Studies of Small Biological Molecules

  • Quincy Teng


In this chapter, the interactions of small molecules with proteins are discussed in terms of different experimental methods with examples. The last section describes examples to study metabolic pathways using NMR experiments. Key questions to be answered include:


Cross Peak Gradient Strength Chemical Shift Change Cross Relaxation Saturation Transfer Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Breeze A (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog Nucl Magn Reson Spectrosc 36:323–372CrossRefGoogle Scholar
  2. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108PubMedCrossRefGoogle Scholar
  3. Choquet CG, Richards JC, Patel GB, Sprott GD (1994) Ribose biosynthesis in methanogenic bacteria. Arch Microbiol 161:481–488CrossRefGoogle Scholar
  4. Clore GM, Gronenborn AM (1982) Theory and applications of the transferred nuclear overhauser effect to the study of the conformations of small ligands bound to proteins. J Magn Reson 48:402–417Google Scholar
  5. Dalvit C, Böhlen JM (1997) Analysis of biofluids and chemical mixtures in non-deuterated solvents with 1H diffusion-weighted PFG phase-sensitive double-quantum NMR spectroscopy. NMR Biomed 10:285–291PubMedCrossRefGoogle Scholar
  6. Fesik SW, Gampe RT Jr, Holzman TF, Egan DA, Edalji R, Luly JR, Simmer R, Helfrich R, Kishore V, Rich DH (1990) Isotope-edited NMR of cyclosporin A bound to cyclophilin: evidence for a trans 9,10 amide bond. Science 250:1406–1409PubMedCrossRefGoogle Scholar
  7. Gahmberg CG (1997) Leukocyte adhesion: CD11/CD18 integrins and intercellular adhesion molecules. Curr Opin Cell Biol 9:643–650PubMedCrossRefGoogle Scholar
  8. Gemmecker G, Olejniczak ET, Fesik S (1992) An improved method for selectively observing protons attached to 12C in the presence of 1H-13C spin pairs. J Magn Reson 96:199–204Google Scholar
  9. Gruetter R, Magnusson I, Rothman DL, Avison MJ, Shulman RG, Shulman GI (1994) Validation of 13C NMR measurements of liver glycogen in vivo. Magn Reson Med 31:583–588PubMedCrossRefGoogle Scholar
  10. Hajduk PJ, Sheppard G, Nettesheim DG, Olejniczak ET, Shuker SB, Meadows RP, Steinman DH, Carrera GM Jr, Marocotte PA, Severin J, Walter K, Smith H, Gubbins E, Simmer R, Holzman TF, Morgan DW, Davidsen SK, Summers JB, Fesik SW (1997a) Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J Am Chem Soc 119:5818–5827CrossRefGoogle Scholar
  11. Hajduk PJ, Dinges J, Miknis GF, Merlock M, Middleton T, Kempf DJ, Egan DA, Walter KA, Robins TS, Shuker SB, Holzman TF, Fesik SW (1997b) NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. J Med Chem 40:3144–3150PubMedCrossRefGoogle Scholar
  12. Johnson CS Jr (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34:203–256CrossRefGoogle Scholar
  13. Klein J, Meinecke R, Mayer M, Meyer B (1999) Detecting binding affinity to immobilized receptor proteins in compound libraries by HR-MAS STD NMR. J Am Chem Soc 121:5336–5337CrossRefGoogle Scholar
  14. Liu G, Huth JR, Olejniczak ET, Mendoza R, DeVries P, Leitza S, Reilly EB, Okasinski GF, Fesik SW, von Geldern TW (2001) Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties. J Med Chem 44:1202–1210PubMedCrossRefGoogle Scholar
  15. Liu G, Link JT, Pei Z, Reilly EB, Leitza S, Ngygen B, Marsh KC, Okasinski GF, von Geldern TW, Ormes M, Fowler K, Gallatin M (2000) Discovery of novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 1. Identification of an additional binding pocket based on an anilino diaryl sulfide lead. J Med Chem 43:4025–4040PubMedCrossRefGoogle Scholar
  16. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38:1784–1788CrossRefGoogle Scholar
  17. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117PubMedCrossRefGoogle Scholar
  18. Meyer B, Weimar T, Peters T (1997) Screening mixtures for biological activity by NMR. Eur J Biochem 246:705–709PubMedCrossRefGoogle Scholar
  19. Neidhardt FC, Umbarger HE (1996) Chemical composition of Escherichia coli. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society for Microbiology, Washington, DC, p 13Google Scholar
  20. Ni F (1994) Recent developments in transferred NOE methods. Prog Nucl Magn Reson Spectrosc 26:517–606CrossRefGoogle Scholar
  21. Price WS, Kuchel PW (1991) Effect of nonrectangular field gradient pulses in the stejskal and tanner (diffusion) pulse sequence. J Magn Reson 94:133–139Google Scholar
  22. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534PubMedCrossRefGoogle Scholar
  23. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG (1990) Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322:223–228PubMedCrossRefGoogle Scholar
  24. Sligh JE Jr, Ballantyne CM, Rich SS, Hawkins HK, Smith CW, Bradley A, Beaudet AL (1993) Inflammatory and immune responses are impaired in mice deficient in intercellular adhesion molecule 1. Proc Natl Acd Sci USA 90:8529–8533CrossRefGoogle Scholar
  25. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  26. Stilbs P (1987) Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc 19:1–45CrossRefGoogle Scholar
  27. Taylor R, Price TB, Rothman DL, Shulman RG, Shulman GI (1992) Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples. Magn Reson Med 27:13–20PubMedCrossRefGoogle Scholar
  28. Tumbula DL, Teng Q, Bartlett MG, Whitman WB (1997) Ribose biosynthesis and evidence for an alternative first step in the common aromatic amino acid pathway in Methanococcus maripaludis. J Bacteriol 179:6010–6013PubMedGoogle Scholar
  29. Wood HG, Katz J (1958) The distribution of C14 in the hexose phosphates and the effect of recycling in the pentose cycle. J Biol Chem 233:1279–1282PubMedGoogle Scholar
  30. Yu JP, Ladapo J, Whitman WB (1994) Pathway of glycogen metabolism in Methanococcus maripaludis. J Bacteriol 176:325–332PubMedGoogle Scholar
  31. Zwahlen C, Legault P, Vincent SJF, Greenblatt J, Konrat R, Kay LE (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage λ N-peptide/boxB RNA complex. J Am Chem Soc 119:6711–6721CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Pharmaceutical and Biomedical Sciences College of PharmacyUniversity of GeorgiaAthensUSA

Personalised recommendations