In Vivo Aging and Corrosion Aspects of Dental Implants

  • Spiros Zinelis
  • Theodore Eliades
  • William A. Brantley


The modern endosseous dental implants are made by Ti thanks to its biocompatibility, corrosion resistance, and adequate mechanical properties of this material. Additionally Ti is characterized by osseoinductive properties providing increased fixation with the adjacent human bone. Despite the beneficial properties of Ti over the previously used stainless steel dental implants, the Ti implants are not free of problems and failure of dental implants is a great concern in everyday clinical practice. This chapter offers fundamental information for the current status of Ti implants in dental surgery providing also a picture for the failure mechanisms based on current clinical data. The text also deals with the corrosion aspect of Ti under clinical conditions and galvanic phenomena that may be triggered by the presence of implant-retained superstructures made of precious and base alloys or other metallic materials which are used in restorative dentistry.


Acid Etching Grit Blasting Restorative Dentistry Marginal Bone Loss Metallic Biomaterial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sabri R (1998) Four single-tooth implants as supernumerary premolars in the treatment of diastemas and microdontia: report of a case. Int J Oral Maxillofac Implants 13:706–709Google Scholar
  2. 2.
    Knabe C, Hoffmeister B (1998) The use of implant-supported ceramometal titanium prostheses following sinus lift and augmentation procedures: a clinical report. Int J Oral Maxillofac Implants 13:102–108Google Scholar
  3. 3.
    Mericske-Stern R (1998) Treatment outcomes with implant-supported overdentures: clinical considerations. J Prosthet Dent 79:66–73CrossRefGoogle Scholar
  4. 4.
    Balshi TJ, Wolfinger GJ, Balshi SF (1999) Analysis of 356 pterygomaxillary implants in edentulous arches for fixed prosthesis anchorage. Int J Oral Maxillofac Implants 14:398–406Google Scholar
  5. 5.
    Le Guehennec L, Soueidan A, Layrolle P et al (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854CrossRefGoogle Scholar
  6. 6.
    National Agency for Medicines (2006) The 2006 Dental implant Yearbook. Publication of the National Agency for Medicines, HelsinkiGoogle Scholar
  7. 7.
    Sykaras N, Iacopino AM, Marker VA et al (2000) Implant materials, designs, and surface topographies: their effect on osseointegration. A literature review. Int J Oral Maxillofac Implants 15:675–690Google Scholar
  8. 8.
    Lemons JE (1990) Dental implant biomaterials. J Am Dent Assoc 121:716–719Google Scholar
  9. 9.
    Kawahara H (1983) Cellular responses to implant materials: biological, physical and chemical factors. Int Dent J 33:350–375Google Scholar
  10. 10.
    Zinelis S, Thomas A, Syres K et al (2010) Surface characterization of zirconia dental implants. Dent Mater 26:295–305CrossRefGoogle Scholar
  11. 11.
    Lautenschlager EP, Monaghan P (1993) Titanium and titanium alloys as dental materials. Int Dent J 43:245–253Google Scholar
  12. 12.
    Javier Gil F, Planell JA, Padros A et al (2007) The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications. Dent Mater 23:486–491CrossRefGoogle Scholar
  13. 13.
    Long M, Rack HJ (1998) Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19:1621–1639CrossRefGoogle Scholar
  14. 14.
    Yokoyama K, Ichikawa T, Murakami H et al (2002) Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 23:2459–2465CrossRefGoogle Scholar
  15. 15.
    Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 2—review focusing on clinical knowledge of different surfaces. Int J Prosthodont 17:544–564Google Scholar
  16. 16.
    Albrektsson T, Wennerberg A (2004) Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17:536–543Google Scholar
  17. 17.
    Branemark PI (1983) Osseointegration and its experimental background. J Prosthet Dent 50:399–410CrossRefGoogle Scholar
  18. 18.
    Brunski JB (1999) Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 57:706–708CrossRefGoogle Scholar
  19. 19.
    Jokstad A, Braegger U, Brunski JB et al (2004) Quality of dental implants. Int J Prosthodont 17:607–641Google Scholar
  20. 20.
    Coelho PG, Granjeiro JM, Romanos GE et al (2009) Basic research methods and current trends of dental implant surfaces. J Biomed Mater Res B Appl Biomater 88B:579–596CrossRefGoogle Scholar
  21. 21.
    Gross KA (2002) Preparation of thin histological sections for bone attachment and implant material analysis. Bioceramics 14 218–220:315–318Google Scholar
  22. 22.
    Albrektsson T, Zarb G, Worthington P et al (1986) The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1:11–25Google Scholar
  23. 23.
    Smith DE, Zarb GA (1989) Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 62:567–572CrossRefGoogle Scholar
  24. 24.
    Geng JP, Tan KB, Liu GR (2001) Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 85:585–598CrossRefGoogle Scholar
  25. 25.
    Sumner DR, Galante JO (1992) Determinants of stress shielding: design versus materials versus interface. Clin Orthop Relat Res (274):202–212Google Scholar
  26. 26.
    Pilliar RM, Deporter DA, Watson PA et al (1991) Dental implant design—effect on bone remodeling. J Biomed Mater Res 25:467–483CrossRefGoogle Scholar
  27. 27.
    Dujovne AR, Bobyn JD, Krygier JJ et al (1993) Mechanical compatibility of noncemented hip prostheses with the human femur. J Arthroplasty 8:7–22CrossRefGoogle Scholar
  28. 28.
    Vaillancourt H, Pilliar RM, McCammond D (1995) Finite element analysis of crestal bone loss around porous-coated dental implants. J Appl Biomater 6:267–282CrossRefGoogle Scholar
  29. 29.
    Vaillancourt H, Pilliar RM, McCammond D (1996) Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants 11:351–359Google Scholar
  30. 30.
    Lin CL, Lin YH, Chang SH (2010) Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: prediction using FEA and SED bone remodeling algorithm. J Biomech 43:644–651CrossRefGoogle Scholar
  31. 31.
    Hurzeler M, Fickl S, Zuhr O et al (2007) Peri-implant bone level around implants with platform-switched abutments: preliminary data from a prospective study. J Oral Maxillofac Surg 65:33–39CrossRefGoogle Scholar
  32. 32.
    Canullo L, Fedele GR, Iannello G et al (2010) Platform switching and marginal bone-level alterations: the results of a randomized-controlled trial. Clin Oral Implants Res 21:115–121CrossRefGoogle Scholar
  33. 33.
    Canullo L, Goglia G, Iurlaro G et al (2009) Short-term bone level observations associated with platform switching in immediately placed and restored single maxillary implants: a preliminary report. Int J Prosthodont 22:277–282Google Scholar
  34. 34.
    Canullo L, Iurlaro G, Iannello G (2009) Double-blind randomized controlled trial study on post-extraction immediately restored implants using the switching platform concept: soft tissue response. Preliminary report. Clin Oral Implants Res 20:414–420CrossRefGoogle Scholar
  35. 35.
    Cappiello M, Luongo R, Di Iorio D et al (2008) Evaluation of peri-implant bone loss around platform-switched implants. Int J Periodontics Restorative Dent 28:347–355Google Scholar
  36. 36.
    Nowzari H, Chee W, Yi K et al (2006) Scalloped dental implants: a retrospective analysis of radiographic and clinical outcomes of 17 NobelPerfect (TM) implants in 6 patients. Clin Implant Dent Relat Res 8:1–10CrossRefGoogle Scholar
  37. 37.
    Brunski JB, Puleo DA, Nanci A (2000) Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants 15:15–46Google Scholar
  38. 38.
    Sahin S, Cehreli MC, Yalcin E (2002) The influence of functional forces on the biomechanics of implant-supported prostheses—a review. J Dent 30:271–282CrossRefGoogle Scholar
  39. 39.
    Cehreli M, Sahin S, Akca K (2004) Role of mechanical environment and implant design on bone tissue differentiation: current knowledge and future contexts. J Dent 32:123–132CrossRefGoogle Scholar
  40. 40.
    Lee KH, Maiden MF, Tanner AC et al (1999) Microbiota of successful osseointegrated dental implants. J Periodontol 70:131–138CrossRefGoogle Scholar
  41. 41.
    Mombelli A, Lang NP (1998) The diagnosis and treatment of peri-implantitis. Periodontol 2000 17:63–76CrossRefGoogle Scholar
  42. 42.
    Bragger U, Hugel-Pisoni C, Burgin W et al (1996) Correlations between radiographic, clinical and mobility parameters after loading of oral implants with fixed partial dentures. A 2-year longitudinal study. Clin Oral Implants Res 7:230–239CrossRefGoogle Scholar
  43. 43.
    Garg AK, Reddi SN, Chacon GE (1994) The importance of asepsis in dental implantology. Implant Soc 5:8–11Google Scholar
  44. 44.
    Ivanoff CJ, Sennerby L, Lekholm U (1996) Influence of soft tissue contamination on the integration of titanium implants. An experimental study in rabbits. Clin Oral Implants Res 7:128–132CrossRefGoogle Scholar
  45. 45.
    Scharf DR, Tarnow DP (1993) Success rates of osseointegration for implants placed under sterile versus clean conditions. J Periodontol 64:954–956CrossRefGoogle Scholar
  46. 46.
    Zinelis S (2000) Effect of pressure of helium, argon, krypton, and xenon on the porosity, microstructure, and mechanical properties of commercially pure titanium castings. J Prosthet Dent 84:575–582CrossRefGoogle Scholar
  47. 47.
    Gioka C, Bourauel C, Zinelis S et al (2004) Titanium orthodontic brackets: structure, composition, hardness and ionic release. Dent Mater 20:693–700CrossRefGoogle Scholar
  48. 48.
    Zinelis S, Eliades T, Eliades G (2010) A metallurgical characterization of ten endodontic Ni-Ti instruments: assessing the clinical relevance of shape memory and superelastic properties of Ni-Ti endodontic instruments. Int Endod J 43:125–134CrossRefGoogle Scholar
  49. 49.
    Steinemann SG (1996) Metal implants and surface reactions. Injury 27(Suppl 3):SC16–SC22Google Scholar
  50. 50.
    Steinemann SG (1998) Titanium—the material of choice? Periodontol 2000 17:7–21CrossRefGoogle Scholar
  51. 51.
    Buser D, Broggini N, Wieland M et al (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533CrossRefGoogle Scholar
  52. 52.
    Zreiqat H, Valenzuela SM, Nissan BB et al (2005) The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials 26:7579–7586CrossRefGoogle Scholar
  53. 53.
    Okazaki Y, Gotoh E, Manabe T et al (2004) Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 25:5913–5920CrossRefGoogle Scholar
  54. 54.
    Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21CrossRefGoogle Scholar
  55. 55.
    Zinelis S (2007) Surface and elemental alterations of dental alloys induced by electro discharge machining (EDM). Dent Mater 23:601–607CrossRefGoogle Scholar
  56. 56.
    Cortada M, Giner L, Costa S et al (2000) Galvanic corrosion behavior of titanium implants coupled to dental alloys. J Mater Sci Mater Med 11:287–293CrossRefGoogle Scholar
  57. 57.
    Reclaru L, Meyer JM (1994) Study of corrosion between a titanium implant and dental alloys. J Dent 22:159–168CrossRefGoogle Scholar
  58. 58.
    Grosgogeat B, Reclaru L, Lissac M et al (1999) Measurement and evaluation of galvanic corrosion between titanium/Ti6A14V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials 20:933–941CrossRefGoogle Scholar
  59. 59.
    Taher NM, Al Jabab AS (2003) Galvanic corrosion behavior of implant suprastructure dental alloys. Dent Mater 19:54–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Spiros Zinelis
    • 1
  • Theodore Eliades
    • 2
  • William A. Brantley
    • 3
  1. 1.Department of Biomaterials, School of DentistryUniversity of AthensAthensGreece
  2. 2.Department of Orthodontics and Paediatric Dentistry, Center of Dental MedicineUniversity of ZurichZurichSwitzerland
  3. 3.Section of Restorative and Prosthetic Dentistry, College of DentistryThe Ohio State UniversityColumbusUSA

Personalised recommendations