Skip to main content

Laser Manipulation of Plasmonic Nanoparticles for SERS and Sensing

  • Chapter
  • First Online:
  • 2110 Accesses

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Optical tweezers have found widespread use in studies of biological macromolecules and in manipulation of microscopic objects, including biological cells and a variety of dielectric particles. But rapid progress over the last decade has demonstrated that optical tweezers also can be used as a powerful method for manipulation and control of plasmonic metal nanostructures. Here, we review our recent results in this area with a focus on the interaction between nanoparticles confined in an optical trap and applications in surface-enhanced Raman scattering spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Friese MEJ, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature. 1998;394:348–50.

    Article  CAS  Google Scholar 

  2. Nishimura Y, Misumi O, Matsunaga S, Higashiyama T, Yokota A, Kuroiwa T. The active digestion of uniparental chloroplast DNA in a single zygote of Chlamydomonas reinhardtii is revealed by using the optical tweezer. Proc Natl Acad Sci U S A. 1999;96:12577–82.

    Article  CAS  Google Scholar 

  3. Grover SC, Skirtach AG, Gauthier RC, Grover CP. Automated single-cell sorting system based on optical trapping. J Biomed Opt. 2001;6:14–22.

    Article  CAS  Google Scholar 

  4. Bonin KD, Kourmanov B, Walker TG. Light torque nanocontrol, nanomotors and nanorockers. Opt Express. 2002;10:984–9.

    Google Scholar 

  5. Svoboda K, Block SM. Optical trapping of metallic Rayleigh particles. Opt Lett. 1994;19:930–2.

    Article  CAS  Google Scholar 

  6. Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksor M, Hanstorp D. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 2004;4:115–8.

    Article  CAS  Google Scholar 

  7. Hansen PM, Bhatia VK, Harrit N, Oddershede L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005;5:1937–42.

    Article  CAS  Google Scholar 

  8. Svedberg F, Li ZP, Xu HX, Käll M. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett. 2006;6:2639–41.

    Article  CAS  Google Scholar 

  9. Svedberg F, Käll M. On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discuss. 2006;132:35–44.

    Article  CAS  Google Scholar 

  10. Tong LM, Righini M, Gonzalez MU, Quidant R, Käll M. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip. 2009;9:193–5.

    Article  CAS  Google Scholar 

  11. Rao S, Raj S, Balint S, Fons CB, Campoy S, Llagostera M, Petrov D. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl Phys Lett. 2010;96:213701.

    Article  Google Scholar 

  12. Xu HX, Käll M. Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett. 2002;89:246802.

    Article  Google Scholar 

  13. Li ZP, Käll M, Xu H. Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Phys Rev B Condens Matter Mater Phys. 2008;77:085412.

    Article  Google Scholar 

  14. Miljkovic VD, Pakizeh T, Sepulveda B, Johansson P, Käll M. Optical forces in plasmonic nanoparticle dimers. J Phys Chem C. 2010;114:7472–9.

    Article  CAS  Google Scholar 

  15. Righini M, Zelenina AS, Girard C, Quidant R. Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. 2007;3:477–80.

    Article  CAS  Google Scholar 

  16. Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics. 2008;2:365–70.

    Article  CAS  Google Scholar 

  17. Zhang WH, Huang LN, Santschi C, Martin OJF. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010;10:1006–11.

    Article  Google Scholar 

  18. Pelton M, Liu MZ, Kim HY, Smith G, Guyot-Sionnest P, Scherer NE. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt Lett. 2006;31:2075–7.

    Article  CAS  Google Scholar 

  19. Tong LM, Miljkovic VD, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 2010;10:268–73.

    Article  CAS  Google Scholar 

  20. Selhuber-Unkel C, Zins I, Schubert O, Sonnichsen C, Oddershede LB. Quantitative optical trapping of single gold nanorods. Nano Lett. 2008;8:2998–3003.

    Article  CAS  Google Scholar 

  21. Liu M, Zentgraf T, Liu YM, Bartal G, Zhang X. Light-driven nanoscale plasmonic motors. Nat Nanotechnol. 2010;5:570–3.

    Article  CAS  Google Scholar 

  22. Tong L, Miljkovic VD, Johansson P, Käll M. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano Lett. 2011;11:4505–8.

    Article  CAS  Google Scholar 

  23. Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24:156–9.

    Article  CAS  Google Scholar 

  24. Ramser K, Enger J, Goksör M, Hanstorp D, Logg K, Käll M. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab Chip. 2004;5:431–6.

    Article  Google Scholar 

  25. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.

    Article  CAS  Google Scholar 

  26. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–77.

    Article  CAS  Google Scholar 

  27. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116:6755–9.

    Article  CAS  Google Scholar 

  28. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou SL, Schatz GC. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B. 2005;109:1079–87.

    Article  CAS  Google Scholar 

  29. Shelton WA, Bonin KD, Walker TG. Nonlinear motion of optically torqued nanorods. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71:036204.

    Article  Google Scholar 

  30. Hallock AJ, Redmond PL, Brus LE. Optical forces between metallic particles. Proc Natl Acad Sci U S A. 2005;102:1280–4.

    Article  CAS  Google Scholar 

  31. Tang ZY, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science. 2002;297:237–40.

    Article  CAS  Google Scholar 

  32. Yethiraj A, van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature. 2003;421:513–7.

    Article  CAS  Google Scholar 

  33. Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater. 2006;5:265–70.

    Article  CAS  Google Scholar 

  34. Shaw DJ. Introduction to colloid and surface chemistry. 4th ed. Oxford: Butterworth-Heinemann; 2000.

    Google Scholar 

  35. Israelachvili JN. Intermolecular and surface forces. 2nd ed. San Diego: Academic; 1992.

    Google Scholar 

  36. Hahn MW, Abadzic D, O'Melia CR. Aquasols: on the role of secondary minima. Environ Sci Technol. 2004;38:5915–24.

    Article  CAS  Google Scholar 

  37. Kane V, Mulvaney P. Double-layer interactions between self-assembled monolayers of omega-mercaptoundecanoic acid on gold surfaces. Langmuir. 1998;14:3303–11.

    Article  CAS  Google Scholar 

  38. Ashby PD, Chen LW, Lieber CM. Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy. J Am Chem Soc. 2000;122:9467–72.

    Article  CAS  Google Scholar 

  39. Tanaka Y, Yoshikawa H, Itoh T, Ishikawa M. Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam. J Phys Chem C. 2009;113:11856–60.

    Article  CAS  Google Scholar 

  40. Jordan P, Cooper J, McNay G, Docherty FT, Graham D, Smith WE, Sinclair G, Padgett MJ. Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. Opt Express. 2005;13:4148–53.

    Article  CAS  Google Scholar 

  41. Balint S, Kreuzer MP, Rao S, Badenes G, Miskovsky P, Petrov D. Simple route for preparing optically trappable probes for surface-enhanced Raman scattering. J Phys Chem C. 2009;113:17724–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Käll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tong, L., Käll, M. (2012). Laser Manipulation of Plasmonic Nanoparticles for SERS and Sensing. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_7

Download citation

Publish with us

Policies and ethics