells by bacterial pathogens: The Listeria monocytogenes system in Molecular Cellular Microbiology. Methods in Microbiol, Academic Press, London, 31:161–177Google Scholar
  8. 8.
    Srivastava A, Isberg RR (2002) In: Sansonetti PJ, Zychlinsky A (eds) Measurement of bacterial uptake by cultured cells in Molecular Cellular Microbiology. Methods in Microbiol, Academic Press, London, 31:179–188Google Scholar
  9. 9.
    Ridgway GL, Oriel JD, Mumtaz G, Mellars B (1986) Comparison of methods for detecting Chlamydia trachomatis. J Clin Pathol 39:232–233PubMedCrossRefGoogle Scholar
  10. 10.
    Belland R, Ojcius DM, Byrne GI (2004) Chlamydia. Nat Rev Microbiol 2:530–531PubMedCrossRefGoogle Scholar
  11. 11.
    Giaever I, Keese CR (1986) Use of electric fields to monitor the dynamical aspect of cell behavior in tissue culture. IEEE Trans Biomed Eng 33:242–247PubMedCrossRefGoogle Scholar
  12. 12.
    Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366:591–592PubMedCrossRefGoogle Scholar
  13. 13.
    Solly K, Wang X, Xu X, Strulovici B, Zheng W (2004) Application of real-time cell electronic sensing (RT-CES) technology to cell-based assays. Assay Drug Dev Technol 2:363–372PubMedCrossRefGoogle Scholar
  14. 14.
    Ryder AB, Huang Y, Li H et al (2010) Assessment of Clostridium difficile infections by quantitative detection of tcdB toxin by use of a real-time cell analysis system. J Clin Microbiol 48:4129–4134PubMedCrossRefGoogle Scholar
  15. 15.
    Fang Y, Ye P, Wang X, Xu X, Reisen W (2011) Real-time monitoring of flavivirus induced cytopathogenesis using cell electric impedance technology. J Virol Methods 173:251–258PubMedCrossRefGoogle Scholar
  16. 16.
    Lu HZ, Xu X (2011) Label-free real-time cell based assay system for evaluating H1N1 vaccination success. Asia Pacific Biotech News 14:15–17Google Scholar
  17. 17.
    Sun F, Zhang Y, Tian D et al (2011) Responses after one dose of a monovalent influenza A (H1N1) 2009 inactivated vaccine in Chinese population—a practical observation. Vaccine 29:6527–6531PubMedCrossRefGoogle Scholar
  18. 18.
    Yang G, Zhou B, Wang J et al (2008) Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium. BMC Microbiol 8:192PubMedCrossRefGoogle Scholar
  19. 19.
    Smout MJ, Kotze AC, McCarthy JS, Loukas A (2010) A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis 4:e885PubMedCrossRefGoogle Scholar
  20. 20.
    Cooper MA (2006) Non-optical screening platforms: the next wave in label-free screening? Drug Discov Today 11:1068–1074PubMedCrossRefGoogle Scholar
  21. 21.
    McGuinness R (2007) Impedance-based cellular assay technologies: recent advances, future promise. Curr Opin Pharmacol 7:535–540PubMedCrossRefGoogle Scholar
  22. 22.
    Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 4:583–595PubMedCrossRefGoogle Scholar
  23. 23.
    Atienza JM, Yu N, Kirstein SL et al (2006) Dynamic and label-free cell-based assays using the real-time cell electronic sensing system. Assay Drug Dev Technol 4:597–607PubMedCrossRefGoogle Scholar
  24. 24.
    Abassi YA, Xi B, Zhang W et al (2009) Kinetic cell-based morphological screening: prediction of mechanism of compound action and off-target effects. Chem Biol 16:712–723PubMedCrossRefGoogle Scholar
  25. 25.
    Atienza JM, Yu N, Wang X, Xu X, Abassi Y (2006) Label-free and real-time cell-based kinase assay for screening selective and potent receptor tyrosine kinase inhibitors using microelectronic sensor array. J Biomol Screen 11:634–643PubMedCrossRefGoogle Scholar
  26. 26.
    Xing JZ, Zhu L, Jackson JA et al (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154–161PubMedCrossRefGoogle Scholar
  27. 27.
    Xi B, Yu N, Wang X, Xu X, Abassi YA (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3:484–495PubMedCrossRefGoogle Scholar
  28. 28.
    Ke N, Wang X, Xu X, Abassi YA (2011) The xCELLigence system for real-time and label-free monitoring of cell viability. Methods Mol Biol 740:33–43PubMedCrossRefGoogle Scholar
  29. 29.
    Bartlett JG (2006) Update in infectious diseases. Ann Intern Med 144:49–56PubMedGoogle Scholar
  30. 30.
    Kelly CP, LaMont JT (2008) Clostridium difficile—more difficult than ever. N Engl J Med 359:1932–1940PubMedCrossRefGoogle Scholar
  31. 31.
    McDonald LC, Killgore GE, Thompson A et al (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353:2433–2441PubMedCrossRefGoogle Scholar
  32. 32.
    Chang TW, Lauermann M, Bartlett JG (1979) Cytotoxicity assay in antibiotic-associated colitis. J Infect Dis 140:765–770PubMedCrossRefGoogle Scholar
  33. 33.
    Planche T, Aghaizu A, Holliman R et al (2008) Diagnosis of Clostridium difficile infection by toxin detection kits: a systematic review. Lancet Infect Dis 8:777–784PubMedCrossRefGoogle Scholar
  34. 34.
    Peterson LR, Manson RU, Paule SM et al (2007) Detection of toxigenic Clostridium difficile in stool samples by real-time polymerase chain reaction for the diagnosis of C. difficile-associated diarrhea. Clin Infect Dis 45:1152–1160PubMedCrossRefGoogle Scholar
  35. 35.
    He X, Wang J, Steele J et al (2009) An ultrasensitive rapid immunocytotoxicity assay for detecting Clostridium difficile toxins. J Microbiol Methods 78:97–100PubMedCrossRefGoogle Scholar
  36. 36.
    Johnson EA (ed) (2005) Clostridium botulinum and Clostridium tetani, 8th edn. Arnold Hodder, LondonGoogle Scholar
  37. 37.
    Blasi J, Chapman ER, Link E et al (1993) Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365:160–163PubMedCrossRefGoogle Scholar
  38. 38.
    Binz T, Blasi J, Yamasaki S et al (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J Biol Chem 269:1617–1620PubMedGoogle Scholar
  39. 39.
    Neale EA, Bowers LM, Jia M, Bateman KE, Williamson LC (1999) Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol 147:1249–1260PubMedCrossRefGoogle Scholar
  40. 40.
    Lindstrom M, Korkeala H (2006) Laboratory diagnostics of botulism. Clin Microbiol Rev 19:298–314PubMedCrossRefGoogle Scholar
  41. 41.
    O’Connell J, Abassi YA, Xi B, Wang X, Xu X (2008) Real-time cell-based toxicology testing might replace animal testing for product release and drug safety. Biochemica 4:11–13Google Scholar
  42. 42.
    Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M (2010) Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog 6:e1000874PubMedCrossRefGoogle Scholar
  43. 43.
    Slanina H, Konig A, Claus H, Frosch M, Schubert-Unkmeir A (2011) Real-time impedance analysis of host cell response to meningococcal infection. J Microbiol Methods 84:101–108PubMedCrossRefGoogle Scholar
  44. 44.
    Kramer LD, Styer LM, Ebel GD (2008) A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53:61–81PubMedCrossRefGoogle Scholar
  45. 45.
    Reisen WK, Chiles RE, Martinez VM, Fang Y, Green EN (2003) Experimental infection of California birds with western equine encephalomyelitis and St Louis encephalitis viruses. J Med Entomol 40:968–982PubMedCrossRefGoogle Scholar
  46. 46.
    Oceguera LF 3rd, Patiris PJ, Chiles RE, Busch MP, Tobler LH, Hanson CV (2007) Flavivirus serology by Western blot analysis. Am J Trop Med Hyg 77:159–163PubMedGoogle Scholar
  47. 47.
    Patiris PJ, Oceguera LF 3, Peck GW, Chiles RE, Reisen WK, Hanson CV (2008) Serologic diagnosis of West Nile and St. Louis encephalitis virus infections in domestic chickens. Am J Trop Med Hyg 78:434–441PubMedGoogle Scholar
  48. 48.
    McCoy MH, Wang E (2005) Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. J Virol Methods 130:157–161PubMedCrossRefGoogle Scholar
  49. 49.
    Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948PubMedGoogle Scholar
  50. 50.
    Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH (2010) Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis 10:778–790PubMedCrossRefGoogle Scholar
  51. 51.
    Wong SS, Yip CC, Lau SK, Yuen KY (2010) Human enterovirus 71 and hand, foot and mouth disease. Epidemiol Infect 138:1071–1089PubMedCrossRefGoogle Scholar
  52. 52.
    Albonico M, Allen H, Chitsulo L, Engels D, Gabrielli AF, Savioli L (2008) Controlling soil-transmitted helminthiasis in pre-school-age children through preventive chemotherapy. PLoS Negl Trop Dis 2:e126PubMedCrossRefGoogle Scholar
  53. 53.
    Robertson MJ, Ritz J (1990) Biology and clinical relevance of human natural killer cells. Blood 76:2421–2438PubMedGoogle Scholar
  54. 54.
    Frey JR, Kamber M, Peck R (1987) Recombinant interferons or interleukin-2 increase cytotoxicity by human monocytes and NK cells. Lymphokine Res 6:215–227PubMedGoogle Scholar
  55. 55.
    Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274PubMedCrossRefGoogle Scholar
  56. 56.
    Brunner KT, Mauel J, Cerottini JC, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14:181–196PubMedGoogle Scholar
  57. 57.
    Glamann J, Hansen AJ (2006) Dynamic detection of natural killer cell-mediated cytotoxicity and cell adhesion by electrical impedance measurements. Assay Drug Dev Technol 4:555–563PubMedCrossRefGoogle Scholar
  58. 58.
    Zhu J, Wang X, Xu X, Abassi YA (2006) Dynamic and label-free monitoring of natural killer cell cytotoxic activity using electronic cell sensor arrays. J Immunol Methods 309:25–33PubMedCrossRefGoogle Scholar
  59. 59.
    Bleeker WK, Lammerts van Bueren JJ, van Ojik HH et al (2004) Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy. J Immunol 173:4699–4707PubMedGoogle Scholar
  60. 60.
    Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667PubMedCrossRefGoogle Scholar
  61. 61.
    Wange RL, Samelson LE (1996) Complex complexes: signaling at the TCR. Immunity 5:197–205PubMedCrossRefGoogle Scholar
  62. 62.
    Messele T, Roos MT, Hamann D et al (2000) Nonradioactive techniques for measurement of in vitro T-cell proliferation: alternatives to the [(3)H]thymidine incorporation assay. Clin Diagn Lab Immunol 7:687–692PubMedGoogle Scholar
  63. 63.
    Sieg SF, Harding CV, Lederman MM (2001) HIV-1 infection impairs cell cycle progression of CD4(+) T cells without affecting early activation responses. J Clin Invest 108:757–764PubMedGoogle Scholar
  64. 64.
    Zajac AJ, Blattman JN, Murali-Krishna K et al (1998) Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 188:2205–2213PubMedCrossRefGoogle Scholar
  65. 65.
    Salazar-Fontana LI, Barr V, Samelson LE, Bierer BE (2003) CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells. J Immunol 171:2225–2232PubMedCrossRefGoogle Scholar
  66. 66.
    Kotze AC, LeJambre LF, O’Grady J (2006) A modified larval migration assay for detection of resistance to macrocyclic lactones in Haemonchus contortus, and drug screening with Trichostrongylidae parasites. Veterinary Parasitology 137:294–305PubMedCrossRefGoogle Scholar
  67. 67.
    Kotze AC, Lowe A, O’Grady J, Kopp SR, Behnke JM (2009) Dose-response assay templates for in vitro assessment of resistance to benzimidazole and nicotinic acetylcholine receptor agonist drugs in human hookworms. Am J Trop Med Hyg 81:163–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.ACEA Biosciences, Inc.San DiegoUSA
  2. 2.State Key Laboratory of Diagnostic and Treatment for Infectious Diseases, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations