Laser Manipulation of Plasmonic Nanoparticles for SERS and Sensing

  • Lianming Tong
  • Mikael KällEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


Optical tweezers have found widespread use in studies of biological macromolecules and in manipulation of microscopic objects, including biological cells and a variety of dielectric particles. But rapid progress over the last decade has demonstrated that optical tweezers also can be used as a powerful method for manipulation and control of plasmonic metal nanostructures. Here, we review our recent results in this area with a focus on the interaction between nanoparticles confined in an optical trap and applications in surface-enhanced Raman scattering spectroscopy.


Silver Nanoparticles Localize Surface Plasmon Resonance Optical Potential Microfluidic Channel Optical Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Friese MEJ, Nieminen TA, Heckenberg NR, Rubinsztein-Dunlop H. Optical alignment and spinning of laser-trapped microscopic particles. Nature. 1998;394:348–50.CrossRefGoogle Scholar
  2. 2.
    Nishimura Y, Misumi O, Matsunaga S, Higashiyama T, Yokota A, Kuroiwa T. The active digestion of uniparental chloroplast DNA in a single zygote of Chlamydomonas reinhardtii is revealed by using the optical tweezer. Proc Natl Acad Sci U S A. 1999;96:12577–82.CrossRefGoogle Scholar
  3. 3.
    Grover SC, Skirtach AG, Gauthier RC, Grover CP. Automated single-cell sorting system based on optical trapping. J Biomed Opt. 2001;6:14–22.CrossRefGoogle Scholar
  4. 4.
    Bonin KD, Kourmanov B, Walker TG. Light torque nanocontrol, nanomotors and nanorockers. Opt Express. 2002;10:984–9.Google Scholar
  5. 5.
    Svoboda K, Block SM. Optical trapping of metallic Rayleigh particles. Opt Lett. 1994;19:930–2.CrossRefGoogle Scholar
  6. 6.
    Prikulis J, Svedberg F, Käll M, Enger J, Ramser K, Goksor M, Hanstorp D. Optical spectroscopy of single trapped metal nanoparticles in solution. Nano Lett. 2004;4:115–8.CrossRefGoogle Scholar
  7. 7.
    Hansen PM, Bhatia VK, Harrit N, Oddershede L. Expanding the optical trapping range of gold nanoparticles. Nano Lett. 2005;5:1937–42.CrossRefGoogle Scholar
  8. 8.
    Svedberg F, Li ZP, Xu HX, Käll M. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. Nano Lett. 2006;6:2639–41.CrossRefGoogle Scholar
  9. 9.
    Svedberg F, Käll M. On the importance of optical forces in surface-enhanced Raman scattering (SERS). Faraday Discuss. 2006;132:35–44.CrossRefGoogle Scholar
  10. 10.
    Tong LM, Righini M, Gonzalez MU, Quidant R, Käll M. Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip. 2009;9:193–5.CrossRefGoogle Scholar
  11. 11.
    Rao S, Raj S, Balint S, Fons CB, Campoy S, Llagostera M, Petrov D. Single DNA molecule detection in an optical trap using surface-enhanced Raman scattering. Appl Phys Lett. 2010;96:213701.CrossRefGoogle Scholar
  12. 12.
    Xu HX, Käll M. Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys Rev Lett. 2002;89:246802.CrossRefGoogle Scholar
  13. 13.
    Li ZP, Käll M, Xu H. Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. Phys Rev B Condens Matter Mater Phys. 2008;77:085412.CrossRefGoogle Scholar
  14. 14.
    Miljkovic VD, Pakizeh T, Sepulveda B, Johansson P, Käll M. Optical forces in plasmonic nanoparticle dimers. J Phys Chem C. 2010;114:7472–9.CrossRefGoogle Scholar
  15. 15.
    Righini M, Zelenina AS, Girard C, Quidant R. Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys. 2007;3:477–80.CrossRefGoogle Scholar
  16. 16.
    Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y. Nanometric optical tweezers based on nanostructured substrates. Nat Photonics. 2008;2:365–70.CrossRefGoogle Scholar
  17. 17.
    Zhang WH, Huang LN, Santschi C, Martin OJF. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 2010;10:1006–11.CrossRefGoogle Scholar
  18. 18.
    Pelton M, Liu MZ, Kim HY, Smith G, Guyot-Sionnest P, Scherer NE. Optical trapping and alignment of single gold nanorods by using plasmon resonances. Opt Lett. 2006;31:2075–7.CrossRefGoogle Scholar
  19. 19.
    Tong LM, Miljkovic VD, Käll M. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. Nano Lett. 2010;10:268–73.CrossRefGoogle Scholar
  20. 20.
    Selhuber-Unkel C, Zins I, Schubert O, Sonnichsen C, Oddershede LB. Quantitative optical trapping of single gold nanorods. Nano Lett. 2008;8:2998–3003.CrossRefGoogle Scholar
  21. 21.
    Liu M, Zentgraf T, Liu YM, Bartal G, Zhang X. Light-driven nanoscale plasmonic motors. Nat Nanotechnol. 2010;5:570–3.CrossRefGoogle Scholar
  22. 22.
    Tong L, Miljkovic VD, Johansson P, Käll M. Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. Nano Lett. 2011;11:4505–8.CrossRefGoogle Scholar
  23. 23.
    Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970;24:156–9.CrossRefGoogle Scholar
  24. 24.
    Ramser K, Enger J, Goksör M, Hanstorp D, Logg K, Käll M. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Lab Chip. 2004;5:431–6.CrossRefGoogle Scholar
  25. 25.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.CrossRefGoogle Scholar
  26. 26.
    Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107:668–77.CrossRefGoogle Scholar
  27. 27.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116:6755–9.CrossRefGoogle Scholar
  28. 28.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Käll M, Zou SL, Schatz GC. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B. 2005;109:1079–87.CrossRefGoogle Scholar
  29. 29.
    Shelton WA, Bonin KD, Walker TG. Nonlinear motion of optically torqued nanorods. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71:036204.CrossRefGoogle Scholar
  30. 30.
    Hallock AJ, Redmond PL, Brus LE. Optical forces between metallic particles. Proc Natl Acad Sci U S A. 2005;102:1280–4.CrossRefGoogle Scholar
  31. 31.
    Tang ZY, Kotov NA, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science. 2002;297:237–40.CrossRefGoogle Scholar
  32. 32.
    Yethiraj A, van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar. Nature. 2003;421:513–7.CrossRefGoogle Scholar
  33. 33.
    Bigioni TP, Lin XM, Nguyen TT, Corwin EI, Witten TA, Jaeger HM. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater. 2006;5:265–70.CrossRefGoogle Scholar
  34. 34.
    Shaw DJ. Introduction to colloid and surface chemistry. 4th ed. Oxford: Butterworth-Heinemann; 2000.Google Scholar
  35. 35.
    Israelachvili JN. Intermolecular and surface forces. 2nd ed. San Diego: Academic; 1992.Google Scholar
  36. 36.
    Hahn MW, Abadzic D, O'Melia CR. Aquasols: on the role of secondary minima. Environ Sci Technol. 2004;38:5915–24.CrossRefGoogle Scholar
  37. 37.
    Kane V, Mulvaney P. Double-layer interactions between self-assembled monolayers of omega-mercaptoundecanoic acid on gold surfaces. Langmuir. 1998;14:3303–11.CrossRefGoogle Scholar
  38. 38.
    Ashby PD, Chen LW, Lieber CM. Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy. J Am Chem Soc. 2000;122:9467–72.CrossRefGoogle Scholar
  39. 39.
    Tanaka Y, Yoshikawa H, Itoh T, Ishikawa M. Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam. J Phys Chem C. 2009;113:11856–60.CrossRefGoogle Scholar
  40. 40.
    Jordan P, Cooper J, McNay G, Docherty FT, Graham D, Smith WE, Sinclair G, Padgett MJ. Surface-enhanced resonance Raman scattering in optical tweezers using co-axial second harmonic generation. Opt Express. 2005;13:4148–53.CrossRefGoogle Scholar
  41. 41.
    Balint S, Kreuzer MP, Rao S, Badenes G, Miskovsky P, Petrov D. Simple route for preparing optically trappable probes for surface-enhanced Raman scattering. J Phys Chem C. 2009;113:17724–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations