Advertisement

Examination of Single Crystals: Optical and X-Ray Diffraction Practice

  • Mark Ladd
  • Rex Palmer
Chapter

Abstract

The preliminary optical examination of crystalline specimens is interesting and useful in its own right and is a major tool still employed by mineralogists and geologists. However, in structure determinations with modern equipment, it is not uncommon nowadays to by-pass this step and proceed immediately with X-ray studies. This is because in most cases, the X-ray technique is straightforward and test data can be quickly scanned with a single-crystal X-ray diffractometer, Sects. 5.5 and 5.6, or with area detector (see Sect. 5.7), and the suitability and quality of the crystal assessed. There are other situations, however, where complications may arise, for example, because of an unusual crystal habit, Sect. 5.3.5, pseudosymmetry, Sects. 7.2.2, 7.5.4, and Sect. 8.5.3, or twinning, Sect. 5.10. In such cases, it might be possible to extract useful information from an optical examination of a crystal before the more detailed, costly and time-consuming X-ray methods are tried.

Keywords

Uniaxial Crystal Vibration Direction Extinction Direction Biaxial Crystal Composition Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bibliography, Gay (1967); Hartshorne and Stuart (1970)Google Scholar
  2. 2.
    See Bibliography, Buerger MJ (2009)Google Scholar
  3. 3.
    Ladd M, Palmer R (2003) Structure determination by X-ray crystallography, 4th edn. Kluwer Academic, New YorkCrossRefGoogle Scholar
  4. 4.
  5. 5.
    See Bibliography, JeffreyGoogle Scholar
  6. 6.
    Arndt UW, Wonacott AJ (eds) (1977) The rotation method in crystallography. North-Holland, AmsterdamGoogle Scholar
  7. 7.
    Mar Research (MAR IP) Norderstedt, GermanyGoogle Scholar
  8. 8.
    Miyahara J et al (1986) Nucl Instrum Methods A246:572Google Scholar
  9. 9.
    Boyle W, Smith G (1970) Charge coupled semiconductor devices. Bell Syst Tech J 49:587Google Scholar
  10. 10.
    Einstein A (1905) Ann Phys 17:132CrossRefGoogle Scholar
  11. 11.
    Gruner SM (1994) Curr Opin Struct Biol 4:765CrossRefGoogle Scholar
  12. 12.
    Westbrook EM, Naday I (1987) Methods Enzymol 276:244CrossRefGoogle Scholar
  13. 13.
    Jones C (2001) Chem Commun 2293Google Scholar
  14. 14.
    Deacon A et al (1997) J Chem Soc Farad Trans 93:4305CrossRefGoogle Scholar
  15. 15.
    Walter RL et al (1995) Structure 3:835CrossRefGoogle Scholar
  16. 16.
  17. 17.
  18. 18.
    Oxford Cryosystems,http://www.oxcryo.com
  19. 19.
    Prince SM, Bryant PK (private communication) Manchester UniversityGoogle Scholar
  20. 20.
    Brönnimann Ch et al (2004) Synchrotron Radiat News 17:23CrossRefGoogle Scholar
  21. 21.
    Brönnimann Ch et al (2006) J Synchrotron Radiat 13:120–130CrossRefGoogle Scholar
  22. 22.
  23. 23.
  24. 24.
    Plugrath JW (1999) Acta Crystallogr D55:1718Google Scholar
  25. 25.
    Otwinowski Z, Minor W (2001) ‘Denzo’ and ‘Scalepack 211’. in Arnold, E et al. (2012) (eds) International Tables for Crystallography, vol. F, I.U.Cr.Google Scholar
  26. 26.
    Leslie A (1993) Data collection and processing. In: Sawyer L, Isaacs N, Bailey S (eds) Proceedings of the CCP4 study weekend. Daresbury Laboratories, Warrington, UK, pp 44–51Google Scholar
  27. 27.
    Rossmann MG, van Beek CG (1999) Acta Crystallogr D55:1631Google Scholar
  28. 28.
    Sanderson MR (2007) Macromolecular crystallography conventional and high-throughput methods, Chapter 5. Oxford University Press, OxfordGoogle Scholar
  29. 29.
    Yarris Lynn, lcyarris@lbl.govGoogle Scholar
  30. 30.
  31. 31.
  32. 32.
    Freund AK (1996) Structure 4:155CrossRefGoogle Scholar
  33. 33.
    Franks A (1955) Proc Phys Soc London B68:1054Google Scholar
  34. 34.
    Bloomer AC, Arndt UW (1999) Acta Crystallogr D55:1672Google Scholar
  35. 35.
  36. 36.
  37. 37.
  38. 38.

Bibliography: Crystal Optics

  1. Gay P (1967) An introduction to crystal optics. Longmans, LondonGoogle Scholar
  2. Hartshorne NH, Stuart A (1970) Crystals and the polarising microscope. Arnold, LondonGoogle Scholar

X-Ray Scattering and Reciprocal Lattice

  1. Arndt UW, Wonacott AJ (eds) (1977) The rotation method in crystallography: data collection from macromolecular crystals. North-Holland, AmsterdamGoogle Scholar
  2. Buerger MJ (2009) X-ray crystallography, 11th edn. Wiley, New YorkGoogle Scholar
  3. Jeffrey JW (1971) Methods in X-ray crystallography. Academic, LondonGoogle Scholar
  4. Woolfson MM (1997) An introduction to X-ray crystallography, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Interpretation of X-Ray Diffraction Photographs

  1. Henry NFM, Lipson H, Wooster WA (1960) The interpretation of X-ray diffraction photographs. Macmillan, LondonGoogle Scholar
  2. Jeffery JW (1971) Methods in X-ray crystallography. Academic, LondonGoogle Scholar

Precession Method

  1. Buerger MJ (1964) The precession method. Wiley, New YorkGoogle Scholar
  2. Ladd MFC, Palmer RA (2003) Structure determination by X-ray crystallography, 4th edn. Kluwer Academic, New YorkCrossRefGoogle Scholar

Diffractometry

  1. Arndt UW, Willis BTM (1966) Single crystal diffractometry. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Cryo-Crystallography

  1. Ealick S et al. Cryocrystallography: a practical approach http://people.mbi.ucla.edu/Sawaya/m230d/Data/data.htmlhtml

Macromolecular Crystallography

  1. Carter CW Jr, Sweet RM (eds) (1997) Macromolecular crystallography. Academic, New YorkGoogle Scholar
  2. Arnold, E et al. (2012) (eds) International Tables for Crystallography, vol. F, I.U.Cr.Google Scholar

Data Collection

  1. Evans PR (1999) Acta Crystallogr D55:1771Google Scholar
  2. Dauter Z (1999) Acta Crysatallogr D55:1703Google Scholar

Data Collection Services

  1. The EPSC National Data Collection Service (University of Southampton) will collect, process, and optionally solve crystal structures (but there’s not much fun in that) for clients who supply suitable crystals. In a recent use of this service the following facilities were usedGoogle Scholar
  2. Diffractometer: Nonius Kappa CCD Area Detector (φ scans and ω scans to fill the asymmetric unit sphere)Google Scholar
  3. Cell determination: DirAx (Duisenberg AJM (1992) J Appl Crystallogr 25:92)Google Scholar
  4. Data collection: Collect (Data collection software, Hooft R, Nonius BV (1998))Google Scholar
  5. Data reduction and cell refinement: Denzo (Otwinowski Z, Minor W (1997) Methods Enzymol 276); Macromol Crystallogr, loc. cit.Google Scholar
  6. Absorption correction: SORTAV (Blessing RH (1995) Acta Crystallogr A51:33); idem., J Appl Crystallogr 30:421 (1997)Google Scholar
  7. Structure solution: SHELXS-97 (Sheldrick GM (1990) Acta Crystallogr A46:467)Google Scholar
  8. Structure refinement: SHELXL-97 (Sheldrick GM (1997) University of Göttingen)Google Scholar
  9. Graphics: ORTEP3 for windows (Farrugia LJ (1997) J Appl Crystallogr 30:365)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mark Ladd
    • 1
  • Rex Palmer
    • 2
    • 3
    • 4
  1. 1.University of SurreyGuildfordEngland
  2. 2.Birkbeck CollegeUniversity of LondonLondonEngland
  3. 3.University of GreenwichLondonEngland
  4. 4.Christ Church UniversityCanterburyEngland

Personalised recommendations