Plasmon Biophotonic Arrays for Multi-analyte Biosensing in Complex Media

  • Andrew M. Shaw
  • Rouslan V. Olkhov
  • Artem Jerdev
  • William L. Barnes
Part of the Integrated Analytical Systems book series (ANASYS)


The design of plasmon-based sensors for analysis of complex media such as serum is sensitive to the effects of non-specific binding. A simple analysis is presented to provide insight into the orders of magnitude involved in the kinetics of the problem and how label-free Immuno-kinetic assays may compensate for these effects. We then consider some specific challenges including sensitivity and non-specific binding discussed in terms of the kinetic and thermodynamic parameters of the protein–protein interactions which define the extent of fouling of the target sensor surface. Nanoparticle plasmon arrays have some fundamental advantages in multi-analyte sensing in complex media such as blood and the advantages of multiple measurements are considered in the context of a global mechanistic, kinetic analysis to profile the complex medium composition.


Surface Plasmon Resonance Human Serum Albumin Localise Surface Plasmon Resonance Sensor Surface Analyte Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the RCUK, Basic Technology Grant, EP/C52389X/1 and the Royal Society.


  1. 1.
    Zlotta AR, Djavan B, Marberger M, Schulman CC. Prostate specific antigen density of the transition zone: a new effective parameter for prostate cancer prediction. J Urol. 1997;157:1315–21.CrossRefGoogle Scholar
  2. 2.
    Frank R, Hargreaves R. Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov. 2003;2:566–80.CrossRefGoogle Scholar
  3. 3.
    Giljohann DA, Mirkin CA. Drivers of biodiagnostic development. Nature. 2009;462:461–4.CrossRefGoogle Scholar
  4. 4.
    Li Y, Lee HJ, Corn RM. Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging. Anal Chem. 2007;79:1082–8.CrossRefGoogle Scholar
  5. 5.
    Seibert V, Ebert MPA, Buschmann T. Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Brief Funct Genomic Proteomic. 2005;4:16–26.CrossRefGoogle Scholar
  6. 6.
    Koomen JM, Li D, Xiao L-C, Liu TC, Coombes KR, Abbruzzese J, et al. Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J Proteome Res. 2005;4:972–81.CrossRefGoogle Scholar
  7. 7.
    Yu X, Schneiderhan-Marra N, Joos TO. Protein microarrays for personalized medicine. Clin Chem. 2010;56:376–87.CrossRefGoogle Scholar
  8. 8.
    Lee HJ, Wark AW, Corn RM. Microarray methods for protein biomarker detection. Analyst. 2008;133:975–83.CrossRefGoogle Scholar
  9. 9.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.CrossRefGoogle Scholar
  10. 10.
    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.CrossRefGoogle Scholar
  11. 11.
    Liedberg B, Nylander C, Lundstrom I. Surface plasmon resonance for gas detection and biosensing. Sens Actuators. 1983;4:299–304.CrossRefGoogle Scholar
  12. 12.
    Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, VanDuyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.CrossRefGoogle Scholar
  13. 13.
    Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006;1:219–28.CrossRefGoogle Scholar
  14. 14.
    Barnes WL. Surface plasmon–polariton length scales: a route to sub-wavelength optics. J Opt A Pure Appl Opt. 2006;8:S87–93.CrossRefGoogle Scholar
  15. 15.
    Olkhov RV, Shaw AM. Label-free antibody-antigen binding detection by optical sensor array based on surface-synthesized gold nanoparticles. Biosens Bioelectron. 2008;23:1298–302.CrossRefGoogle Scholar
  16. 16.
    Murray AW, Suckling JR, Barnes WL. Overlayers on silver nanotriangles: field confinement and spectral position of localized surface plasmon resonances. Nano Lett. 2006;6:1772–7.CrossRefGoogle Scholar
  17. 17.
    Haes AJ, Van Duyne RP. A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem. 2004;379:920–30.CrossRefGoogle Scholar
  18. 18.
    Svedendahl M, Chen S, Dmitriev A, Käll M. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9:4428–33.CrossRefGoogle Scholar
  19. 19.
    Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J Phys Chem B. 1999;103:9846–53.CrossRefGoogle Scholar
  20. 20.
    Homola J, Vaisocherová H, Dostálek J, Piliarik M. Multi-analyte surface plasmon resonance biosensing. Methods. 2005;37:26–36.CrossRefGoogle Scholar
  21. 21.
    Hooper IR, Sambles JR, Pitter MC, Somekh MG. Phase sensitive array detection with polarisation modulated differential sensing. Sens Actuators B Chem. 2006;119:651–5.CrossRefGoogle Scholar
  22. 22.
    Nikitin PI, Grigorenko AN, Beloglazov AA, Valeiko MV, Savchuk AI, Savchuk OA, et al. Surface plasmon resonance interferometry for micro-array biosensing. Sens Actuators A Phys. 2000;85:189–93.CrossRefGoogle Scholar
  23. 23.
    Scarano S, Mascini M, Turner APF, Minunni M. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron. 2010;25:957–66.CrossRefGoogle Scholar
  24. 24.
    Beusink JB, Lokate AMC, Besselink GAJ, Pruijn GJM, Schasfoort RBM. Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron. 2008;23:839–44.CrossRefGoogle Scholar
  25. 25.
    Lausted C, Hu ZY, Hood L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics. 2008;7:2464–74.CrossRefGoogle Scholar
  26. 26.
    Edwards PR, Gill A, Pollardknight DV, Hoare M, Buckle PE, Lowe PA, et al. Kinetics of protein-protein interactions at the surface of an optical biosensor. Anal Biochem. 1995;231:210–7.CrossRefGoogle Scholar
  27. 27.
    Su X, Wu Y-J, Knoll W. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization. Biosens Bioelectron. 2005;21:719–26.CrossRefGoogle Scholar
  28. 28.
    Rickert J, Brecht A, Göpel W. Quartz crystal microbalances for quantitative biosensing and characterizing protein multilayers. Biosens Bioelectron. 1997;12:567–75.CrossRefGoogle Scholar
  29. 29.
    Vörös J. The density and refractive index of adsorbing protein layers. Biophys J. 2004;87:553–61.CrossRefGoogle Scholar
  30. 30.
    Anderson NL, Anderson NG. The human plasma proteome—history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.CrossRefGoogle Scholar
  31. 31.
    Myszka DG. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol. 1997;8:50–7.CrossRefGoogle Scholar
  32. 32.
    Masson J-F, Battaglia T, Cramer J, Beaudoin S, Sierks M, Booksh K. Reduction of nonspecific protein binding on surface plasmon resonance biosensors. Anal Bioanal Chem. 2006;386:1951–9.CrossRefGoogle Scholar
  33. 33.
    Brink G, Sigl H, Sackmann E. Near-infrared surface plasmon resonance in silicon-based sensor: new opportunities in sensitive detection of biomolecules from aqueous solutions by applying microstep for discriminating specific and non-specific binding. Sens Actuators B Chem. 1995;25:756–61.CrossRefGoogle Scholar
  34. 34.
    van Vuuren BJ, Read T, Olkhov RV, Shaw AM. Human serum albumin interference on plasmon-based immuno-kinetic assay for antibody screening in model blood sera. Anal Biochem. 2010;405:114–20.CrossRefGoogle Scholar
  35. 35.
    Sadana A, Chen Z. Influence of non-specific binding on antigen-antibody binding kinetics for biosensor applications. Biosens Bioelectron. 1996;11:17–33.CrossRefGoogle Scholar
  36. 36.
    Atkins P, de Paula J. Physical chemistry for the life sciences. Oxford: Oxford University Press; 2005.Google Scholar
  37. 37.
    Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, et al. Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem. 2005;344:161–7.CrossRefGoogle Scholar
  38. 38.
    Garcia BH, Goodman RM. Use of surface plasmon resonance imaging to study viral RNA: protein interactions. J Virol Methods. 2008;147:18–25.CrossRefGoogle Scholar
  39. 39.
    Wikman M, Steffen A-C, Gunneriusson E, Tolmachev V, Adams GP, Carlsson J, et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng Des Sel. 2004;17:455–62.CrossRefGoogle Scholar
  40. 40.
    Karlsson R, Fält A. Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods. 1997;200:121–33.CrossRefGoogle Scholar
  41. 41.
    Slack Steven M, Horbett Thomas A. The Vroman effect, proteins at interfaces II. Washington, DC: American Chemical Society; 1995. p. 112–28.CrossRefGoogle Scholar
  42. 42.
    Choi S, Yang Y, Chae J. Surface plasmon resonance protein sensor using Vroman effect. Biosens Bioelectron. 2008;24:893–9.CrossRefGoogle Scholar
  43. 43.
    Rich RL, Papalia GA, Flynn PJ, Furneisen J, Quinn J, Klein JS, et al. A global benchmark study using affinity-based biosensors. Anal Biochem. 2009;386:194–216.CrossRefGoogle Scholar
  44. 44.
    Svitel J, Balbo A, Mariuzza RA, Gonzales NR, Schuck P. Combined affinity and rate constant distributions of ligand populations from experimental surface binding kinetics and equilibria. Biophys J. 2003;84:4062–77.CrossRefGoogle Scholar
  45. 45.
    Olkhov RV, Fowke JD, Shaw AM. Whole serum BSA antibody screening using a label-free biophotonic nanoparticle array. Anal Biochem. 2009;385:234–41.CrossRefGoogle Scholar
  46. 46.
    Olkhov RV, Shaw AM. Quantitative label-free screening for antibodies using scattering biophotonic microarray imaging. Anal Biochem. 2010;396:30–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Andrew M. Shaw
    • 1
  • Rouslan V. Olkhov
    • 1
  • Artem Jerdev
    • 2
  • William L. Barnes
    • 2
  1. 1.School of BiosciencesUniversity of ExeterExeterUK
  2. 2.School of PhysicsUniversity of ExeterExeterUK

Personalised recommendations