Skip to main content

Localized Surface Plasmon Resonance (LSPR) Transducers Based on Random Evaporated Gold Island Films: Properties and Sensing Applications

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Methods based on localized surface plasmon resonance (LSPR) spectroscopy have gained popularity in recent years, notably for label-free biosensing. This chapter summarized our progress in the development of LSPR transducers based on random evaporated gold island films. Systematic results on the preparation of Au island films with desired morphology and optical properties, as well as studies of the stability and sensitivity of such LSPR transducers, are presented. Schemes described here allowing tunability of the surface plasmon band wavelength, decay length and refractive index sensitivity of the LSPR transducers enable optimization of the transducer performance. Actual biosensing applications are exemplified using immunosensing (antigen-antibody interactions) and specific protein-carbohydrate interactions. It is concluded that random gold island films prepared by evaporation and annealing present a promising platform for the preparation of sensitive and cost-effective LSPR transducers offering scalability and simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995.

    Google Scholar 

  2. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidalen Metallösungen. Ann Phys. 1908;25:377–445.

    Article  CAS  Google Scholar 

  3. Maxwell-Garnett JC. Colours in metal glasses and in metallic films. Philos Trans R Soc Lond A. 1904;203:385–420.

    Article  Google Scholar 

  4. Leuvering JHW, Thal P, Waart MVD, Schuurs A. Sol particle agglutination immunoassay for human chorionic-gonadotropin. Fresenius Z Anal Chem. 1980;301:132.

    Article  CAS  Google Scholar 

  5. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature. 1996;382:607–9.

    Article  CAS  Google Scholar 

  6. Papavassiliou GC. Optical absorption spectra of silver, gold, and copper thin films chemically deposited on quartz plates. Z Phys Chem (Leipzig). 1976;257:241–8.

    CAS  Google Scholar 

  7. Papavassiliou GC. Optical properties of small inorganic and organic metal particles. Prog Solid State Chem. 1979;12:185–271.

    Article  CAS  Google Scholar 

  8. Doremus RH. Optical properties of thin metallic films in island form. J Appl Phys. 1966;37:2775–81.

    Article  Google Scholar 

  9. Royer P, Goudonnet JP, Warmack RJ, Ferrell TL. Substrate effects on surface-plasmon spectra in metal-island films. Phys Rev B. 1987;35:3753–9.

    Article  CAS  Google Scholar 

  10. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP. Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles. J Phys Chem B. 1999;103:9846–53.

    Article  CAS  Google Scholar 

  11. Chumanov G, Sokolov K, Gregory BW, Cotton TM. Colloidal metal-films as a substrate for surface-enhanced spectroscopy. J Phys Chem. 1995;99:9466–71.

    Article  CAS  Google Scholar 

  12. Underwood S, Mulvaney P. Effect of the solution refractive-index on the color of gold colloids. Langmuir. 1994;10:3427–30.

    Article  CAS  Google Scholar 

  13. Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C. 2007;111:3806–19.

    Article  CAS  Google Scholar 

  14. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG. Modelling the optical response of gold nanoparticles. Chem Soc Rev. 2008;37:1792–805.

    Article  CAS  Google Scholar 

  15. Zhao J, Pinchuk AO, McMahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC. Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res. 2008;41:1710–20.

    Article  CAS  Google Scholar 

  16. Smajic J, Hafner C, Raguin L, Tavzarashvili K, Mishrikey M. Comparison of numerical methods for the analysis of plasmonic structures. J Comput Theor Nanosci. 2009;6:763–74.

    Article  CAS  Google Scholar 

  17. Jeanmaire DL, Vanduyne RP. Surface Raman spectroelectrochemistry: 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem. 1977;84:1–20.

    Article  CAS  Google Scholar 

  18. Moskovits M. Surface-roughness and enhanced intensity of Raman-scattering by molecules adsorbed on metals. J Chem Phys. 1978;69:4159–61.

    Article  CAS  Google Scholar 

  19. Lin XM, Cui Y, Xu YH, Ren B, Tian ZQ. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem. 2009;394:1729–45.

    Article  CAS  Google Scholar 

  20. Camden JP, Dieringer JA, Zhao J, Van Duyne RP. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing. Acc Chem Res. 2008;41:1653–61.

    Article  CAS  Google Scholar 

  21. Schlegel VL, Cotton TM. Silver-island films as substrates for enhanced Raman-scattering—effect of deposition rate on intensity. Anal Chem. 1991;63:241–7.

    Article  CAS  Google Scholar 

  22. Meriaudeau F, Downey TR, Passian A, Wig A, Ferrell TL. Environment effects on surface-plasmon spectra in gold-island films potential for sensing applications. Appl Opt. 1998;37:8030–7.

    Article  CAS  Google Scholar 

  23. Gluodenis M, Manley C, Foss CA. In situ monitoring of the change in extinction of stabilized nanoscopic cold particles in contact with aqueous phenol solutions. Anal Chem. 1999;71:4554–8.

    Article  CAS  Google Scholar 

  24. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124:10596–604.

    Article  CAS  Google Scholar 

  25. Haes AJ, Zou SL, Schatz GC, Van Duyne RP. Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108:6961–8.

    Article  CAS  Google Scholar 

  26. Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc. 2001;123:1471–82.

    Article  CAS  Google Scholar 

  27. Takei H. Biological sensor based on localized surface plasmon associated with surface-bound Au/polystyrene composite microparticles. Proc SPIE. 1998;3515:278–83.

    Article  CAS  Google Scholar 

  28. Himmelhaus M, Takei H. Cap-shaped gold nanoparticles for an optical biosensor. Sens Actuators B. 2000;63:24–30.

    Article  Google Scholar 

  29. Kalyuzhny G, Schneeweiss MA, Shanzer A, Vaskevich A, Rubinstein I. Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films. J Am Chem Soc. 2001;123:3177–8.

    Article  CAS  Google Scholar 

  30. Kalyuzhny G, Vaskevich A, Ashkenasy G, Shanzer A, Rubinstein I. UV/vis spectroscopy of metalloporphyrin and metallophthalocyanine monolayers self-assembled on ultrathin gold films. J Phys Chem B. 2000;104:8238–44.

    Article  CAS  Google Scholar 

  31. Kalyuzhny G, Vaskevich A, Schneeweiss MA, Rubinstein I. Transmission surface-plasmon resonance (T-SPR) measurements for monitoring adsorption on ultrathin gold island films. Chem Eur J. 2002;8:3850–7.

    Article  Google Scholar 

  32. Doron-Mor I, Barkay Z, Filip-Granit N, Vaskevich A, Rubinstein I. Ultrathin gold island films on silanized glass. Morphology and optical properties. Chem Mater. 2004;16:3476–83.

    Article  CAS  Google Scholar 

  33. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123:1599–603.

    Article  CAS  Google Scholar 

  34. Khlebtsov NG, Melnikov AG, Dykman LA, Bogatyrev VA. Optical properties and biomedical applications of nanostructures based on gold and silver bioconjugates. In: Videen G, editor. Photopolarimetry in remote sensing. Dordrecht: Kluwer Academic; 2004. p. 265–308.

    Google Scholar 

  35. Englebienne P, Van Hoonacker A, Verhas M. Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectrosc Int J. 2003;17:255–73.

    Article  CAS  Google Scholar 

  36. Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74:504–9.

    Article  CAS  Google Scholar 

  37. Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem. 2004;76:5370–8.

    Article  CAS  Google Scholar 

  38. Okamoto T, Yamaguchi I, Kobayashi T. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett. 2000;25:372–4.

    Article  CAS  Google Scholar 

  39. Dahlin A, Zach M, Rindzevicius T, Kall M, Sutherland DS, Hook F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127:5043–8.

    Article  CAS  Google Scholar 

  40. Rindzevicius T, Alaverdyan Y, Dahlin A, Hook F, Sutherland DS, Kall M. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5:2335–9.

    Article  CAS  Google Scholar 

  41. Brolo AG, Gordon R, Leathem B, Kavanagh KL. Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir. 2004;20:4813–5.

    Article  CAS  Google Scholar 

  42. Aussenegg FR, Brunner H, Leitner A, Lobmaier C, Schalkhammer T, Pittner F. The metal island coated swelling polymer over mirror system (micspoms)—a new principle for measuring ionic-strength. Sens Actuators B. 1995;29:204–9.

    Article  Google Scholar 

  43. Hutter E, Pileni MP. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B. 2003;107:6497–9.

    Article  CAS  Google Scholar 

  44. Hedsten K, Fonollosa J, Enoksson P, Modh P, Bengtsson J, Sutherland DS, Dmitriev A. Optical label-free nanoplasmonic biosensing using a vertical-cavity surface-emitting laser and charge-coupled device. Anal Chem. 2010;82:1535–9.

    Article  CAS  Google Scholar 

  45. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3:1057–62.

    Article  CAS  Google Scholar 

  46. Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Lett. 2003;3:485–91.

    Article  CAS  Google Scholar 

  47. Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J, Nichtl A, Kurzinger K. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3:935–8.

    Article  CAS  Google Scholar 

  48. Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 2008;8:3450–5.

    Article  CAS  Google Scholar 

  49. Mayer KM, Hao F, Lee S, Nordlander P, Hafner JH. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology. 2010;21:255503.

    Article  Google Scholar 

  50. Sepulveda B, Angelome PC, Lechuga LM, Liz-Marzan LM. LSPR-based nanobiosensors. Nano Today. 2009;4:244–51.

    Article  CAS  Google Scholar 

  51. Beeram SR, Zamborini FP. Selective attachment of antibodies to the edges of gold nanostructures for enhanced localized surface plasmon resonance biosensing. J Am Chem Soc. 2009;131:11689–90.

    Article  CAS  Google Scholar 

  52. Beeram SR, Zamborini FP. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing. ACS Nano. 2010;4:3633–46.

    Article  CAS  Google Scholar 

  53. Krenn JR, Weeber JC, Dereux A, Bourillot E, Goudonnet JP, Schider B, Leitner A, Aussenegg FR, Girard C. Direct observation of localized surface plasmon coupling. Phys Rev B. 1999;60:5029–33.

    Article  CAS  Google Scholar 

  54. Krenn JR, Wolf R, Leitner A, Aussenegg FR. Near-field optical imaging the surface plasmon fields of lithographically designed nanostructures. Opt Commun. 1997;137:46–50.

    Article  CAS  Google Scholar 

  55. Zhang XY, Whitney AV, Zhao J, Hicks EM, Van Duyne RP. Advances in contemporary nanosphere lithographic techniques. J Nanosci Nanotechnol. 2006;6:1920–34.

    Article  CAS  Google Scholar 

  56. Hanarp P, Sutherland DS, Gold J, Kasemo B. Control of nanoparticle film structure for colloidal lithography. Colloid Surf A. 2003;214:23–36.

    Article  CAS  Google Scholar 

  57. Hanarp P, Kall M, Sutherland DS. Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J Phys Chem B. 2003;107:5768–72.

    Article  CAS  Google Scholar 

  58. Dmitriev A, Pakizeh T, Kall M, Sutherland DS. Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. Small. 2007;3:294–9.

    Article  CAS  Google Scholar 

  59. Vaskevich A, Rubinstein I. Localized surface plasmon resonance (LSPR) spectroscopy in biosensing. In: Marks R, Cullen D, Lowe C, Weetall HH, Karube I, editors. Handbook of biosensors and biochips, vol. 1. Chichester: Wiley; 2007.

    Google Scholar 

  60. Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I. Morphology and refractive index sensitivity of gold island films. Chem Mater. 2009;21:5875–85.

    Article  CAS  Google Scholar 

  61. Karakouz T, Tesler AB, Bendikov TA, Vaskevich A, Rubinstein I. Highly-stable localized plasmon transducers obtained by thermal embedding of gold island films on glass. Adv Mater. 2008;20:3893–9.

    Article  CAS  Google Scholar 

  62. Ruach-Nir I, Bendikov TA, Doron-Mor I, Barkay Z, Vaskevich A, Rubinstein I. Silica-stabilized gold island films for transmission localized surface plasmon sensing. J Am Chem Soc. 2007;129:84–92.

    Article  CAS  Google Scholar 

  63. Doron-Mor I, Cohen H, Barkay Z, Shanzer A, Vaskevich A, Rubinstein I. Sensitivity of transmission surface plasmon resonance (T-SPR) spectroscopy: self-assembled multilayers on evaporated gold island films. Chem Eur J. 2005;11:5555–62.

    Article  CAS  Google Scholar 

  64. Karakouz T, Vaskevich A, Rubinstein I. Polymer-coated gold island films as localized plasmon transducers for gas sensing. J Phys Chem B. 2008;112:14530–8.

    Article  CAS  Google Scholar 

  65. Lahav M, Vaskevich A, Rubinstein I. Biological sensing using transmission surface plasmon resonance spectroscopy. Langmuir. 2004;20:7365–7.

    Article  CAS  Google Scholar 

  66. Bellapadrona G, Tesler AB, Grünstein D, Hossain L, Kikkeri R, Seeberger PH, Vaskevich A, Rubinstein I. Optimization of localized surface plasmon resonance (LSPR) transducers for sensing carbohydrate-protein interactions. Anal Chem. 2012;84:232–40.

    Article  CAS  Google Scholar 

  67. Bendikov TA, Rabinkov A, Karakouz T, Vaskevich A, Rubinstein I. Gold island film transducers for immunoglobulin proteins sensing. Anal Chem. 2008;80:7487–98.

    Article  CAS  Google Scholar 

  68. Tesler AB, Chuntonov L, Karakouz T, Bendikov T, Haran G, Vaskevich A, Rubinstein I. Tunable localized plasmon transducers prepared by thermal dewetting of percolated evaporated gold films. J Phys Chem C. 2011;115:24642–52.

    Google Scholar 

  69. Norrman S, Andersson T, Granqvist CG, Hunderi O. Optical properties of discontinuous gold films. Phys Rev B. 1978;18:674–95.

    Article  CAS  Google Scholar 

  70. Meli MV, Lennox RB. Surface plasmon resonance of gold nanoparticle arrays partially embedded in quartz substrates. J Phys Chem C. 2007;111:3658–64.

    Article  CAS  Google Scholar 

  71. Natan MJ, Reiss BD, Keefe MH. Thermal immobilization of colloidal metal nanoparticles in a glass matrix. 2000-US32854 2001040132, 4 Dec 2000; 2001.

    Google Scholar 

  72. Karakouz T, Vaskevich A, Rubinstein I. Stabilization of gold nanoparticle films on glass by thermal embedding. ACS Appl Mater Interfaces. 2011;3:978–87.

    Article  CAS  Google Scholar 

  73. Baram M, Kaplan WD. Intergranular films at Au-sapphire interfaces. J Mater Sci. 2006;41:7775–84.

    Article  CAS  Google Scholar 

  74. Vaskevich A, Sehayek T, Rubinstein I. Mass thickness analysis of gold thin films using room temperature gas-phase chlorination. Anal Chem. 2009;81:2877–83.

    Article  CAS  Google Scholar 

  75. Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14:5636–48.

    Article  CAS  Google Scholar 

  76. Kedem O, Tesler AB, Vaskevich A, Rubinstein I. Sensitivity and optimization of localized surface plasmon resonance (LSPR) transducers. ACS Nano. 2011;5:748–60.

    Article  CAS  Google Scholar 

  77. Nusz GJ, Curry AC, Marinakos SM, Wax A, Chilkoti A. Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS Nano. 2009;3:795–806.

    Article  CAS  Google Scholar 

  78. Decher G, Hong J, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films. 1992;210–211:831–5.

    Article  Google Scholar 

  79. Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science. 2009;277:1232–7.

    Article  Google Scholar 

  80. Svedendahl M, Chen S, Dmitriev A, Käll M. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9:4428–33.

    Article  CAS  Google Scholar 

  81. Marie R, Dahlin AB, Tegenfeldt JO, Höök F. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases. 2007;2:49–55.

    Article  CAS  Google Scholar 

  82. Chen D, Wang G, Li J. Interfacial bioelectrochemistry: fabrication, properties and applications of functional nanostructured biointerfaces. J Phys Chem C. 2007;111:2351–67.

    Article  CAS  Google Scholar 

  83. Khlebtsov NG. Optical models for conjugates of gold and silver nanoparticles with biomacromolecules. J Quant Spectrosc Radiat Transf. 2004;89:143–53.

    Article  CAS  Google Scholar 

  84. Kedem O, Vaskevich A, Rubinstein I. Improved sensitivity of localized surface plasmon resonance transducers using reflection measurements. J Phys Chem Lett. 2011;2:1223–26.

    Google Scholar 

  85. Casero E, Vazquez L, Martin-Benito J, Morcillo MA, Lorenzo E, Pariente F. Immobilization of metallothionein on gold/mica surfaces: relationship between surface morphology and protein-substrate interaction. Langmuir. 2002;18:5909–20.

    Article  CAS  Google Scholar 

  86. Rhodes JM, Campbell BJ, Yu LG. Lectin-epithelial interactions in the human colon. Biochem Soc Trans. 2008;36:1482–6.

    Article  CAS  Google Scholar 

  87. Sarter K, Mierke C, Beer A, Frey B, Fuhrnrohr BG, Schulze C, Franz S. Sweet clearance: involvement of cell surface glycans in the recognition of apoptotic cells. Autoimmunity. 2007;40:345–8.

    Article  CAS  Google Scholar 

  88. Lloyd DH, Viac J, Werling D, Reme CA, Gatto H. Role of sugars in surface microbe-host interactions and immune reaction modulation. Vet Dermatol. 2007;18:197–204.

    Article  Google Scholar 

  89. Lis H, Sharon N. Biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem. 1973;42:541–74.

    Article  CAS  Google Scholar 

  90. Yonzon CR, Jeoungf E, Zou SL, Schatz GC, Mrksich M, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin a to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.

    Article  CAS  Google Scholar 

  91. Kitano H, Takahashi Y, Mizukami K, Matsuura K. Kinetic study on the binding of lectin to mannose residues in a polymer brush. Colloid Surf B. 2009;70:91–7.

    Article  CAS  Google Scholar 

  92. Homola J. Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem. 2003;377:528–39.

    Article  CAS  Google Scholar 

  93. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–53.

    Article  CAS  Google Scholar 

  94. Nahálková J, Svitel J, Gemeiner P, Danielsson B, Pribulová B, Petrus L. Affinity analysis of lectin interaction with immobilized C- and O-gylcosides studied by surface plasmon resonance assay. J Biochem Biophys Methods. 2002;52:11–8.

    Article  Google Scholar 

  95. Vornholt W, Hartmann M, Keusgen M. SPR studies of carbohydrate-lectin interactions as useful tool for screening on lectin sources. Biosens Bioelectron. 2007;22:2983–8.

    Article  CAS  Google Scholar 

  96. Mori T, Toyoda M, Ohtsuka T, Okahata Y. Kinetic analyses for bindings of concanavalin A to dispersed and condensed mannose surfaces on a quartz crystal microbalance. Anal Biochem. 2009;395:211–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander Vaskevich or Israel Rubinstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaskevich, A., Rubinstein, I. (2012). Localized Surface Plasmon Resonance (LSPR) Transducers Based on Random Evaporated Gold Island Films: Properties and Sensing Applications. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_14

Download citation

Publish with us

Policies and ethics