Functional Nanoimprinted Plasmonic Crystals for Chemical Sensing and Imaging

  • An-Phong Le
  • Stephen K. Gray
  • Ralph G. Nuzzo
  • John A. RogersEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


We describe here nanoimprinted plasmonic crystals composed of highly uniform subwavelength metal nanohole and nanopost arrays and their application in surface-enhanced sensing and imaging. Soft nanoimprint lithography is a versatile, cost-effective method to precisely replicate these structures with well-characterized optical properties. These plasmonic crystals support multiple surface plasmon modes controlled by the design rules of the nanostructures, allowing us to optimize the devices for operation in a particular wavelength range. We have demonstrated the ability to spectroscopically measure bulk refractive index changes and mechanical deformation of hydrogels resulting from pH changes, thin film imaging with sensitivities down to submonolayer levels using a common optical microscope, and Raman signal enhancement using a single common device framework. These plasmonic crystals have the potential to overcome many of the technological limitations that have limited the widespread application and integration of surface-enhanced analytical techniques.


Surface Plasmon Resonance Surface Plasmon Polaritons Surface Plasmon Resonance Sensor Integrate Response Nanohole Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the support of the U. S. Department of Energy, Materials Science Division under award number DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois, including the Center for Microanalysis of Materials. The work at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357.


  1. 1.
    Knoll W. Interfaces and thin films as seen by bound electromagnetic waves. Annu Rev Phys Chem. 1998;49:569–638.CrossRefGoogle Scholar
  2. 2.
    Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006;311:189–93.CrossRefGoogle Scholar
  3. 3.
    Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer; 1988.Google Scholar
  4. 4.
    Stewart ME, Mack NH, Malyarchuk V, Soares JANT, Lee T-W, Gray SK, Nuzzo RG, Rogers JA. Quantitative multispectral biosensing and 1d imaging using quasi-3d plasmonic crystals. Proc Natl Acad Sci USA. 2006;103:17143–8.CrossRefGoogle Scholar
  5. 5.
    Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006;1:219–28.CrossRefGoogle Scholar
  6. 6.
    Chau L-K, Lin Y-F, Cheng S-F, Lin T-J. Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sens Actuators B. 2006;113:100–5.CrossRefGoogle Scholar
  7. 7.
    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.CrossRefGoogle Scholar
  8. 8.
    Nelson BP, Frutos AG, Brockman JM, Corn RM. Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and spr imaging experiments. Anal Chem. 1999;71:3928–34.CrossRefGoogle Scholar
  9. 9.
    Wark AW, Lee HJ, Corn RM. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal Chem. 2005;77:3904–7.CrossRefGoogle Scholar
  10. 10.
    Kretschmann E, Raether H. Radiative decay of nonradiative surface plasmons excited by light. Z Naturforsch A. 1968;23:2135.Google Scholar
  11. 11.
    Otto A. Exitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys. 1968;216:398–410.CrossRefGoogle Scholar
  12. 12.
    Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;377:528–39.CrossRefGoogle Scholar
  13. 13.
    Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74:504–9.CrossRefGoogle Scholar
  14. 14.
    Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW. Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett. 2004;92:107401.CrossRefGoogle Scholar
  15. 15.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667–9.CrossRefGoogle Scholar
  16. 16.
    Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Younan X. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005;5:2034–8.CrossRefGoogle Scholar
  17. 17.
    Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.CrossRefGoogle Scholar
  18. 18.
    Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824.CrossRefGoogle Scholar
  19. 19.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494–521.CrossRefGoogle Scholar
  20. 20.
    Camden JP, Dieringer J, Zhao J, Van Duyne RP. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res. 2008;41:1653–61.CrossRefGoogle Scholar
  21. 21.
    Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res. 2008;41:1049–57.CrossRefGoogle Scholar
  22. 22.
    Stuart DA, Haes AJ, Yonzon CR, Hicks EM, Van Duyne RP. Biological applications of localized surface plasmonic phenomena. IEE Proc Nanobiotechnol. 2005;152:13–32.CrossRefGoogle Scholar
  23. 23.
    Willets KA, Duyne RPV. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.CrossRefGoogle Scholar
  24. 24.
    Baca AJ, Truong TT, Cambrea LR, Montgomery JM, Gray SK, Abdula D, Banks TR, Yao J, Nuzzo RG, Rogers JA. Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering. Appl Phys Lett. 2009;94:243109.CrossRefGoogle Scholar
  25. 25.
    Liebermann T, Knoll W. Surface-plasmon field-enhanced fluorescence spectroscopy. Colloid Surf A. 2000;171:115–30.CrossRefGoogle Scholar
  26. 26.
    Liebermann T, Knoll W, Sluka P, Herrmann R. Complement hybridization from solution to surface-attached probe-oligonucleotides observed by surface-plasmon-field-enhanced fluorescence spectroscopy. Colloid Surf A. 2000;169:337–50.CrossRefGoogle Scholar
  27. 27.
    Ekgasit S, Stengel G, Knoll W. Concentration of dye-labeled nucleotides incorporated into DNA determined by surface plasmon resonance-surface plasmon fluorescence spectroscopy. Anal Chem. 2004;76:4747–55.CrossRefGoogle Scholar
  28. 28.
    Yu F, Persson B, Lofas S, Knoll W. Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J Am Chem Soc. 2004;126:8902–3.CrossRefGoogle Scholar
  29. 29.
    Feller BE, Kellis JT, Cascao-Pereira LG, Knoll W, Robertson CR, Frank CW. Fluorescence quantification for surface plasmon excitation. Langmuir. 2008;24:12303–11.CrossRefGoogle Scholar
  30. 30.
    Johansson P, Xu H, Käll M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B. 2005;72:035427.CrossRefGoogle Scholar
  31. 31.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997;78:1667.CrossRefGoogle Scholar
  32. 32.
    Michaels AM, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6g molecules. J Phys Chem B. 2000;104:11965–71.CrossRefGoogle Scholar
  33. 33.
    Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–6.CrossRefGoogle Scholar
  34. 34.
    Xu H, Bjerneld EJ, Käll M, Börjesson L. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83:4357.CrossRefGoogle Scholar
  35. 35.
    Xu HX, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318.CrossRefGoogle Scholar
  36. 36.
    Dintinger J, Klein S, Ebbesen TW. Molecule-surface plasmon interactions in hole arrays: enhanced absorption, refractive index changes, and all-optical switching. Adv Mater. 2006;18:1267–70.CrossRefGoogle Scholar
  37. 37.
    Przybilla F, Genet C, Ebbesen TW. Enhanced transmission through penrose subwavelength hole arrays. Appl Phys Lett. 2006;89:121115.CrossRefGoogle Scholar
  38. 38.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440:508–11.CrossRefGoogle Scholar
  39. 39.
    Chang C-K, Lin D-Z, Yeh C-S, Lee C-K, Chang Y-C, Lin M-W, Yeh J-T, Liu J-M. Experimental analysis of surface plasmon behavior in metallic circular slits. Appl Phys Lett. 2007;90:061113.CrossRefGoogle Scholar
  40. 40.
    Grand J, Adam P-M, Grimault A-S, Vial A, de la Chapelle ML, Bijeon J-L, Kostcheev S, Royer P. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory. Plasmonics. 2006;1:135–40.CrossRefGoogle Scholar
  41. 41.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220:137–41.CrossRefGoogle Scholar
  42. 42.
    Henzie J, Lee MH, Odom TW. Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol. 2007;2:549–54.CrossRefGoogle Scholar
  43. 43.
    Kwak E-S, Henzie J, Chang S-H, Gray SK, Schatz GC, Odom TW. Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 2005;5:1963–7.CrossRefGoogle Scholar
  44. 44.
    Henzie J, Lee J, Lee MH, Hasan W, Odom TW. Nanofabrication of plasmonic structures. Annu Rev Phys Chem. 2009;60:147–65.CrossRefGoogle Scholar
  45. 45.
    Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW. Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays. Opt Express. 2009;17:2334–40.CrossRefGoogle Scholar
  46. 46.
    Zhang X, Yonzon C, Duyne RPV. Nanosphere lithography fabricated plasmonic materials and their applications. J Mater Res. 2006;21:1083–92.CrossRefGoogle Scholar
  47. 47.
    Zhang X, Whitney AV, Zhao J, Hicks EM, Van Duyne RP. Advances in contemporary nanosphere lithographic techniques. J Nanosci Nanotechnol. 2006;6:1920–34.CrossRefGoogle Scholar
  48. 48.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP. Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem. 2008;1:601–26.CrossRefGoogle Scholar
  49. 49.
    Haynes CL, Van Duyne RP. Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B. 2001;105:5599–611.CrossRefGoogle Scholar
  50. 50.
    Yang S-M, Jang SG, Choi D-G, Kim S, Yu HK. Nanomachining by colloidal lithography. Small. 2006;2:458–75.CrossRefGoogle Scholar
  51. 51.
    Prikulis J, Hanarp P, Olofsson L, Sutherland D, Kaell M. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 2004;4:1003–7.CrossRefGoogle Scholar
  52. 52.
    Bukasov R, Shumaker-Parry JS. Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 2007;7:1113–8.CrossRefGoogle Scholar
  53. 53.
    Stewart ME, Motala MJ, Yao J, Thompson LB, Nuzzo RG. Unconventional methods for forming nanopatterns. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2007;220:81–138.Google Scholar
  54. 54.
    Malyarchuk V, Hua F, Mack NH, Velasquez VT, White JO, Nuzzo RG, Rogers JA. High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt Express. 2005;13:5669–75.CrossRefGoogle Scholar
  55. 55.
    Truskett VN, Watts MPC. Trends in imprint lithography for biological applications. Trends Biotechnol. 2006;24:312–7.CrossRefGoogle Scholar
  56. 56.
    Yao J, Stewart ME, Maria J, Lee T-W, Gray SK, Rogers JA, Nuzzo RG. Seeing molecules by eye: surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew Chem Int Ed. 2008;47:5013–7.CrossRefGoogle Scholar
  57. 57.
    Truong TT, Maria J, Yao J, Stewart ME, Lee T-W, Gray SK, Nuzzo RG, Rogers JA. Nanopost plasmonic crystals. Nanotechnology. 2009;20:434011.CrossRefGoogle Scholar
  58. 58.
    Stewart ME, Yao J, Maria J, Gray SK, Rogers JA, Nuzzo RG. Multispectral thin film biosensing and quantitative imaging using 3D plasmonic crystals. Anal Chem. 2009;81:5980–9.CrossRefGoogle Scholar
  59. 59.
    Malyarchuk V, Stewart ME, Nuzzo RG, Rogers JA. Spatially resolved biosensing with a molded plasmonic crystal. Appl Phys Lett. 2007;90:203113.CrossRefGoogle Scholar
  60. 60.
    Delamarche E, Schmid H, Michel B, Biebuyck H. Stability of molded polydimethylsiloxane microstructures. Adv Mater. 1997;9:741–6.CrossRefGoogle Scholar
  61. 61.
    Hua F, Sun Y, Gaur A, Meitl MA, Bilhaut L, Rotkina L, Wang J, Geil P, Shim M, Rogers JA. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 2004;4:2467–71.CrossRefGoogle Scholar
  62. 62.
    Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM. Improved pattern transfer in soft lithography using composite stamps. Langmuir. 2002;18:5314–20.CrossRefGoogle Scholar
  63. 63.
    Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules. 2000;33:3042–9.CrossRefGoogle Scholar
  64. 64.
    Truong TT, Lin R, Jeon S, Lee HH, Maria J, Gaur A, Hua F, Meinel I, Rogers JA. Soft lithography using acryloxy perfluoropolyether composite stamps. Langmuir. 2007;23:2898–905.CrossRefGoogle Scholar
  65. 65.
    Rolland JP, Hagberg EC, Denison GM, Cater KR, DeSimone JM. High-resolution soft lithography: enabling materials for nanotechnologies. Angew Chem Int Ed. 2004;43:5796–9.CrossRefGoogle Scholar
  66. 66.
    Rothrock GD, Maynor B, Rolland JP, DeSimone JM. High-performance imprint lithography and novel metrology methods using multifunctional perfluoropolyethers. Proc SPIE. 2006;6152:61523F.CrossRefGoogle Scholar
  67. 67.
    Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J Am Chem Soc. 2004;126:2322–3.CrossRefGoogle Scholar
  68. 68.
    Yao J, Le A-P, Gray SK, Moore JS, Rogers JA, Nuzzo RG. Functional nanostructured plasmonic materials. Adv Mater. 2010;22:1102–10.CrossRefGoogle Scholar
  69. 69.
    Maria J, Truong TT, Yao J, Lee T-W, Nuzzo RG, Leyffer S, Gray SK, Rogers JA. Optimization of 3D plasmonic crystal structures for refractive index sensing. J Phys Chem C. 2009;113:10493–9.CrossRefGoogle Scholar
  70. 70.
    Hohng SC, Yoon YC, Kim DS, Malyarchuk V, Muller R, Lienau C, Park JW, Yoo KH, Kim J, Ryu HY, Park QH. Light emission from the shadows: surface plasmon nano-optics at near and far fields. Appl Phys Lett. 2002;81:3239–41.CrossRefGoogle Scholar
  71. 71.
    Chaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ. Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B. 1998;58:6779–82.CrossRefGoogle Scholar
  72. 72.
    Chang S-H, Gray SK, Schatz GC. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt Express. 2005;13:3150–65.CrossRefGoogle Scholar
  73. 73.
    Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127:5043–8.CrossRefGoogle Scholar
  74. 74.
    Hutter E, Fendler JH. Exploitation of localized surface plasmon resonance. Adv Mater. 2004;16:1685–706.CrossRefGoogle Scholar
  75. 75.
    Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain. Boston: Artech House; 2005.Google Scholar
  76. 76.
    Mack NH, Wackerly JW, Malyarchuk V, Rogers JA, Moore JS, Nuzzo RG. Optical transduction of chemical forces. Nano Lett. 2007;7:733–7.CrossRefGoogle Scholar
  77. 77.
    Lin L, Harris JW, Thompson GR, Brody JP. Surface plasmon resonance-based sensors to identify cis-regulatory elements. Anal Chem. 2004;76:6555–9.CrossRefGoogle Scholar
  78. 78.
    Huang TT, Sturgis J, Gomez R, Geng T, Bashir R, Bhunia AK, Robinson JP, Ladisch MR. Composite surface for blocking bacterial adsorption on protein biochips. Biotechnol Bioeng. 2003;81:618–24.CrossRefGoogle Scholar
  79. 79.
    Mack NH, Dong R, Nuzzo RG. Quantitative imaging of protein adsorption on patterned organic thin-film arrays using secondary electron emission. J Am Chem Soc. 2006;128:7871–81.CrossRefGoogle Scholar
  80. 80.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL. Nanohole-enhanced Raman scattering. Nano Lett. 2004;4:2015–8.CrossRefGoogle Scholar
  81. 81.
    Haynes CL, Van Duyne RP. Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2003;107:7426–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • An-Phong Le
    • 1
  • Stephen K. Gray
    • 2
  • Ralph G. Nuzzo
    • 1
    • 3
  • John A. Rogers
    • 1
    • 3
    Email author
  1. 1.Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Center for Nanoscale Materials, Argonne National LaboratoryArgonneUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations