Skip to main content

Dual Functions of Nanoplasmonic Optical Antennas: Nanoplasmonic Gene Switches and Biosensors

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Within a living cell, the intracellular distribution is spatially nonuniform and dynamically changing over time in response to environmental cues. By focusing on electromagnetic fields down to dimensions smaller than the diffraction limit, nanoplasmonic optical antennas, functioning as nanoplasmonic gene switches, enable on- demand and spatially precise regulation of genetic activity to give rise to location-specific function. In addition to on-demand gene regulation, nanoplasmonic optical antennas also function as label-free biosensors that significantly enhance spectral information for plasmon resonance energy transfer, surface-enhanced Raman spectroscopy, and nanoplasmonic molecular rulers. “Spectral snapshots” (i.e., spectroscopic imaging) of the dynamically changing intracellular biochemical distribution can be obtained over time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.

    Google Scholar 

  2. Liu GL, Long Y, Choi Y, Kang T, Lee LP. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat Methods. 2007;4:1015–7.

    Article  CAS  Google Scholar 

  3. Choi Y, Park Y, Kang T, Lee LP. Selective and sensitive detection of metal ions by plasmon resonance energy transfer-based nanospectroscopy. Nat Nanotechnol. 2009;4:742–6.

    Article  CAS  Google Scholar 

  4. Choi Y, Kang T, Lee LP. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett. 2009;9:85–90.

    Article  CAS  Google Scholar 

  5. Nikoobakht B, Wang J, El-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett. 2002;366:17–23.

    Article  CAS  Google Scholar 

  6. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–6.

    Article  CAS  Google Scholar 

  7. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  Google Scholar 

  8. Liu GL, Lu Y, Kim J, Doll JC, Lee LP. Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater. 2005;17:2683–8.

    Article  CAS  Google Scholar 

  9. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 2005;5:119–24.

    Article  CAS  Google Scholar 

  10. Kniepp K, Kniepp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev. 1999;99:2957–75.

    Article  Google Scholar 

  11. Jackson JB, Halas NJ. Surface-enhanced raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A. 2004;101:17930–5.

    Article  CAS  Google Scholar 

  12. Cho H, Lee B, Liu GL, Agarwal A, Lee LP. Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip. 2009;9:3360–3.

    Article  CAS  Google Scholar 

  13. Choi D, Kang T, Cho H, Choi Y, Lee LP. Additional amplifications of SERS via an optofluidic CD-based platform. Lab Chip. 2009;9:239–43.

    Article  CAS  Google Scholar 

  14. Liu GL, Yin Y, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA fingerprinting. Nat Nanotechnol. 2006;1:47–52.

    Article  CAS  Google Scholar 

  15. Cortie M, Xu X, Chowdhury H, Zareie H, Smith G. Plasmonic heating of gold nanoparticles and its exploitation. Proc SPIE. 2005;5649:565–73.

    Article  CAS  Google Scholar 

  16. Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology. 2006;17:5167–79.

    Article  CAS  Google Scholar 

  17. Link S, El-Sayed M. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19:409–53.

    Article  CAS  Google Scholar 

  18. Lee SE, Liu GL, Kim F, Lee LP. Remote optical switch for localized and selective control of gene interference. Nano Lett. 2009;9:562–70.

    Article  CAS  Google Scholar 

  19. Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, et al. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 2005;5:1371–7.

    Article  CAS  Google Scholar 

  20. Svoboda K. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–85.

    Article  CAS  Google Scholar 

  21. Gersten J. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys. 1980;73:3023–37.

    Article  CAS  Google Scholar 

  22. Barhoumi A, Huschka R, Bardhana R, Knight MW, Halas NJ. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem Phys Lett. 2009;482:171–9.

    Article  CAS  Google Scholar 

  23. Jones MR, Millstone JE, Giljohann DA, Seferos DS, Young KL, Mirkin CA. Plasmonically controlled nucleic acid dehybridization with gold nanoprisms. Chemphyschem. 2009;10:1461–5.

    Article  CAS  Google Scholar 

  24. Horiguchi Y, Niidome T, Yamada S, Nakashima N, Niidome Y. Expression of plasmid DNA released from DNA conjugates of gold nanorods. Chem Lett. 2007;36:952–3.

    Article  CAS  Google Scholar 

  25. Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun. 2005;2247–49 http://pubs.rsc.org/en/Content/ArticleLanding/2005/CC/b500337g.

  26. Chen C, Lin Y, Wang C, Tzeng H, Wu C, Chen Y, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc. 2006;128:3709–15.

    Article  CAS  Google Scholar 

  27. Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano. 2009;3:2007–15.

    Article  CAS  Google Scholar 

  28. Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano. 2009;3:80–6.

    Article  CAS  Google Scholar 

  29. Zhang D, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, et al. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 2009;9:666–71.

    Article  CAS  Google Scholar 

  30. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem. 2000;72:5535–41.

    Article  CAS  Google Scholar 

  31. Brayner R. The toxicology impact of nanoparticles. Nanotoday. 2008;3:48–55.

    Google Scholar 

  32. Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene. 2003;22:9087–96.

    Article  CAS  Google Scholar 

  33. Marcusson EG, Bhat B, Manoharan M, Bennett CF, Dean NM. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res. 1998;26:2016–23.

    Article  CAS  Google Scholar 

  34. Nakayama N, Eichhorst ST, Müller M, Krammer PH. Ethanol-induced apoptosis in hepatoma cells proceeds via intracellular Ca2+ elevation, activation of TLCK-sensitive proteases, and cytochrome c release. Exp Cell Res. 2001;269:202–13.

    Article  CAS  Google Scholar 

  35. Jackson JD. Classical electrodynamics. 3rd ed. New York: Wiley; 1999.

    Google Scholar 

  36. Etchegoin PG, Le Ru EC, Meyer M. An analytic model for the optical properties of gold. J Chem Phys. 2006;125:164705.

    Article  CAS  Google Scholar 

  37. Ross B, Lee LP. Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology. 2008;19:275201.

    Article  Google Scholar 

  38. Wu L, Ross BM, Hong S, Lee LP. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small. 2010;6:503–7.

    Article  CAS  Google Scholar 

  39. Liu GL, Kim J, Lu Y, Lee LP. Optofluidic control via photothermal nanoparticles. Nat Mater. 2006;5:27–32.

    Article  CAS  Google Scholar 

  40. Liu GL, Doll JC, Lee LP. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett. 2005;87:074101.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all current and previous BioPOETS for their invaluable scientific contribution to projects discussed in this book chapter. The authors acknowledge the National Institutes of Health (NIH) Nanomedicine Development Center for the Optical Control of Biological Function (PN2 EY018241) for financial support. The authors acknowledge the Siebel Foundation for graduate support S.E. Lee (Siebel Scholarship, Class of 2010). The authors acknowledge the Center for Nanostructured Materials and Technology (CNMT) of the Korea government for support of Y. Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke P. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, S.E., Park, Y., Kang, T., Lee, L.P. (2012). Dual Functions of Nanoplasmonic Optical Antennas: Nanoplasmonic Gene Switches and Biosensors. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_4

Download citation

Publish with us

Policies and ethics