Skip to main content

Functional Nanoimprinted Plasmonic Crystals for Chemical Sensing and Imaging

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

We describe here nanoimprinted plasmonic crystals composed of highly uniform subwavelength metal nanohole and nanopost arrays and their application in surface-enhanced sensing and imaging. Soft nanoimprint lithography is a versatile, cost-effective method to precisely replicate these structures with well-characterized optical properties. These plasmonic crystals support multiple surface plasmon modes controlled by the design rules of the nanostructures, allowing us to optimize the devices for operation in a particular wavelength range. We have demonstrated the ability to spectroscopically measure bulk refractive index changes and mechanical deformation of hydrogels resulting from pH changes, thin film imaging with sensitivities down to submonolayer levels using a common optical microscope, and Raman signal enhancement using a single common device framework. These plasmonic crystals have the potential to overcome many of the technological limitations that have limited the widespread application and integration of surface-enhanced analytical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knoll W. Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem. 1998;49:569–638.

    Article  CAS  Google Scholar 

  2. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006;311:189–93.

    Article  CAS  Google Scholar 

  3. Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer; 1988.

    Google Scholar 

  4. Stewart ME, Mack NH, Malyarchuk V, Soares JANT, Lee T-W, Gray SK, Nuzzo RG, Rogers JA. Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals. Proc Natl Acad Sci USA. 2006;103:17143–8.

    Article  CAS  Google Scholar 

  5. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006;1:219–28.

    Article  CAS  Google Scholar 

  6. Chau L-K, Lin Y-F, Cheng S-F, Lin T-J. Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens Actuators B. 2006;113:100–5.

    Article  Google Scholar 

  7. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.

    Article  CAS  Google Scholar 

  8. Nelson BP, Frutos AG, Brockman JM, Corn RM. Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and spr imaging experiments. Anal Chem. 1999;71:3928–34.

    Article  CAS  Google Scholar 

  9. Wark AW, Lee HJ, Corn RM. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem. 2005;77:3904–7.

    Article  CAS  Google Scholar 

  10. Kretschmann E, Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z Naturforsch A. 1968;23:2135.

    CAS  Google Scholar 

  11. Otto A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys. 1968;216:398–410.

    Article  CAS  Google Scholar 

  12. Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;377:528–39.

    Article  CAS  Google Scholar 

  13. Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74:504–9.

    Article  CAS  Google Scholar 

  14. Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett. 2004;92:107401.

    Article  CAS  Google Scholar 

  15. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667–9.

    Article  CAS  Google Scholar 

  16. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Younan X. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005;5:2034–8.

    Article  CAS  Google Scholar 

  17. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.

    Article  CAS  Google Scholar 

  18. Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824.

    Article  CAS  Google Scholar 

  19. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494–521.

    Article  CAS  Google Scholar 

  20. Camden JP, Dieringer J, Zhao J, Van Duyne RP. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res. 2008;41:1653–61.

    Article  CAS  Google Scholar 

  21. Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res. 2008;41:1049–57.

    Article  CAS  Google Scholar 

  22. Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP. Biological applications of localized surface plasmonic phenomena. IEE Proc Nanobiotechnol. 2005;152:13–32.

    Article  CAS  Google Scholar 

  23. Willets KA, Duyne RPV. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  Google Scholar 

  24. Baca AJ, Truong TT, Cambrea LR, Montgomery JM, Gray SK, Abdula D, Banks TR, Yao J, Nuzzo RG, Rogers JA. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering. Appl Phys Lett. 2009;94:243109.

    Article  Google Scholar 

  25. Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloid Surf A. 2000;171:115–30.

    Article  CAS  Google Scholar 

  26. Liebermann T, Knoll W, Sluka P, Herrmann R. Complement hybridization from solution to surface-attached probe-oligonucleotides observed by surface-plasmon-field-enhanced fluorescence spectroscopy. Colloid Surf A. 2000;169:337–50.

    Article  CAS  Google Scholar 

  27. Ekgasit S, Stengel G, Knoll W. Concentration of dye-labeled nucleotides incorporated into DNA determined by surface plasmon resonance-surface plasmon fluorescence spectroscopy. Anal Chem. 2004;76:4747–55.

    Article  CAS  Google Scholar 

  28. Yu F, Persson B, Lofas S, Knoll W. Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J Am Chem Soc. 2004;126:8902–3.

    Article  CAS  Google Scholar 

  29. Feller BE, Kellis JT, Cascao-Pereira LG, Knoll W, Robertson CR, Frank CW. Fluorescence quantification for surface plasmon excitation. Langmuir. 2008;24:12303–11.

    Article  CAS  Google Scholar 

  30. Johansson P, Xu H, Käll M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B. 2005;72:035427.

    Article  Google Scholar 

  31. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667.

    Article  CAS  Google Scholar 

  32. Michaels AM, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules. J Phys Chem B. 2000;104:11965–71.

    Article  CAS  Google Scholar 

  33. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–6.

    Article  CAS  Google Scholar 

  34. Xu H, Bjerneld EJ, Käll M, Börjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83:4357.

    Article  CAS  Google Scholar 

  35. Xu HX, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318.

    Article  CAS  Google Scholar 

  36. Dintinger J, Klein S, Ebbesen TW. Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching. Adv Mater. 2006;18:1267–70.

    Article  CAS  Google Scholar 

  37. Przybilla F, Genet C, Ebbesen TW. Enhanced transmission through penrose subwavelength hole arrays. Appl Phys Lett. 2006;89:121115.

    Article  Google Scholar 

  38. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440:508–11.

    Article  CAS  Google Scholar 

  39. Chang C-K, Lin D-Z, Yeh C-S, Lee C-K, Chang Y-C, Lin M-W, Yeh J-T, Liu J-M. Experimental analysis of surface plasmon behavior in metallic circular slits. Appl Phys Lett. 2007;90:061113.

    Article  Google Scholar 

  40. Grand J, Adam P-M, Grimault A-S, Vial A, de la Chapelle ML, Bijeon J-L, Kostcheev S, Royer P. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics. 2006;1:135–40.

    Article  CAS  Google Scholar 

  41. Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220:137–41.

    Article  CAS  Google Scholar 

  42. Henzie J, Lee MH, Odom TW. Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol. 2007;2:549–54.

    Article  CAS  Google Scholar 

  43. Kwak E-S, Henzie J, Chang S-H, Gray SK, Schatz GC, Odom TW. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 2005;5:1963–7.

    Article  CAS  Google Scholar 

  44. Henzie J, Lee J, Lee MH, Hasan W, Odom TW. Nanofabrication of plasmonic structures. Annu Rev Phys Chem. 2009;60:147–65.

    Article  CAS  Google Scholar 

  45. Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW. Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express. 2009;17:2334–40.

    Article  CAS  Google Scholar 

  46. Zhang X, Yonzon C, Duyne RPV. Nanosphere lithography fabricated plasmonic materials and their applications. J Mater Res. 2006;21:1083–92.

    Article  CAS  Google Scholar 

  47. Zhang X, Whitney AV, Zhao J, Hicks EM, Van Duyne RP. Advances in contemporary nanosphere lithographic techniques. J Nanosci Nanotechnol. 2006;6:1920–34.

    Article  CAS  Google Scholar 

  48. Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1:601–26.

    Article  CAS  Google Scholar 

  49. Haynes CL, Van Duyne RP. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B. 2001;105:5599–611.

    Article  CAS  Google Scholar 

  50. Yang S-M, Jang SG, Choi D-G, Kim S, Yu HK. Nanomachining by colloidal lithography. Small. 2006;2:458–75.

    Article  CAS  Google Scholar 

  51. Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kaell M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 2004;4:1003–7.

    Article  CAS  Google Scholar 

  52. Bukasov R, Shumaker-Parry JS. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007;7:1113–8.

    Article  CAS  Google Scholar 

  53. Stewart ME, Motala MJ, Yao J, Thompson LB, Nuzzo RG. Unconventional methods for forming nanopatterns. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2007;220:81–138.

    Google Scholar 

  54. Malyarchuk V, Hua F, Mack NH, Velasquez VT, White JO, Nuzzo RG, Rogers JA. High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt Express. 2005;13:5669–75.

    Article  Google Scholar 

  55. Truskett VN, Watts MPC. Trends in imprint lithography for biological applications. Trends Biotechnol. 2006;24:312–7.

    Article  CAS  Google Scholar 

  56. Yao J, Stewart ME, Maria J, Lee T-W, Gray SK, Rogers JA, Nuzzo RG. Seeing molecules by eye: surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew Chem Int Ed. 2008;47:5013–7.

    Article  CAS  Google Scholar 

  57. Truong TT, Maria J, Yao J, Stewart ME, Lee T-W, Gray SK, Nuzzo RG, Rogers JA. Nanopost plasmonic crystals. Nanotechnology. 2009;20:434011.

    Article  CAS  Google Scholar 

  58. Stewart ME, Yao J, Maria J, Gray SK, Rogers JA, Nuzzo RG. Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals. Anal Chem. 2009;81:5980–9.

    Article  CAS  Google Scholar 

  59. Malyarchuk V, Stewart ME, Nuzzo RG, Rogers JA. Spatially resolved biosensing with a molded plasmonic crystal. Appl Phys Lett. 2007;90:203113.

    Article  Google Scholar 

  60. Delamarche E, Schmid H, Michel B, Biebuyck H. Stability of molded polydimethylsiloxane microstructures. Adv Mater. 1997;9:741–6.

    Article  CAS  Google Scholar 

  61. Hua F, Sun Y, Gaur A, Meitl MA, Bilhaut L, Rotkina L, Wang J, Geil P, Shim M, Rogers JA. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004;4:2467–71.

    Article  CAS  Google Scholar 

  62. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM. Improved pattern transfer in soft lithography using composite stamps. Langmuir. 2002;18:5314–20.

    Article  CAS  Google Scholar 

  63. Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules. 2000;33:3042–9.

    Article  CAS  Google Scholar 

  64. Truong TT, Lin R, Jeon S, Lee HH, Maria J, Gaur A, Hua F, Meinel I, Rogers JA. Soft lithography using acryloxy perfluoropolyether composite stamps. Langmuir. 2007;23:2898–905.

    Article  CAS  Google Scholar 

  65. Rolland JP, Hagberg EC, Denison GM, Cater KR, DeSimone JM. High-resolution soft lithography: enabling materials for nanotechnologies. Angew Chem Int Ed. 2004;43:5796–9.

    Article  CAS  Google Scholar 

  66. Rothrock GD, Maynor B, Rolland JP, DeSimone JM. High-performance imprint lithography and novel metrology methods using multifunctional perfluoropolyethers. Proc SPIE. 2006;6152:61523F.

    Article  Google Scholar 

  67. Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J Am Chem Soc. 2004;126:2322–3.

    Article  CAS  Google Scholar 

  68. Yao J, Le A-P, Gray SK, Moore JS, Rogers JA, Nuzzo RG. Functional nanostructured plasmonic materials. Adv Mater. 2010;22:1102–10.

    Article  CAS  Google Scholar 

  69. Maria J, Truong TT, Yao J, Lee T-W, Nuzzo RG, Leyffer S, Gray SK, Rogers JA. Optimization of 3D plasmonic crystal structures for refractive index sensing. J Phys Chem C. 2009;113:10493–9.

    Article  CAS  Google Scholar 

  70. Hohng SC, Yoon YC, Kim DS, Malyarchuk V, Muller R, Lienau C, Park JW, Yoo KH, Kim J, Ryu HY, Park QH. Light emission from the shadows: surface plasmon nano-optics at near and far fields. Appl Phys Lett. 2002;81:3239–41.

    Article  CAS  Google Scholar 

  71. Chaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ. Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B. 1998;58:6779–82.

    Article  Google Scholar 

  72. Chang S-H, Gray SK, Schatz GC. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express. 2005;13:3150–65.

    Article  Google Scholar 

  73. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127:5043–8.

    Article  CAS  Google Scholar 

  74. Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16:1685–706.

    Article  CAS  Google Scholar 

  75. Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain. Boston: Artech House; 2005.

    Google Scholar 

  76. Mack NH, Wackerly JW, Malyarchuk V, Rogers JA, Moore JS, Nuzzo RG. Optical transduction of chemical forces. Nano Lett. 2007;7:733–7.

    Article  CAS  Google Scholar 

  77. Lin L, Harris JW, Thompson GR, Brody JP. Surface plasmon resonance-based sensors to identify cis-regulatory elements. Anal Chem. 2004;76:6555–9.

    Article  CAS  Google Scholar 

  78. Huang TT, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP, Ladisch MR. Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol Bioeng. 2003;81:618–24.

    Article  CAS  Google Scholar 

  79. Mack NH, Dong R, Nuzzo RG. Quantitative imaging of protein adsorption on patterned organic thin-film arrays using secondary electron emission. J Am Chem Soc. 2006;128:7871–81.

    Article  CAS  Google Scholar 

  80. Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL. Nanohole-enhanced Raman scattering. Nano Lett. 2004;4:2015–8.

    Article  CAS  Google Scholar 

  81. Haynes CL, Van Duyne RP. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2003;107:7426–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the U. S. Department of Energy, Materials Science Division under award number DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois, including the Center for Microanalysis of Materials. The work at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Rogers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Le, AP., Gray, S.K., Nuzzo, R.G., Rogers, J.A. (2012). Functional Nanoimprinted Plasmonic Crystals for Chemical Sensing and Imaging. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_9

Download citation

Publish with us

Policies and ethics