Diagnosis and Assessment of Microbial Infections with Host and Microbial microRNA Profiles

Chapter

Abstract

Biomarkers are continuously being sought in the field of diagnostic microbiology for the laboratory diagnosis and assessment of microbial infections. A set of clinical and laboratory criteria necessary for an ideal diagnostic marker of infection have previously been proposed by Ng and his colleagues [1]. According these criteria, an ideal biomarker should possess at a minimum the following characteristics: (a) biochemically, a biomarker should be stable and remain significantly deregulated in the body fluid compartment for at least 12–24 h even after commencement of appropriate treatment that may allow an adequate time window for specimen collection or storage without significant decomposition of the active compound until laboratory processing; (b) its concentration should be determined quantitatively and the method of measurement should be automatic, rapid, easy, and inexpensive; (c) the collection of a specimen should be minimally invasive and require a small volume (e.g., <0.5 mL blood). Numerous biomarkers have been found and tested in clinical practice. Currently, microRNA (miRNA) molecules are without a doubt the biomarkers with the greatest potential capacities in the diagnostic microbiology field.

Keywords

Hydrolysis Hepatitis Albumin Urea Lymphoma 

Notes

Acknowledgments

The study was supported by the National Natural Science Foundation of China (30901285), the Jiangsu Province Key Medical Talent Foundation (RC2011191), the Science and Technology Pillar program of Jiangsu Province (BE2011796), and the “333” Projects of Jiangsu Province.

References

  1. 1.
    Ng PC, Lam HS (2010) Biomarkers for late-onset neonatal sepsis: cytokines and beyond. Clin Perinatol 37:599–610PubMedCrossRefGoogle Scholar
  2. 2.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefGoogle Scholar
  3. 3.
    Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  4. 4.
    Nelson KM, Weiss GJ (2008) MicroRNAs and cancer: past, present, and potential future. Mol Cancer Ther 7:3655–3660PubMedCrossRefGoogle Scholar
  5. 5.
    Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227PubMedCrossRefGoogle Scholar
  6. 6.
    Asli NS, Pitulescu ME, Kessel M (2008) MicroRNAs in organogenesis and disease. Curr Mol Med 8:698–710PubMedCrossRefGoogle Scholar
  7. 7.
    Grassmann R, Jeang KT (2008) The roles of microRNAs in mammalian virus infection. Biochim Biophys Acta 1779:706–711PubMedCrossRefGoogle Scholar
  8. 8.
    Gottwein E, Cullen BR (2008) Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3:375–387PubMedCrossRefGoogle Scholar
  9. 9.
    Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141PubMedCrossRefGoogle Scholar
  10. 10.
    Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741PubMedCrossRefGoogle Scholar
  11. 11.
    Lawrie CH, Gal S, Dunlop HM et al (2008) Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol 141:672–675PubMedCrossRefGoogle Scholar
  12. 12.
    Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006PubMedCrossRefGoogle Scholar
  13. 13.
    Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518PubMedCrossRefGoogle Scholar
  14. 14.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161PubMedCrossRefGoogle Scholar
  15. 15.
    Tricoli JV, Jacobson JW (2007) MicroRNA: potential for cancer detection, diagnosis, and prognosis. Cancer Res 67:4553–4555PubMedCrossRefGoogle Scholar
  16. 16.
    Wang H, Ach RA, Curry B (2007) Direct and sensitive miRNA profiling from low-input total RNA. RNA 13:151–159PubMedCrossRefGoogle Scholar
  17. 17.
    Cortez MA, Calin GA (2009) MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther 9:703–711PubMedCrossRefGoogle Scholar
  18. 18.
    Reid G, Kirschner MB, van Zandwijk N (2011) Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 80(2):193–208PubMedCrossRefGoogle Scholar
  19. 19.
    Pfeffer S, Zavolan M, Grasser FA et al (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRefGoogle Scholar
  20. 20.
    Vasilescu C, Rossi S, Shimizu M et al (2009) MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS One 4:e7405PubMedCrossRefGoogle Scholar
  21. 21.
    Wang JF, Yu ML, Yu G et al (2010) Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 394:184–188PubMedCrossRefGoogle Scholar
  22. 22.
    Li LM, Hu ZB, Zhou ZX et al (2010) Serum microRNA profiles serve as novel biomarkers for HBV infection and diagnosis of HBV-positive hepatocarcinoma. Cancer Res 70:9798–9807PubMedCrossRefGoogle Scholar
  23. 23.
    Bihrer V, Friedrich-Rust M, Kronenberger B et al (2011) Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection. Am J Gastroenterol 106(9):1663–1669PubMedCrossRefGoogle Scholar
  24. 24.
    Kurzynska-Kokorniak A, Jackowiak P, Figlerowicz M (2009) Human- and virus-encoded microRNAs as potential targets of antiviral therapy. Mini Rev Med Chem 9:927–937PubMedCrossRefGoogle Scholar
  25. 25.
    Grundhoff A, Sullivan CS (2011) Virus-encoded microRNAs. Virology 411:325–343PubMedCrossRefGoogle Scholar
  26. 26.
    Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581PubMedCrossRefGoogle Scholar
  27. 27.
    Randall G, Panis M, Cooper JD et al (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci U S A 104:12884–12889PubMedCrossRefGoogle Scholar
  28. 28.
    Huang J, Wang F, Argyris E et al (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247PubMedCrossRefGoogle Scholar
  29. 29.
    Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT (2008) MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 5:118PubMedCrossRefGoogle Scholar
  30. 30.
    Triboulet R, Mari B, Lin YL et al (2007) Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 315:1579–1582PubMedCrossRefGoogle Scholar
  31. 31.
    Bellon M, Lepelletier Y, Hermine O, Nicot C (2009) Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 113:4914–4917PubMedCrossRefGoogle Scholar
  32. 32.
    Yeung ML, Yasunaga J, Bennasser Y et al (2008) Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res 68:8976–8985PubMedCrossRefGoogle Scholar
  33. 33.
    Mallick B, Ghosh Z, Chakrabarti J (2009) MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS One 4:e7837PubMedCrossRefGoogle Scholar
  34. 34.
    Wang Y, Brahmakshatriya V, Zhu H et al (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genomics 10:512PubMedCrossRefGoogle Scholar
  35. 35.
    Li Y, Chan EY, Li J et al (2010) MicroRNA expression and virulence in pandemic influenza virus-infected mice. J Virol 84:3023–3032PubMedCrossRefGoogle Scholar
  36. 36.
    Qi Y, Tu J, Cui L et al (2010) High-throughput sequencing of microRNAs in adenovirus type 3 infected human laryngeal epithelial cells. J Biomed Biotechnol 2010:915980PubMedCrossRefGoogle Scholar
  37. 37.
    Wang FZ, Weber F, Croce C, Liu CG, Liao X, Pellett PE (2008) Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J Virol 82:9065–9074PubMedCrossRefGoogle Scholar
  38. 38.
    Santhakumar D, Forster T, Laqtom NN et al (2010) Combined agonist–antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci U S A 107:13830–13835PubMedCrossRefGoogle Scholar
  39. 39.
    Hill JM, Zhao Y, Clement C, Neumann DM, Lukiw WJ (2009) HSV-1 infection of human brain cells induces miRNA-146a and Alzheimer-type inflammatory signaling. Neuroreport 20:1500–1505PubMedCrossRefGoogle Scholar
  40. 40.
    Zheng SQ, Li YX, Zhang Y, Li X, Tang H (2011) MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 89:219–226PubMedCrossRefGoogle Scholar
  41. 41.
    Lagos D, Pollara G, Henderson S et al (2010) miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Nat Cell Biol 12:513–519PubMedCrossRefGoogle Scholar
  42. 42.
    Tsai YH, Wu MF, Wu YH et al (2009) The M type K15 protein of Kaposi’s sarcoma-associated herpesvirus regulates microRNA expression via its SH2-binding motif to induce cell migration and invasion. J Virol 83:622–632PubMedCrossRefGoogle Scholar
  43. 43.
    Punj V, Matta H, Schamus S, Tamewitz A, Anyang B, Chaudhary PM (2010) Kaposi’s sarcoma-associated herpesvirus-encoded viral FLICE inhibitory protein (vFLIP) K13 suppresses CXCR4 expression by upregulating miR-146a. Oncogene 29:1835–1844PubMedCrossRefGoogle Scholar
  44. 44.
    Godshalk SE, Bhaduri-McIntosh S, Slack FJ (2008) Epstein-Barr virus-mediated dysregulation of human microRNA expression. Cell Cycle 7:3595–3600PubMedCrossRefGoogle Scholar
  45. 45.
    Imig J, Motsch N, Zhu JY et al (2011) microRNA profiling in Epstein-Barr virus-associated B-cell lymphoma. Nucleic Acids Res 39:1880–1893PubMedCrossRefGoogle Scholar
  46. 46.
    Cameron JE, Fewell C, Yin Q et al (2008) Epstein-Barr virus growth/latency III program alters cellular microRNA expression. Virology 382:257–266PubMedCrossRefGoogle Scholar
  47. 47.
    Xiao B, Liu Z, Li BS et al (2009) Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. J Infect Dis 200:916–925PubMedCrossRefGoogle Scholar
  48. 48.
    Matsushima K, Isomoto H, Inoue N et al (2011) MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer 128:361–370PubMedCrossRefGoogle Scholar
  49. 49.
    Saito Y, Suzuki H, Tsugawa H et al (2011) Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology 140:189–198PubMedCrossRefGoogle Scholar
  50. 50.
    Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J (2011) Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J 30:1977–1989PubMedCrossRefGoogle Scholar
  51. 51.
    Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S (2011) Integrated microRNA-mRNA-analysis of human monocyte derived macrophages upon Mycobacterium avium subsp. hominissuis infection. PLoS One 6:e20258PubMedCrossRefGoogle Scholar
  52. 52.
    Zheng ZM, Wang X (2011) Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta 1809(11–12):668–677PubMedGoogle Scholar
  53. 53.
    Benes V, Castoldi M (2010) Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 50:244–249PubMedCrossRefGoogle Scholar
  54. 54.
    Hunt EA, Goulding AM, Deo SK (2009) Direct detection and quantification of microRNAs. Anal Biochem 387:1–12PubMedCrossRefGoogle Scholar
  55. 55.
    Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32:e175PubMedCrossRefGoogle Scholar
  56. 56.
    Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res 35:e60PubMedCrossRefGoogle Scholar
  57. 57.
    Ahmed FE (2007) Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn 7:569–603PubMedCrossRefGoogle Scholar
  58. 58.
    Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179PubMedCrossRefGoogle Scholar
  59. 59.
    Tang F, Hajkova P, Barton SC, Lao K, Surani MA (2006) MicroRNA expression profiling of single whole embryonic stem cells. Nucleic Acids Res 34:e9PubMedCrossRefGoogle Scholar
  60. 60.
    Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9:1274–1281PubMedCrossRefGoogle Scholar
  61. 61.
    Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247PubMedCrossRefGoogle Scholar
  62. 62.
    Castoldi M, Schmidt S, Benes V et al (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–920PubMedCrossRefGoogle Scholar
  63. 63.
    Beuvink I, Kolb FA, Budach W et al (2007) A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs. Nucleic Acids Res 35:e52PubMedCrossRefGoogle Scholar
  64. 64.
    Liang RQ, Li W, Li Y et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33:e17PubMedCrossRefGoogle Scholar
  65. 65.
    Saber R (2007) Assay: perfect match versus single-base mismatch. MicroRNA detection combining xMAP® and locked nucleic acid (LNA™) technology. Genet Eng News 27:28–29Google Scholar
  66. 66.
    Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38:95–109PubMedCrossRefGoogle Scholar
  68. 68.
    Wang B, Howel P, Bruheim S et al (2011) Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS One 6:e17167PubMedCrossRefGoogle Scholar
  69. 69.
    Git A, Dvinge H, Salmon-Divon M et al (2010) Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16:991–1006PubMedCrossRefGoogle Scholar
  70. 70.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A 103:12481–12486PubMedCrossRefGoogle Scholar
  71. 71.
    Ceppi M, Pereira PM, Dunand-Sauthier I et al (2009) MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc Natl Acad Sci U S A 106:2735–2740PubMedCrossRefGoogle Scholar
  72. 72.
    Schmidt WM, Spiel AO, Jilma B, Wolzt M, Muller M (2009) In vivo profile of the human leukocyte microRNA response to endotoxemia. Biochem Biophys Res Commun 380:437–441PubMedCrossRefGoogle Scholar
  73. 73.
    Liu WH, Yeh SH, Chen PJ (2011) Role of microRNAs in hepatitis B virus replication and pathogenesis. Biochim Biophys Acta 1809(11–12):678–685PubMedGoogle Scholar
  74. 74.
    Ji F, Yang B, Peng X, Ding H, You H, Tien P (2011) Circulating microRNAs in hepatitis B virus-infected patients. J Viral Hepat 18:e242–e251PubMedCrossRefGoogle Scholar
  75. 75.
    Liu X, Wang T, Wakita T, Yang W (2010) Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology 398:57–67PubMedCrossRefGoogle Scholar
  76. 76.
    Marquez RT, Bandyopadhyay S, Wendlandt EB et al (2010) Correlation between microRNA expression levels and clinical parameters associated with chronic hepatitis C viral infection in humans. Lab Invest 90:1727–1736PubMedCrossRefGoogle Scholar
  77. 77.
    Morita K, Taketomi A, Shirabe K et al (2011) Clinical significance and potential of hepatic microRNA-122 expression in hepatitis C. Liver Int 31:474–484PubMedCrossRefGoogle Scholar
  78. 78.
    Cui L, Guo X, Qi Y et al (2010) Identification of microRNAs involved in the host response to enterovirus 71 infection by a deep sequencing approach. J Biomed Biotechnol 2010:425939PubMedGoogle Scholar
  79. 79.
    Ho BC, Yu SL, Chen JJ et al (2011) Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 9:58–69PubMedCrossRefGoogle Scholar
  80. 80.
    Cui L, Qi Y, Li H et al (2011) Serum microRNA expression profile distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease. PLoS One 6:e27071PubMedCrossRefGoogle Scholar
  81. 81.
    Chim SS, Shing TK, Hung EC et al (2008) Detection and characterization of placental microRNAs in maternal plasma. Clin Chem 54:482–490PubMedCrossRefGoogle Scholar
  82. 82.
    Gilad S, Meiri E, Yogev Y et al (2008) Serum microRNAs are promising novel biomarkers. PLoS One 3:e3148PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lunbiao Cui
    • 1
  • Charles W. Stratton
    • 2
  • Yi-Wei Tang
    • 3
  1. 1.Jiangsu Provincial Center for Disease Control and PreventionNanjingChina
  2. 2.Departments of Pathology and MedicineVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Laboratory MedicineMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations