Dual Functions of Nanoplasmonic Optical Antennas: Nanoplasmonic Gene Switches and Biosensors

  • Somin Eunice Lee
  • Younggeun Park
  • Taewook Kang
  • Luke P. LeeEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


Within a living cell, the intracellular distribution is spatially nonuniform and dynamically changing over time in response to environmental cues. By focusing on electromagnetic fields down to dimensions smaller than the diffraction limit, nanoplasmonic optical antennas, functioning as nanoplasmonic gene switches, enable on- demand and spatially precise regulation of genetic activity to give rise to location-specific function. In addition to on-demand gene regulation, nanoplasmonic optical antennas also function as label-free biosensors that significantly enhance spectral information for plasmon resonance energy transfer, surface-enhanced Raman spectroscopy, and nanoplasmonic molecular rulers. “Spectral snapshots” (i.e., spectroscopic imaging) of the dynamically changing intracellular biochemical distribution can be obtained over time.


Plasmon Resonance Local Field Enhancement Antenna Effect Polystyrene Nanospheres Plasmon Resonance Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank all current and previous BioPOETS for their invaluable scientific contribution to projects discussed in this book chapter. The authors acknowledge the National Institutes of Health (NIH) Nanomedicine Development Center for the Optical Control of Biological Function (PN2 EY018241) for financial support. The authors acknowledge the Siebel Foundation for graduate support S.E. Lee (Siebel Scholarship, Class of 2010). The authors acknowledge the Center for Nanostructured Materials and Technology (CNMT) of the Korea government for support of Y. Park.


  1. 1.
    Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walters P. Molecular biology of the cell. 4th ed. New York: Garland Science; 2002.Google Scholar
  2. 2.
    Liu GL, Long Y, Choi Y, Kang T, Lee LP. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat Methods. 2007;4:1015–7.CrossRefGoogle Scholar
  3. 3.
    Choi Y, Park Y, Kang T, Lee LP. Selective and sensitive detection of metal ions by plasmon resonance energy transfer-based nanospectroscopy. Nat Nanotechnol. 2009;4:742–6.CrossRefGoogle Scholar
  4. 4.
    Choi Y, Kang T, Lee LP. Plasmon resonance energy transfer (PRET)-based molecular imaging of cytochrome c in living cells. Nano Lett. 2009;9:85–90.CrossRefGoogle Scholar
  5. 5.
    Nikoobakht B, Wang J, El-Sayed MA. Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett. 2002;366:17–23.CrossRefGoogle Scholar
  6. 6.
    Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275:1102–6.CrossRefGoogle Scholar
  7. 7.
    Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.CrossRefGoogle Scholar
  8. 8.
    Liu GL, Lu Y, Kim J, Doll JC, Lee LP. Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomolecular imaging. Adv Mater. 2005;17:2683–8.CrossRefGoogle Scholar
  9. 9.
    Lu Y, Liu GL, Kim J, Mejia YX, Lee LP. Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett. 2005;5:119–24.CrossRefGoogle Scholar
  10. 10.
    Kniepp K, Kniepp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev. 1999;99:2957–75.CrossRefGoogle Scholar
  11. 11.
    Jackson JB, Halas NJ. Surface-enhanced raman scattering on tunable plasmonic nanoparticle substrates. Proc Natl Acad Sci U S A. 2004;101:17930–5.CrossRefGoogle Scholar
  12. 12.
    Cho H, Lee B, Liu GL, Agarwal A, Lee LP. Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip. 2009;9:3360–3.CrossRefGoogle Scholar
  13. 13.
    Choi D, Kang T, Cho H, Choi Y, Lee LP. Additional amplifications of SERS via an optofluidic CD-based platform. Lab Chip. 2009;9:239–43.CrossRefGoogle Scholar
  14. 14.
    Liu GL, Yin Y, Kunchakarra S, Mukherjee B, Gerion D, Jett SD, et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA fingerprinting. Nat Nanotechnol. 2006;1:47–52.CrossRefGoogle Scholar
  15. 15.
    Cortie M, Xu X, Chowdhury H, Zareie H, Smith G. Plasmonic heating of gold nanoparticles and its exploitation. Proc SPIE. 2005;5649:565–73.CrossRefGoogle Scholar
  16. 16.
    Khlebtsov B, Zharov V, Melnikov A, Tuchin V, Khlebtsov N. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology. 2006;17:5167–79.CrossRefGoogle Scholar
  17. 17.
    Link S, El-Sayed M. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem. 2000;19:409–53.CrossRefGoogle Scholar
  18. 18.
    Lee SE, Liu GL, Kim F, Lee LP. Remote optical switch for localized and selective control of gene interference. Nano Lett. 2009;9:562–70.CrossRefGoogle Scholar
  19. 19.
    Skirtach AG, Dejugnat C, Braun D, Susha AS, Rogach AL, Parak WJ, et al. The role of metal nanoparticles in remote release of encapsulated materials. Nano Lett. 2005;5:1371–7.CrossRefGoogle Scholar
  20. 20.
    Svoboda K. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–85.CrossRefGoogle Scholar
  21. 21.
    Gersten J. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys. 1980;73:3023–37.CrossRefGoogle Scholar
  22. 22.
    Barhoumi A, Huschka R, Bardhana R, Knight MW, Halas NJ. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem Phys Lett. 2009;482:171–9.CrossRefGoogle Scholar
  23. 23.
    Jones MR, Millstone JE, Giljohann DA, Seferos DS, Young KL, Mirkin CA. Plasmonically controlled nucleic acid dehybridization with gold nanoprisms. Chemphyschem. 2009;10:1461–5.CrossRefGoogle Scholar
  24. 24.
    Horiguchi Y, Niidome T, Yamada S, Nakashima N, Niidome Y. Expression of plasmid DNA released from DNA conjugates of gold nanorods. Chem Lett. 2007;36:952–3.CrossRefGoogle Scholar
  25. 25.
    Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun. 2005;2247–49
  26. 26.
    Chen C, Lin Y, Wang C, Tzeng H, Wu C, Chen Y, et al. DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc. 2006;128:3709–15.CrossRefGoogle Scholar
  27. 27.
    Braun GB, Pallaoro A, Wu G, Missirlis D, Zasadzinski JA, Tirrell M, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano. 2009;3:2007–15.CrossRefGoogle Scholar
  28. 28.
    Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano. 2009;3:80–6.CrossRefGoogle Scholar
  29. 29.
    Zhang D, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, et al. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 2009;9:666–71.CrossRefGoogle Scholar
  30. 30.
    Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem. 2000;72:5535–41.CrossRefGoogle Scholar
  31. 31.
    Brayner R. The toxicology impact of nanoparticles. Nanotoday. 2008;3:48–55.Google Scholar
  32. 32.
    Dean NM, Bennett CF. Antisense oligonucleotide-based therapeutics for cancer. Oncogene. 2003;22:9087–96.CrossRefGoogle Scholar
  33. 33.
    Marcusson EG, Bhat B, Manoharan M, Bennett CF, Dean NM. Phosphorothioate oligodeoxyribonucleotides dissociate from cationic lipids before entering the nucleus. Nucleic Acids Res. 1998;26:2016–23.CrossRefGoogle Scholar
  34. 34.
    Nakayama N, Eichhorst ST, Müller M, Krammer PH. Ethanol-induced apoptosis in hepatoma cells proceeds via intracellular Ca2+ elevation, activation of TLCK-sensitive proteases, and cytochrome c release. Exp Cell Res. 2001;269:202–13.CrossRefGoogle Scholar
  35. 35.
    Jackson JD. Classical electrodynamics. 3rd ed. New York: Wiley; 1999.Google Scholar
  36. 36.
    Etchegoin PG, Le Ru EC, Meyer M. An analytic model for the optical properties of gold. J Chem Phys. 2006;125:164705.CrossRefGoogle Scholar
  37. 37.
    Ross B, Lee LP. Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology. 2008;19:275201.CrossRefGoogle Scholar
  38. 38.
    Wu L, Ross BM, Hong S, Lee LP. Bioinspired nanocorals with decoupled cellular targeting and sensing functionality. Small. 2010;6:503–7.CrossRefGoogle Scholar
  39. 39.
    Liu GL, Kim J, Lu Y, Lee LP. Optofluidic control via photothermal nanoparticles. Nat Mater. 2006;5:27–32.CrossRefGoogle Scholar
  40. 40.
    Liu GL, Doll JC, Lee LP. Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl Phys Lett. 2005;87:074101.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Somin Eunice Lee
    • 1
  • Younggeun Park
    • 1
    • 2
  • Taewook Kang
    • 2
  • Luke P. Lee
    • 1
    Email author
  1. 1.Department of BioengineeringUniversity of California-Berkeley, UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley Sensor & Actuator CenterBerkeleyUSA
  2. 2.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulSouth Korea

Personalised recommendations