Biomaterial Calcification: Mechanisms and Prevention

Chapter

Abstract

Pathologic calcification of implants is a detrimental condition that can severely impact device performance and ultimately lead to implant failure. Although calcification affects a wide variety of medical implants, both synthetic and biologically derived, the pathogenesis of the disease is not well understood. In biologically derived implants, such as bioprosthetic heart valves, the major mechanisms of and factors contributing to calcification are chemical crosslinking, cellular damage, extracellular matrix composition, patient factors, and mechanical stress on the device. However, in synthetic-material implants, for example, intraocular lenses, pacemakers, and vascular replacements, calcification is largely due to surface conditions, such as material porosity, surface defects, and protein adsorption. This chapter investigates the mechanisms of implant calcification and discusses anti-calcification strategies, using specific medical devices as examples.

Keywords

Cholesterol Surfactant Porosity Crystallization Enzymatic Degradation 

References

  1. 1.
    Schoen FJ, Levy R (1999) Founder’s Award, 25th annual meeting of the Society For Biomaterials, Providence, RI, April 28–May 2, 1999. Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47:439–465CrossRefGoogle Scholar
  2. 2.
    Giachelli CM (1999) Ectopic calcification: gathering hard facts about soft tissue mineralization. Am J Pathol 154:671–675CrossRefGoogle Scholar
  3. 3.
    Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79:1072–1080CrossRefGoogle Scholar
  4. 4.
    Flameng W, Meuris B, Yperman J, De Visscher G, Herijgers P, Verbeken E (2006) Factors influencing calcification of cardiac bioprostheses in adolescent sheep. J Thorac Cardiovasc Surg 132:89–98CrossRefGoogle Scholar
  5. 5.
    Levy RJ, Schoen FJ, Anderson HC, Harasaki H, Koch TH, Brown W, Lian JB, Cumming R, Gavin JB (1991) Cardiovascular implant calcification: a survey and update. Biomaterials 12:707–714CrossRefGoogle Scholar
  6. 6.
    Schoen FJ, Levy RJ, Nelson AC, Bernhard WF, Nashef A, Hawley M (1985) Onset and progression of experimental bioprosthetic heart valve calcification. Lab Invest 52:523–532Google Scholar
  7. 7.
    Buchen SY, Cunanan CM, Gwon A, Weinschenk JI 3rd, Gruber L, Knight PM (2001) Assessing intraocular lens calcification in an animal model. J Cataract Refract Surg 27:1473–1484CrossRefGoogle Scholar
  8. 8.
    Gumus N (2009) Capsular calcification may be an important factor for the failure of breast implant. J Plast Reconstr Aesthet Surg 62:e606–e608CrossRefGoogle Scholar
  9. 9.
    Farivar RS, Cohn LH (2003) Hypercholesterolemia is a risk factor for bioprosthetic valve calcification and explantation. J Thorac Cardiovasc Surg 126:969–975CrossRefGoogle Scholar
  10. 10.
    Sacks MS, David Merryman W, Schmidt DE (2009) On the biomechanics of heart valve function. J Biomech 42:1804–1824CrossRefGoogle Scholar
  11. 11.
    Zilla P, Brink J, Human P, Bezuidenhout D (2008) Prosthetic heart valves: catering for the few. Biomaterials 29:385–406CrossRefGoogle Scholar
  12. 12.
    Koerfer R, Reiss N, Koertke H (2009) International normalized ratio patient self-management for mechanical valves: is it safe enough? Curr Opin Cardiol 24:130–135CrossRefGoogle Scholar
  13. 13.
    Silberman S, Oren A, Dotan M, Merin O, Fink D, Deeb M, Bitran D (2008) Aortic valve replacement: choice between mechanical valves and bioprostheses. J Card Surg 23:299–306CrossRefGoogle Scholar
  14. 14.
    Rahimtoola SH (2003) Choice of prosthetic heart valve for adult patients. J Am Coll Cardiol 41:893–904CrossRefGoogle Scholar
  15. 15.
    Schoen FJ, Levy RJ (1992) Heart valve bioprostheses: antimineralization. Eur J Cardiothorac Surg 6(Suppl 1):S91–S93, discussion S94CrossRefGoogle Scholar
  16. 16.
    Sabbah HN, Hamid MS, Stein PD (1989) Mechanical factors in the degeneration of porcine bioprosthetic valves: an overview. J Card Surg 4:302–309CrossRefGoogle Scholar
  17. 17.
    Gabbay S, Bortolotti U, Wasserman F, Factor S, Strom J, Frater RW (1984) Fatigue-induced failure of the Ionescu-Shiley pericardial xenograft in the mitral position In vivo and in vitro correlation and a proposed classification. J Thorac Cardiovasc Surg 87:836–844Google Scholar
  18. 18.
    Thubrikar MJ, Deck JD, Aouad J, Nolan SP (1983) Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg 86:115–125Google Scholar
  19. 19.
    Simionescu DT (2004) Prevention of calcification in bioprosthetic heart valves: challenges and perspectives. Expert Opin Biol Ther 4:1971–1985CrossRefGoogle Scholar
  20. 20.
    Kim KM, Herrera GA, Battarbee HD (1999) Role of glutaraldehyde in calcification of porcine aortic valve fibroblasts. Am J Pathol 154:843–852CrossRefGoogle Scholar
  21. 21.
    Golomb G, Schoen FJ, Smith MS, Linden J, Dixon M, Levy RJ (1987) The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol 127:122–130Google Scholar
  22. 22.
    Stacchino C, Bona G, Bonetti F, Rinaldi S, Della Ciana L, Grignani A (1998) Detoxification process for glutaraldehyde-treated bovine pericardium: biological, chemical and mechanical characterization. J Heart Valve Dis 7:190–194Google Scholar
  23. 23.
    Weissenstein C, Human P, Bezuidenhout D, Zilla P (2000) Glutaraldehyde detoxification in addition to enhanced amine cross-linking dramatically reduces bioprosthetic tissue calcification in the rat model. J Heart Valve Dis 9:230–240Google Scholar
  24. 24.
    Cheung DT, Nimni ME (1982) Mechanism of crosslinking of proteins by glutaraldehyde I: reaction with model compounds. Connect Tissue Res 10:187–199CrossRefGoogle Scholar
  25. 25.
    Carpentier SM, Chen L, Shen M, Fornes P, Martinet B, Quintero LJ, Witzel TH, Carpentier AF (1998) Heat treatment mitigates calcification of valvular bioprostheses. Ann Thorac Surg 66:S264–S266CrossRefGoogle Scholar
  26. 26.
    Zilla P, Weissenstein C, Bracher M, Zhang Y, Koen W, Human P, von Oppell U (1997) High glutaraldehyde concentrations reduce rather than increase the calcification of aortic wall tissue. J Heart Valve Dis 6:502–509Google Scholar
  27. 27.
    Schoen FJ, Levy RJ (1992) Bioprosthetic heart valve calcification: membrane-mediated events and alkaline phosphatase. Bone Miner 17:129–133CrossRefGoogle Scholar
  28. 28.
    Lee CH, Vyavahare N, Zand R, Kruth H, Schoen FJ, Bianco R, Levy RJ (1998) Inhibition of aortic wall calcification in bioprosthetic heart valves by ethanol pretreatment: biochemical and biophysical mechanisms. J Biomed Mater Res 42:30–37CrossRefGoogle Scholar
  29. 29.
    Singla A, Lee CH (2002) Effect of elastin on the calcification rate of collagen-elastin matrix systems. J Biomed Mater Res 60:368–374CrossRefGoogle Scholar
  30. 30.
    Singla A, Lee CH (2003) Inhibition of CEM calcification by the sequential pretreatment with ethanol and EDTA. J Biomed Mater Res A 64:706–713CrossRefGoogle Scholar
  31. 31.
    Vyavahare N, Ogle M, Schoen FJ, Levy RJ (1999) Elastin calcification and its prevention with aluminum chloride pretreatment. Am J Pathol 155:973–982CrossRefGoogle Scholar
  32. 32.
    Vyavahare NR, Hirsch D, Lerner E, Baskin JZ, Zand R, Schoen FJ, Levy RJ (1998) Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res 40:577–585CrossRefGoogle Scholar
  33. 33.
    Levy RJ, Schoen FJ, Sherman FS, Nichols J, Hawley MA, Lund SA (1986) Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am J Pathol 122:71–82Google Scholar
  34. 34.
    Lovekamp JJ, Simionescu DT, Mercuri JJ, Zubiate B, Sacks MS, Vyavahare NR (2006) Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials 27:1507–1518CrossRefGoogle Scholar
  35. 35.
    Simionescu DT, Lovekamp JJ, Vyavahare NR (2003) Extracellular matrix degrading enzymes are active in porcine stentless aortic bioprosthetic heart valves. J Biomed Mater Res A 66:755–763CrossRefGoogle Scholar
  36. 36.
    Vyavahare N, Jones PL, Tallapragada S, Levy RJ (2000) Inhibition of matrix metalloproteinase activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Am J Pathol 157:885–893CrossRefGoogle Scholar
  37. 37.
    Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA, Weissleder R (2009) Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119:1785–1794CrossRefGoogle Scholar
  38. 38.
    Price PA, Chan WS, Jolson DM, Williamson MK (2006) The elastic lamellae of devitalized arteries calcify when incubated in serum: evidence for a serum calcification factor. Arterioscler Thromb Vasc Biol 26:1079–1085CrossRefGoogle Scholar
  39. 39.
    Bobryshev YV (2005) Calcification of elastic fibers in human atherosclerotic plaque. Atherosclerosis 180:293–303CrossRefGoogle Scholar
  40. 40.
    Walther T, Falk V, Diegeler A, Rauch T, Weigl C, Gummert J, Autschbach R, Mohr FW (1999) Effectiveness of different anti-calcification treatments for stentless aortic bioprostheses. Thorac Cardiovasc Surg 47:23–25CrossRefGoogle Scholar
  41. 41.
    Borger MA, Carson SM, Ivanov J, Rao V, Scully HE, Feindel CM, David TE (2005) Stentless aortic valves are hemodynamically superior to stented valves during mid-term follow-up: a large retrospective study. Ann Thorac Surg 80:2180–2185CrossRefGoogle Scholar
  42. 42.
    Jasinski MJ, Hayton J, Kadziola Z, Wos S, Sosnowski AW (2002) Hemodynamic performance after stented vs stentless aortic valve replacement. J Cardiovasc Surg (Torino) 43:313–317Google Scholar
  43. 43.
    Chen W, Kim JD, Schoen FJ, Levy RJ (1994) Effect of 2-amino oleic acid exposure conditions on the inhibition of calcification of glutaraldehyde cross-linked porcine aortic valves. J Biomed Mater Res 28:1485–1495CrossRefGoogle Scholar
  44. 44.
    Vyavahare N, Hirsch D, Lerner E, Baskin JZ, Schoen FJ, Bianco R, Kruth HS, Zand R, Levy RJ (1997) Prevention of bioprosthetic heart valve calcification by ethanol preincubation. Efficacy and mechanisms. Circulation 95:479–488CrossRefGoogle Scholar
  45. 45.
    Liao KK, Li X, John R, Amatya DM, Joyce LD, Park SJ, Bianco R, Bolman RM 3rd (2008) Mechanical stress: an independent determinant of early bioprosthetic calcification in humans. Ann Thorac Surg 86:491–495CrossRefGoogle Scholar
  46. 46.
    Deiwick M, Glasmacher B, Baba HA, Roeder N, Reul H, von Bally G, Scheld HH (1998) In vitro testing of bioprostheses: influence of mechanical stresses and lipids on calcification. Ann Thorac Surg 66:S206–S211CrossRefGoogle Scholar
  47. 47.
    Human P, Zilla P (2001) Inflammatory and immune processes: the neglected villain of bioprosthetic degeneration? J Long Term Eff Med Implants 11:199–220CrossRefGoogle Scholar
  48. 48.
    Human P, Zilla P (2001) Characterization of the immune response to valve bioprostheses and its role in primary tissue failure. Ann Thorac Surg 71:S385–S388CrossRefGoogle Scholar
  49. 49.
    Gong G, Seifter E, Lyman WD, Factor SM, Blau S, Frater RW (1993) Bioprosthetic cardiac valve degeneration: role of inflammatory and immune reactions. J Heart Valve Dis 2:684–693Google Scholar
  50. 50.
    Levy RJ, Schoen FJ, Howard SL (1983) Mechanism of calcification of porcine bioprosthetic aortic valve cusps: role of T-lymphocytes. Am J Cardiol 52:629–631CrossRefGoogle Scholar
  51. 51.
    Giachelli CM (2005) Inducers and inhibitors of biomineralization: lessons from pathological calcification. Orthod Craniofac Res 8:229–231CrossRefGoogle Scholar
  52. 52.
    Giachelli CM, Steitz S (2000) Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol 19:615–622CrossRefGoogle Scholar
  53. 53.
    Jian B, Narula N, Li QY, Mohler ER 3rd, Levy RJ (2003) Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg 75:457–465, discussion 465–456CrossRefGoogle Scholar
  54. 54.
    Srivatsa SS, Harrity PJ, Maercklein PB, Kleppe L, Veinot J, Edwards WD, Johnson CM, Fitzpatrick LA (1997) Increased cellular expression of matrix proteins that regulate mineralization is associated with calcification of native human and porcine xenograft bioprosthetic heart valves. J Clin Invest 99:996–1009CrossRefGoogle Scholar
  55. 55.
    Schoen FJ, Levy RJ, Hilbert SL, Bianco RW (1992) Antimineralization treatments for bioprosthetic heart valves. Assessment of efficacy and safety. J Thorac Cardiovasc Surg 104:1285–1288Google Scholar
  56. 56.
    Connolly JM, Alferiev I, Clark-Gruel JN, Eidelman N, Sacks M, Palmatory E, Kronsteiner A, Defelice S, Xu J, Ohri R, Narula N, Vyavahare N, Levy RJ (2005) Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance: chemical and biological mechanisms. Am J Pathol 166:1–13CrossRefGoogle Scholar
  57. 57.
    Girardot JM, Girardot MN (1996) Amide cross-linking: an alternative to glutaraldehyde fixation. J Heart Valve Dis 5:518–525Google Scholar
  58. 58.
    Xi T, Ma J, Tian W, Lei X, Long S, Xi B (1992) Prevention of tissue calcification on bioprosthetic heart valve by using epoxy compounds: a study of calcification tests in vitro and in vivo. J Biomed Mater Res 26:1241–1251CrossRefGoogle Scholar
  59. 59.
    Zilla P, Bezuidenhout D, Torrianni M, Hendriks M, Human P (2005) Diamine-extended glutaraldehyde- and carbodiimide crosslinks act synergistically in mitigating bioprosthetic aortic wall calcification. J Heart Valve Dis 14:538–545Google Scholar
  60. 60.
    Vasudev SC, Chandy T, Sharma CP (2000) The anti-calcification effect of polyethylene glycol-immobilized on hexamethylene diisocyanate treated pericardium. Artif Cells Blood Substit Immobil Biotechnol 28:79–94CrossRefGoogle Scholar
  61. 61.
    Somers P, De Somer F, Cornelissen M, Bouchez S, Gasthuys F, Narine K, Cox E, Van Nooten G (2008) Genipin blues: an alternative non-toxic crosslinker for heart valves? J Heart Valve Dis 17:682–688Google Scholar
  62. 62.
    Sung HW, Chang Y, Chiu CT, Chen CN, Liang HC (1999) Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials 20:1759–1772CrossRefGoogle Scholar
  63. 63.
    Bianco RW, Phillips R, Mrachek J, Witson J (1996) Feasibility evaluation of a new pericardial bioprosthesis with dye mediated photo-oxidized bovine pericardial tissue. J Heart Valve Dis 5:317–322Google Scholar
  64. 64.
    Suh H, Hwang YS, Park JC, Cho BK (2000) Calcification of leaflets from porcine aortic valves crosslinked by ultraviolet irradiation. Artif Organs 24:555–563CrossRefGoogle Scholar
  65. 65.
    Flameng W, Ozaki S, Meuris B, Herijgers P, Yperman J, Van Lommel A, Verbeken E (2001) Antimineralization treatments in stentless porcine bioprostheses: an experimental study. J Heart Valve Dis 10:489–494Google Scholar
  66. 66.
    Schoen FJ (1998) Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J Heart Valve Dis 7:174–179Google Scholar
  67. 67.
    Rapoport HS, Connolly JM, Fulmer J, Dai N, Murti BH, Gorman RC, Gorman JH, Alferiev I, Levy RJ (2007) Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials 28:690–699CrossRefGoogle Scholar
  68. 68.
    Sacks MS, Hamamoto H, Connolly JM, Gorman RC, Gorman JH 3rd, Levy RJ (2007) In vivo biomechanical assessment of triglycidylamine crosslinked pericardium. Biomaterials 28:5390–5398CrossRefGoogle Scholar
  69. 69.
    Girardot MN, Torrianni M, Girardot JM (1994) Effect of AOA on glutaraldehyde-fixed bioprosthetic heart valve cusps and walls: binding and calcification studies. Int J Artif Organs 17:76–82Google Scholar
  70. 70.
    Trantina-Yates AE, Human P, Zilla P (2003) Detoxification on top of enhanced, diamine-extended glutaraldehyde fixation significantly reduces bioprosthetic root calcification in the sheep model. J Heart Valve Dis 12:93–100, discussion 100–101Google Scholar
  71. 71.
    Hirsch D, Drader J, Thomas TJ, Schoen FJ, Levy JT, Levy RJ (1993) Inhibition of calcification of glutaraldehyde pretreated porcine aortic valve cusps with sodium dodecyl sulfate: preincubation and controlled release studies. J Biomed Mater Res 27:1477–1484CrossRefGoogle Scholar
  72. 72.
    Jones M, Eidbo EE, Hilbert SL, Ferrans VJ, Clark RE (1988) The effects of anti-calcification treatments on bioprosthetic heart valves implanted in sheep. ASAIO Trans 34:1027–1030Google Scholar
  73. 73.
    Vyavahare NR, Jones PL, Hirsch D, Schoen FJ, Levy RJ (2000) Prevention of glutaraldehyde-fixed bioprosthetic heart valve calcification by alcohol pretreatment: further mechanistic studies. J Heart Valve Dis 9:561–566Google Scholar
  74. 74.
    Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ (1994) Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res 28:655–666CrossRefGoogle Scholar
  75. 75.
    Baraki H, Tudorache I, Braun M, Hoffler K, Gorler A, Lichtenberg A, Bara C, Calistru A, Brandes G, Hewicker-Trautwein M, Hilfiker A, Haverich A, Cebotari S (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30:6240–6246CrossRefGoogle Scholar
  76. 76.
    Konuma T, Devaney EJ, Bove EL, Gelehrter S, Hirsch JC, Tavakkol Z, Ohye RG (2009) Performance of CryoValve SG decellularized pulmonary allografts compared with standard cryopreserved allografts. Ann Thorac Surg 88:849–854, discussion 554–845CrossRefGoogle Scholar
  77. 77.
    Zhai W, Chang J, Lu X, Wang Z (2009) Procyanidins-crosslinked heart valve matrix: anti-calcification effect. J Biomed Mater Res B Appl Biomater 90:913–921Google Scholar
  78. 78.
    Zhai W, Lu X, Chang J, Zhou Y, Zhang H (2010) Quercetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anti-calcification and cytocompatibility. Acta Biomater 6:389–395CrossRefGoogle Scholar
  79. 79.
    Walther T, Falk V, Autschbach R, Diegeler A, Rauch T, Weigl C, Gunther B, van Son JA, Mohr FW (1998) Comparison of different anti-calcification treatments for stentless bioprostheses. Ann Thorac Surg 66:S249–S254CrossRefGoogle Scholar
  80. 80.
    Levy RJ, Vyavahare N, Ogle M, Ashworth P, Bianco R, Schoen FJ (2003) Inhibition of 966 cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart 967 valves in sheep: background, mechanisms, and synergism. J Heart Valve Dis 12:209–216, 968 discussion 216Google Scholar
  81. 81.
    Hirsch D, Schoen FJ, Levy RJ (1993) Effects of metallic ions and diphosphonates on inhibition of pericardial bioprosthetic tissue calcification and associated alkaline phosphatase activity. Biomaterials 14:371–377CrossRefGoogle Scholar
  82. 82.
    Hirsch D, Drader J, Pathak YV, Yee R, Schoen FJ, Levy RJ (1993) Synergistic inhibition of 959 the calcification of glutaraldehyde pretreated bovine pericardium in a rat subdermal model by 960 FeCl3 and ethanehydroxydiphosphonate: preincubation and polymeric controlled release 961 studies. Biomaterials 14:705–711Google Scholar
  83. 83.
    Webb CL, Schoen FJ, Flowers WE, Alfrey AC, Horton C, Levy RJ (1991) Inhibition of mineralization of glutaraldehyde-pretreated bovine pericardium by AlCl3. Mechanisms and comparisons with FeCl3, LaCl3, and Ga(NO3)3 in rat subdermal model studies. Am J Pathol 138:971–981Google Scholar
  84. 84.
    Bailey M, Xiao H, Ogle M, Vyavahare N (2001) Aluminum chloride pretreatment of elastin inhibits elastolysis by matrix metalloproteinases and leads to inhibition of elastin-oriented calcification. Am J Pathol 159:1981–1986CrossRefGoogle Scholar
  85. 85.
    Bailey M, Pillarisetti S, Jones P, Xiao H, Simionescu D, Vyavahare N (2004) Involvement of matrix metalloproteinases and tenascin-C in elastin calcification. Cardiovasc Pathol 13:146–155CrossRefGoogle Scholar
  86. 86.
    Golomb G, Schlossman A, Eitan Y, Saadeh H, Van Gelder JM, Breuer E (1992) In vitro and in vivo anti-calcification effects of novel bishydroxyiminophosphonates. J Pharm Sci 81:1004–1007CrossRefGoogle Scholar
  87. 87.
    Levy RJ, Schoen FJ, Lund SA, Smith MS (1987) Prevention of leaflet calcification of bioprosthetic heart valves with diphosphonate injection therapy. Experimental studies of optimal dosages and therapeutic durations. J Thorac Cardiovasc Surg 94:551–557Google Scholar
  88. 88.
    Levy RJ, Wolfrum J, Schoen FJ, Hawley MA, Lund SA, Langer R (1985) Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science 228:190–192CrossRefGoogle Scholar
  89. 89.
    Webb CL, Benedict JJ, Schoen FJ, Linden JA, Levy RJ (1988) Inhibition of bioprosthetic heart valve calcification with aminodiphosphonate covalently bound to residual aldehyde groups. Ann Thorac Surg. 46:309–316Google Scholar
  90. 90.
    Sucu N, Karaca K, Yilmaz N, Comelekoglu U, Aytacoglu BN, Tamer L, Ozeren M, Dondas HA, Oguz Y, Ogenler O, Dikmengil M (2006) Two stage EDTA anti-calcification method for bioprosthetic heart valve materials. Med Sci Monit 12:MT33–MT38Google Scholar
  91. 91.
    Handford PA (2000) Fibrillin-1, a calcium binding protein of extracellular matrix. Biochim Biophys Acta 1498:84–90CrossRefGoogle Scholar
  92. 92.
    Fartasch M, Haneke E, Hornstein OP (1990) Mineralization of collagen and elastic fibers in superficial dystrophic cutaneous calcification: an ultrastructural study. Dermatologica 181:187–192CrossRefGoogle Scholar
  93. 93.
    Daamen WF, Nillesen ST, Hafmans T, Veerkamp JH, van Luyn MJ, van Kuppevelt TH (2005) Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification. Biomaterials 26:81–92CrossRefGoogle Scholar
  94. 94.
    Nimni ME, Myers D, Ertl D, Han B (1997) Factors which affect the calcification of tissue-derived bioprostheses. J Biomed Mater Res 35:531–537CrossRefGoogle Scholar
  95. 95.
    Tedder ME, Liao J, Weed B, Stabler C, Zhang H, Simionescu A, Simionescu DT (2009) Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng Part A 15:1257–1268CrossRefGoogle Scholar
  96. 96.
    van Wachem PB, Plantinga JA, Wissink MJ, Beernink R, Poot AA, Engbers GH, Beugeling T, van Aken WG, Feijen J, van Luyn MJ (2001) In vivo biocompatibility of carbodiimide-crosslinked collagen matrices: effects of crosslink density, heparin immobilization, and bFGF loading. J Biomed Mater Res 55:368–378CrossRefGoogle Scholar
  97. 97.
    Lu Q, Ganesan K, Simionescu DT, Vyavahare NR (2004) Novel porous aortic elastin and collagen scaffolds for tissue engineering. Biomaterials 25:5227–5237CrossRefGoogle Scholar
  98. 98.
    Park JC, Song MJ, Hwang YS, Suh H (2001) Calcification comparison of polymers for vascular graft. Yonsei Med J 42:304–310Google Scholar
  99. 99.
    Stokes K, Anderson HC, McVenes R, McClay C (1995) The encapsulation of polyurethane-insulated transvenous cardiac pacemaker leads. Cardiovasc Pathol 4:163–171CrossRefGoogle Scholar
  100. 100.
    Schlieper G, Kruger T, Djuric Z, Damjanovic T, Markovic N, Schurgers LJ, Brandenburg VM, Westenfeld R, Dimkovic S, Ketteler M, Grootendorst DC, Dekker FW, Floege J, Dimkovic N (2008) Vascular access calcification predicts mortality in hemodialysis patients. Kidney Int 74:1582–1587CrossRefGoogle Scholar
  101. 101.
    Tomizawa Y, Takanashi Y, Noishiki Y, Nishida H, Endo M, Koyanagi H (1998) Evaluation of small caliber vascular prostheses implanted in small children: activated angiogenesis and accelerated calcification. ASAIO J 44:M496–M500CrossRefGoogle Scholar
  102. 102.
    Coleman DL (1981) Mineralization of blood pump bladders. Trans Am Soc Artif Intern Organs 27:708–713Google Scholar
  103. 103.
    Harasaki H, Kambic H, Whalen R, Murray J, Snow J, Murabayashi S, Hillegass D, Ozawa K, Kiraly R, Nose Y (1980) Comparative study of flocked vs biolized surface for long-term assist pumps. Trans Am Soc Artif Intern Organs 26:470–474Google Scholar
  104. 104.
    Joshi RR, Underwood T, Frautschi JR, Phillips RE Jr, Schoen FJ, Levy RJ (1996) Calcification of polyurethanes implanted subdermally in rats is enhanced by calciphylaxis. J Biomed Mater Res 31:201–207CrossRefGoogle Scholar
  105. 105.
    Harasaki H et al (1980) Comparative study of flocked vs. biolized surface for long-term assist pumps. Trans Am Soc Artif Intern Organs 26:470–474Google Scholar
  106. 106.
    Wisman CB, Pierce WS, Donachy JH, Pae WE, Myers JL, Prophet GA (1982) A polyurethane trileaflet cardiac valve prosthesis: in vitro and in vivo studies. Trans Am Soc Artif Intern Organs 28:164–168Google Scholar
  107. 107.
    Alferiev I, Vyavahare N, Song C, Connolly J, Hinson JT, Lu Z, Tallapragada S, Bianco R, Levy R (2001) Bisphosphonate derivatized polyurethanes resist calcification. Biomaterials 22:2683–2693CrossRefGoogle Scholar
  108. 108.
    Alferiev IS, Connolly JM, Stachelek SJ, Ottey A, Rauova L, Levy RJ (2006) Surface heparinization of polyurethane via bromoalkylation of hard segment nitrogens. Biomacromolecules 7:317–322CrossRefGoogle Scholar
  109. 109.
    Tang ZG, Teoh SH, McFarlane W, Poole-Warren LA, Umezu M (2002) In vitro calcification of UHMWPE/PU composite membrane. Mat Sci Eng C 20:149–152CrossRefGoogle Scholar
  110. 110.
    Peters W, Pritzker K, Smith D, Fornasier V, Holmyard D, Lugowski S, Kamel M, Visram F (1998) Capsular calcification associated with silicone breast implants: Incidence, determinants, and characterization. Ann Plast Surg 41:348–360CrossRefGoogle Scholar
  111. 111.
    Lou X, Vijayasekaran S, Sugiharti R, Robertson T (2005) Morphological and topographic effects on calcification tendency of pHEMA hydrogels. Biomaterials 26:5808–5817CrossRefGoogle Scholar
  112. 112.
    Vijayasekaran S, Hicks CR, Chirila TV, Fitton JH, Clayton AB, Lou X, Platten S, Crawford GJ, Constable IJ (1997) Histologic evaluation during healing of hydrogel core-and-skirt keratoprostheses in the rabbit eye. Cornea 16:352–359CrossRefGoogle Scholar
  113. 113.
    Calnan JS, Pflug JJ, Chhabra AS, Raghupati N (1971) Clinical and experimental studies of polyhydroxyethylmethacrylate gel (“Hydron”) for reconstructive surgery. Br J Plast Surg 24:113–124CrossRefGoogle Scholar
  114. 114.
    Levy B (1984) Calcium deposits on glyceryl methyl methacrylate and hydroxyethyl methacrylate contact lenses. Am J Optom Physiol Opt 61:605–607CrossRefGoogle Scholar
  115. 115.
    Davson H (ed) (1980) Physiology of the eye, vol 18, 4th edn. Academic, New YorkGoogle Scholar
  116. 116.
    Bucher PJ, Buchi ER, Daicker BC (1995) Dystrophic calcification of an implanted hydroxyethylmethacrylate intraocular lens. Arch Ophthalmol 113:1431–1435CrossRefGoogle Scholar
  117. 117.
    Neuhann IM, Kleinmann G, Apple DJ (2008) A new classification of calcification of intraocular lenses. Ophthalmology 115:73–79CrossRefGoogle Scholar
  118. 118.
    Gartaganis SP, Kanellopoulou DG, Mela EK, Panteli VS, Koutsoukos PG (2008) Opacification of hydrophilic acrylic intraocular lens attributable to calcification: investigation on mechanism. Am J Ophthalmol 146:395–403CrossRefGoogle Scholar
  119. 119.
    Dorey MW, Brownstein S, Hill VE, Mathew B, Botton G, Kertes PJ, El-Defrawy S (2003) Proposed pathogenesis for the delayed postoperative opacification of the hydroview hydrogel intraocular lens. Am J Ophthalmol 135:591–598CrossRefGoogle Scholar
  120. 120.
    Werner L, Hunter B, Stevens S, Chew JJ, Mamalis N (2006) Role of silicon contamination on calcification of hydrophilic acrylic intraocular lenses. Am J Ophthalmol 141:35–43CrossRefGoogle Scholar
  121. 121.
    Guan X, Tang R, Nancollas GH (2004) The potential calcification of octacalcium phosphate on intraocular lens surfaces. J Biomed Mater Res A 71:488–496Google Scholar
  122. 122.
    Werner L (2008) Calcification of hydrophilic acrylic intraocular lenses. Am J Ophthalmol 146:341–343CrossRefGoogle Scholar
  123. 123.
    Nakanome S, Watanabe H, Tanaka K, Tochikubo T (2008) Calcification of Hydroview H60M intraocular lenses: aqueous humor analysis and comparisons with other intraocular lens materials. J Cataract Refract Surg 34:80–86CrossRefGoogle Scholar
  124. 124.
    Dalas E, Kallitsis JK, Koutsoukos PG (1991) Crystallization of hydroxyapatite on polymers. Langmuir 7:1822–1826CrossRefGoogle Scholar
  125. 125.
    Imai Y (1985) Effect of age on calcification of poly(hydroxyethyl methacrylate) in animals. Artif Organs 9:255–258CrossRefGoogle Scholar
  126. 126.
    Sprinel L, Kopecek J, Lim D (1973) Effect of the structure of poly(glycol monomethacrylate) gel on the calcification of implants. Calcif Tissue Res 13:63–72CrossRefGoogle Scholar
  127. 127.
    Patai K, Berenyi M, Sipos M, Noszal B (1998) Characterization of calcified deposits on contraceptive intrauterine devices. Contraception 58:305–308CrossRefGoogle Scholar
  128. 128.
    Kosonen A (1981) Factors influencing the dissolution of copper in utero. Contracept Deliv Syst 2:77–85Google Scholar
  129. 129.
    Yang ZH, Xie CS, Cai SZ, Xia XP (2008) Effects of LDPE film on the properties of copper/LDPE composites for intrauterine contraceptive device. Mater Lett 62:4226–4228CrossRefGoogle Scholar
  130. 130.
    Fyfe B, Schoen F (1999) Pathological analysis of nonstented freestyle aortic root bioprostheses treated with amino oleic acid. Semin Thorac Cardiovasc Surg 11:151–156Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Amy Munnelly
    • 1
  • Frederick Schoen
    • 2
  • Naren Vyavahare
    • 1
  1. 1.Department of BioengineeringClemson UniversityClemsonUSA
  2. 2.Department of PathologyBrigham & Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations