Skip to main content

Nanoplasmonic Sensing Combined with Artificial Cell Membranes

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter is dedicated to nanoplasmonic sensing systems made compatible with studies of artificial cell membranes. After a short motivation to the opportunity of sensors designed for such studies to fill an existing technological gap, we introduce basic features of cell membranes and common mimics of the cell membrane that have been proven useful in various bioanalytical sensing applications.

With suitable examples from the literature, subsequent sections exemplify how nanoplasmonics can be used to study different reactions that are associated with cell membranes. In particular, focus is on unique possibilities provided by different types of nanoplasmonic structures. For example, while discrete nanoplasmonic particles can be used as mobile probes attached to cell membranes, conductive nanoplasmonic hole structures can be used for combined optical and electrical transduction. Examples on how the latter possibility has enabled cell membrane-related reactions to be investigated with nanoplasmonic sensing combined with quartz crystal microbalance with dissipation monitoring are presented. Another key aspect of nanoplasmonic structures is that the plasmonic field (and hence the refractive index sensitivity) is strongest at the sensor surface and decays rapidly away from the surface. We describe how this feature provides a means to monitor structural changes of molecules on the surface, such as the spontaneous rupture of lipid vesicles into a supported lipid bilayer on silicon oxide-coated nanoplasmonic holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that although these three steps are sufficient for this analysis, the data also includes the adsorption of NeutrAvidin to the bilayer (a small fraction of biotinylated lipids were used as in the example above) and a third bulk sensitivity measurement. These steps are discussed in the next section.

References

  1. Gouaux E, MacKinnon R. Principles of selective ion transport in channels and pumps. Science. 2005;310(5753):1461–5.

    Article  CAS  Google Scholar 

  2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.

    Article  Google Scholar 

  3. Cooper MA. Advances in membrane receptor screening and analysis. J Mol Recognit. 2004;17(4):286–315.

    Article  CAS  Google Scholar 

  4. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569–72.

    Article  CAS  Google Scholar 

  5. Campbell SM, Crowe SM, Mak J. Lipid rafts and HIV-1: from viral entry to assembly of progeny virions. J Clin Virol. 2001;22(3):217–27.

    Article  CAS  Google Scholar 

  6. Fortin DL, et al. Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci. 2004;24(30):6715–23.

    Article  CAS  Google Scholar 

  7. Salaun C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic. 2004;5(4):255–64.

    Article  Google Scholar 

  8. Alves ID, Park CK, Hruby VJ. Plasmon resonance methods in GPCR signaling and other membrane events. Curr Protein Pept Sci. 2005;6(4):293–312.

    Article  CAS  Google Scholar 

  9. Barenholz Y, et al. Simple method for preparation of homogeneous phospholipid vesicles. Biochemistry. 1977;16(12):2806–10.

    Article  CAS  Google Scholar 

  10. Hope MJ, et al. Production of large unilamellar vesicles by a rapid extrusion procedure—characterization of size distribution, trapped volume and ability to maintain a membrane-potential. Biochim Biophys Acta. 1985;812(1):55–65.

    Article  CAS  Google Scholar 

  11. Patty PJ, Frisken BJ. The pressure-dependence of the size of extruded vesicles. Biophys J. 2003;85(2):996–1004.

    Article  CAS  Google Scholar 

  12. Christensen SM, Stamou D. Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter. 2007;3(7):828–36.

    Article  CAS  Google Scholar 

  13. Boukobza E, Sonnenfeld A, Haran G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy. J Phys Chem B. 2001;105(48):12165–70.

    Article  CAS  Google Scholar 

  14. Svedhem S, et al. Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. Chembiochem. 2003;4(4):339–43.

    Article  CAS  Google Scholar 

  15. Yoshina-Ishii C, Boxer SG. Spatially encoded and mobile arrays of tethered lipid vesicles. Biophys J. 2003;84(2):379A.

    Google Scholar 

  16. Städler B, et al. Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases. 2006;1(4):142–5.

    Article  CAS  Google Scholar 

  17. Yoshina-Ishii C, et al. General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc. 2005;127(5):1356–7.

    Article  CAS  Google Scholar 

  18. Pfeiffer I, Höök F. Bivalent cholesterol-based coupling of oligonucleotides to lipid membrane assemblies. J Am Chem Soc. 2004;126(33):10224–5.

    Article  CAS  Google Scholar 

  19. Pfeiffer I, Höök F. Quantification of oligonucleotide modifications of small unilamellar lipid vesicles. Anal Chem. 2006;78(21):7493–8.

    Article  CAS  Google Scholar 

  20. Bailey K, et al. G-protein coupled receptor array technologies: site directed immobilisation of liposomes containing the H1-histamine or M2-muscarinic receptors. Proteomics. 2009;9(8):2052–63.

    Article  CAS  Google Scholar 

  21. Brian AA, McConnell HM. Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci U S A. 1984;81(19):6159–63.

    Article  CAS  Google Scholar 

  22. Castellana ET, Cremer PS. Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep. 2006;61(10):429–44.

    Article  CAS  Google Scholar 

  23. Richter RP, Berat R, Brisson AR. Formation of solid-supported lipid bilayers: an integrated view. Langmuir. 2006;22(8):3497–505.

    Article  CAS  Google Scholar 

  24. McConnell HM, et al. Supported planar membranes in studies of cell-cell recognition in the immune-system. Biochim Biophys Acta. 1986;864(1):95–106.

    Article  CAS  Google Scholar 

  25. Richter RP, et al. On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers. Biophys J. 2005;89(5):3372–85.

    Article  CAS  Google Scholar 

  26. Rossetti FF, et al. Interactions between titanium dioxide and phosphatidyl serine-containing liposomes: formation and patterning of supported phospholipid bilayers on the surface of a medically relevant material. Langmuir. 2005;21(14):6443–50.

    Article  CAS  Google Scholar 

  27. Przybylo M, et al. Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir. 2006;22(22):9096–9.

    Article  CAS  Google Scholar 

  28. Urban AS, et al. Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. Nano Lett. 2009;9(8):2903–8.

    Article  CAS  Google Scholar 

  29. Salafsky J, Groves JT, Boxer SG. Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry. 1996;35(47):14773–81.

    Article  CAS  Google Scholar 

  30. Horton MR, et al. Structure and dynamics of crystalline protein layers bound to supported lipid bilayers. Langmuir. 2007;23(11):6263–9.

    Article  CAS  Google Scholar 

  31. Larsson C, Rodahl M, Höök F. Characterization of DNA immobilization and subsequent hybridization on a 2D arrangement of streptavidin on a biotin-modified lipid bilayer supported on SiO2. Anal Chem. 2003;75(19):5080–7.

    Article  CAS  Google Scholar 

  32. Reviakine I, et al. Two-dimensional crystallization of annexin A5 on phospholipid bilayers and monolayers: a solid-solid phase transition between crystal forms. Langmuir. 2001;17(5):1680–6.

    Article  CAS  Google Scholar 

  33. Reviakine I, Brisson A. Streptavidin 2D crystals on supported phospholipid bilayers: toward constructing anchored phospholipid bilayers. Langmuir. 2001;17(26):8293–9.

    Article  CAS  Google Scholar 

  34. Shi J, et al. GM1 clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc. 2007;129(18):5954–61.

    Article  CAS  Google Scholar 

  35. Axelrod D, et al. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J. 1976;16(9):1055–69.

    Article  CAS  Google Scholar 

  36. Jönsson P, et al. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys J. 2008;95(11):5334–48.

    Article  Google Scholar 

  37. Jonsson MP, et al. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 2007;7(11):3462–8.

    Article  CAS  Google Scholar 

  38. Jönsson P, Jonsson MP, Höök F. Sealing of sub-micrometer wells by a shear-driven lipid bilayer. Nano Lett. 2010;10(5):1900–6.

    Article  Google Scholar 

  39. Atanasov V, et al. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates. Bioconjug Chem. 2006;17(3):631–7.

    Article  CAS  Google Scholar 

  40. Sackmann E, Tanaka M. Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol. 2000;18(2):58–64.

    Article  CAS  Google Scholar 

  41. Römer W, Steinem C. Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. Biophys J. 2004;86(2):955–65.

    Article  Google Scholar 

  42. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3(8):1057–62.

    Article  CAS  Google Scholar 

  43. Mock JJ, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116(15):6755–9.

    Article  CAS  Google Scholar 

  44. Raschke G, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.

    Article  CAS  Google Scholar 

  45. Rindzevicius T, et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5(11):2335–9.

    Article  CAS  Google Scholar 

  46. Baciu CL, et al. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8(6):1724–8.

    Article  CAS  Google Scholar 

  47. Endo T, et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem. 2006;78(18):6465–75.

    Article  CAS  Google Scholar 

  48. Dahlin AB, Jonsson MP, Höök F. Specific self assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater. 2008;20(8):1436–42.

    Article  CAS  Google Scholar 

  49. Feuz L, et al. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano. 2010;4(4):2167–77.

    Article  CAS  Google Scholar 

  50. Groves JT, Ulman N, Boxer SG. Micropatterning fluid lipid bilayers on solid supports. Science. 1997;275(5300):651–3.

    Article  CAS  Google Scholar 

  51. Dahlin A, et al. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127(14):5043–8.

    Article  CAS  Google Scholar 

  52. Hovis JS, Boxer SG. Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir. 2001;17(11):3400–5.

    Article  CAS  Google Scholar 

  53. Lenhert S, et al. Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small. 2007;3(1):71–5.

    Article  CAS  Google Scholar 

  54. Shi JJ, Chen JX, Cremer PS. Sub-100 nm patterning of supported bilayers by nanoshaving lithography. J Am Chem Soc. 2008;130(9):2718–9.

    Article  CAS  Google Scholar 

  55. Furukawa K, et al. Supported lipid bilayer self-spreading on a nanostructured silicon surface. Langmuir. 2007;23(2):367–71.

    Article  CAS  Google Scholar 

  56. Huang SCJ, et al. Formation, stability, and mobility of one-dimensional lipid bilayers on polysilicon nanowires. Nano Lett. 2007;7(11):3355–9.

    Article  CAS  Google Scholar 

  57. Jonsson P, et al. Shear-driven motion of supported lipid bilayers in microfluidic channels. J Am Chem Soc. 2009;131(14):5294–7.

    Article  Google Scholar 

  58. Hanarp P, et al. Control of nanoparticle film structure for colloidal lithography. Colloids Surf A. 2003;214(1–3):23–36.

    Article  CAS  Google Scholar 

  59. Prikulis J, et al. Optical spectroscopy of nanometric holes in thin gold films. Nano Lett. 2004;4(6):1003–7.

    Article  CAS  Google Scholar 

  60. Jonsson MP, et al. Nanoplasmonic biosensing with focus on short-range ordered nanoholes in thin metal films. Biointerphases. 2008;3(3):FD30–40.

    Article  Google Scholar 

  61. Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors Actuators B. 1999;54(1–2):3–15.

    Article  Google Scholar 

  62. Brolo AG, et al. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir. 2004;20(12):4813–5.

    Article  CAS  Google Scholar 

  63. Jonsson MP, Jönsson P, Höök F. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound mass. Anal Chem. 2008;80(21):7988–95.

    Article  CAS  Google Scholar 

  64. Haes AJ, et al. A nanoscale optical biosensor: the long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108(1):109–16.

    Article  CAS  Google Scholar 

  65. Svedendahl M, et al. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9(12):4428–33.

    Article  CAS  Google Scholar 

  66. Marie R, et al. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases. 2007;2(1):49–55.

    Article  CAS  Google Scholar 

  67. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  Google Scholar 

  68. Hall WP, et al. A calcium-modulated plasmonic switch. J Am Chem Soc. 2008;130(18):5836–7.

    Article  CAS  Google Scholar 

  69. Sönnichsen C, et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005;23(6):741–5.

    Article  Google Scholar 

  70. Glasmästar K, et al. Protein adsorption on supported phospholipid bilayers. J Colloid Interface Sci. 2002;246(1):40–7.

    Article  Google Scholar 

  71. Lesuffleur A, et al. Plasmonic nanohole arrays for label-free kinetic biosensing in a lipid membrane environment. In: 31st annual international the conference of the IEEE EMBS. Minneapolis, Minnesota. September 2-6, 2009. p. 1481–4.

    Google Scholar 

  72. Larsson EM, et al. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev Sci Instrum. 2009;80(12):125105.

    Article  Google Scholar 

  73. Das A, et al. Screening of type I and II drug binding to human cytochrome P450-3A4 in nanodiscs by localized surface plasmon resonance spectroscopy. Anal Chem. 2009;81(10):3754–9.

    Article  CAS  Google Scholar 

  74. Galush WJ, et al. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett. 2009;9(5):2077–82.

    Article  CAS  Google Scholar 

  75. Jung LS, et al. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.

    Article  CAS  Google Scholar 

  76. Dahlin AB, et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano. 2008;2(10):2174–82.

    Article  CAS  Google Scholar 

  77. Rindzevicius T, et al. Nanohole plasmons in optically thin gold films. J Phys Chem C. 2007;111(3):1207–12.

    Article  CAS  Google Scholar 

  78. Haes AJ, et al. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108(22):6961–8.

    Article  CAS  Google Scholar 

  79. Höök F, Kasemo B. The QCM technique for biomacromolecular recognition: technical and theoretical aspects. In: Wolfbeis OS, editor. The Springer series on chemical sensors and biosensors. Berlin: Springer; 2006.

    Google Scholar 

  80. Keller CA, Kasemo B. Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys J. 1998;75(3):1397–402.

    Article  CAS  Google Scholar 

  81. Brändén M, Dahlin S, Höök F. Label-free measurements of molecular transport across liposome membranes using evanescent-wave sensing. Chemphyschem. 2008;9(17):2480–5.

    Article  Google Scholar 

  82. Sheetz MP, et al. Nanometer-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature. 1989;340(6231):284–8.

    Article  CAS  Google Scholar 

  83. Sokolov K, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res. 2003;63(9):1999–2004.

    CAS  Google Scholar 

  84. El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–34.

    Article  CAS  Google Scholar 

  85. Xu X-HN, et al. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry. 2004;43(32):10400–13.

    Article  CAS  Google Scholar 

  86. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res. 2001;34(4):257–64.

    Article  CAS  Google Scholar 

  87. Jain PK, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2:107–18.

    Article  CAS  Google Scholar 

  88. Suzuki KGN, et al. GPI-anchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol. 2007;177(4):717–30.

    Article  CAS  Google Scholar 

  89. Rong G, et al. Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett. 2008;8(10):3386–93.

    Article  CAS  Google Scholar 

  90. Rechberger W, et al. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220(1–3):137–41.

    Article  CAS  Google Scholar 

  91. Nan XL, Sims PA, Xie XS. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chemphyschem. 2008;9(5):707–12.

    Article  CAS  Google Scholar 

  92. Edel JB, et al. High spatial resolution observation of single-molecule dynamics in living cell membranes. Biophys J. 2005;88(6):L43–5.

    Article  CAS  Google Scholar 

  93. Jonsson MP, et al. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94.

    Article  CAS  Google Scholar 

  94. Eftekhari F, et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81(11):4308–11.

    Article  CAS  Google Scholar 

  95. Brändén M, et al. Refractive-index based screening of membrane-protein mediated transfer across biological membranes. Biophys J. 2010;99:1–10.

    Article  Google Scholar 

  96. Knoll W, et al. Solid supported lipid membranes: new concepts for the biomimetic functionalization of solid surfaces. Biointerphases. 2008;3(2):FA125–35.

    Article  CAS  Google Scholar 

  97. Sannomiya T, et al. Electrochemistry on a localized surface plasmon resonance sensor. Langmuir. 2009;26(10):7619–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Magnus P. Jonsson or Fredrik Höök .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jonsson, M.P., Dahlin, A.B., Höök, F. (2012). Nanoplasmonic Sensing Combined with Artificial Cell Membranes. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_3

Download citation

Publish with us

Policies and ethics