Nanoplasmonic Structures in Optical Fibers

  • Gustavo F. S. Andrade
  • Alexandre G. BroloEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


The intense research efforts on the development, fabrication, characterization, and application of metallic nanostructures and films that support surface plasmon resonance (SPR) constitute a field called nanoplasmonics. Although SPR biosensing is well established, the development of new nanoplasmonic approaches for biosensing is still a very active research area, as it can be attested by the range of topics covered in this book. The SPR approach is widely used in biochemistry and biomedical research, because it offers a “label-free” alternative for the detection and quantification of biomolecular interactions. The objective of this chapter is to focus on the approaches for the integration of the nanoplasmonic sensing elements to the optical fiber technology. Initially, selected examples of applications of optical fiber in analytical sciences are presented. Next, techniques used to fabricate optical fiber-based devices developed for SPR and SERS sensing are discussed. Examples of applications of optical fiber based plasmonic devices are provided. The field of optical fiber applications in nano- plasmonics has been in effervescence in the recent years, and the wide-coverage review of the field in this chapter is intended to give a more comprehensive understanding of the current state-of-the-art to the interested reader.


Surface Plasmon Resonance Optical Fiber Localize Surface Plasmon Resonance Surface Plasmon Resonance Sensor SERS Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by operating grants from NSERC and by the NSERC Strategic Network for Bioplasmonic Systems (BiopSys), Canada. G.F.S.A. thanks Canadian Bureau for International Education—Department of Foreign Affairs and International Trade (CBIE-DFAIT) of Canada for a post-doctoral fellowship.


  1. 1.
    Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sens Actuators B Chem. 1999;54(1–2):3–15.CrossRefGoogle Scholar
  2. 2.
    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462–93.CrossRefGoogle Scholar
  3. 3.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG. Nanostructured plasmonic sensors. Chem Rev. 2008;108(2):494–521.CrossRefGoogle Scholar
  4. 4.
    Kretschmann E, Raether H. Radiative decay of non radiative surface plasmon excited by light. Z. NATURFORSCH. PT. A. 1968;A23(12):2135.Google Scholar
  5. 5.
    Jung LS, Nelson KE, Stayton PS, Campbell CT. Binding and dissociation kinetics of wild-type and mutant streptavidins on mixed biotin-containing alkylthiolate monolayers. Langmuir. 2000;16(24):9421–32.CrossRefGoogle Scholar
  6. 6.
    Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.CrossRefGoogle Scholar
  7. 7.
    Moskovits M. Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc. 2005;36(6–7):485–96.CrossRefGoogle Scholar
  8. 8.
    Kelly K, Coronado E, Zhao L, Schatz G. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B. 2003;107(3):668–77.CrossRefGoogle Scholar
  9. 9.
    Lee B. Review of the present status of optical fiber sensors. Opt Fiber Technol. 2003;9(2):57–79.CrossRefGoogle Scholar
  10. 10.
    Wolfbeis OS. Fiber optic chemical sensors and biosensors. Anal Chem. 2000;72(12):81r–9.CrossRefGoogle Scholar
  11. 11.
    Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2002;74(12):2663–77.CrossRefGoogle Scholar
  12. 12.
    Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2004;76(12):3269–83.CrossRefGoogle Scholar
  13. 13.
    Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2006;78(12):3859–73.CrossRefGoogle Scholar
  14. 14.
    Vo-Dinh T. Nanosensing at the single cell level. Spectrochim Acta B At Spectrosc. 2008;63(2):95–103.CrossRefGoogle Scholar
  15. 15.
    Wolfbeis OS. Materials for fluorescence-based optical chemical sensors. J Mater Chem. 2005;15(27–28):2657–69.CrossRefGoogle Scholar
  16. 16.
    Lee WB, Wu JY, Lee YI, Sneddon J. Recent applications of laser-induced breakdown spectrometry: a review of material approaches. Appl Spectrosc Rev. 2004;39(1):27–97.CrossRefGoogle Scholar
  17. 17.
    Benito MTJ, Ojeda CB, Rojas FS. Process analytical chemistry: applications of near infrared spectrometry in environmental and food analysis: an overview. Appl Spectrosc Rev. 2008;43(5):452–84.CrossRefGoogle Scholar
  18. 18.
    Markatos S, Zervas MN, Giles IP. Optical fiber surface-plasmon wave devices. Electron Lett. 1988;24(5):287–8.CrossRefGoogle Scholar
  19. 19.
    Johnstone W, Stewart G, Hart T, Culshaw B. Surface-plasmon polaritons in thin metal-films and their role in fiber optic polarizing devices. J Lightwave Technol. 1990;8(4):538–44.CrossRefGoogle Scholar
  20. 20.
    Sharma AK, Jha R, Gupta BD. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J. 2007;7(7–8):1118–29.CrossRefGoogle Scholar
  21. 21.
    Jorgenson RC, Yee SS. A fiberoptic chemical sensor-based on surface-plasmon resonance. Sens Actuators B Chem. 1993;12(3):213–20.CrossRefGoogle Scholar
  22. 22.
    Homola J, Slavik R, Ctyroky J. Interaction between fiber modes and surface plasmon waves: spectral properties. Opt Lett. 1997;22(18):1403–5.CrossRefGoogle Scholar
  23. 23.
    Ko WS, Oh SB, Kim SH. Development of fiber type surface plasmon resonance sensor for protein detection. In Culshaw B, Marcus MA, Dakin JP, Crossley SD, Knee HE, editors. Industrial and highway sensors technology, Proceedings of SPIE, USA. Vol. 5272; 2003. pp. 100–9.Google Scholar
  24. 24.
    Themistos C, Rahman BMA, Rajarajan M, Kalli K, Grattan KTV. Characterization of surface-plasmon modes in metal-clad optical waveguides. Appl Opt. 2006;45(33):8523–30.CrossRefGoogle Scholar
  25. 25.
    Guieu V, Talaga D, Servant L, Sojic N, Lagugne-Labarthet F. Multitip-localized enhanced Raman scattering from a nanostructured optical fiber array. J Phys Chem C. 2009;113(3):874–81.CrossRefGoogle Scholar
  26. 26.
    Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express. 2006;14(24):11616–21.CrossRefGoogle Scholar
  27. 27.
    Hassani A, Gauvreau B, Fehri MF, Kabashin A, Skorobogatiy M. Photonic crystal fiber and waveguide-based surface plasmon resonance sensors for application in the visible and near-IR. Electromagnetics. 2008;28(3):16.CrossRefGoogle Scholar
  28. 28.
    Hassani A, Skorobogatiy M. Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B Opt Phys. 2007;24(6):1423–9.CrossRefGoogle Scholar
  29. 29.
    Cox FM, Argyros A, Large MCJ, Kalluri S. Surface enhanced Raman scattering in a hollow core microstructured optical fiber. Opt Express. 2007;15(21):13675–81.CrossRefGoogle Scholar
  30. 30.
    Peacock AC, Amezcua-Correa A, Yang JX, Sazio PJA, Howdle SM. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions. Appl Phys Lett. 2008;92(14):141113.CrossRefGoogle Scholar
  31. 31.
    Yan H, Liu J, Yang CX, Jin GF, Gu C, Hou L. Novel index-guided photonic crystal fiber surface-enhanced Raman scattering probe. Opt Express. 2008;16(11):8300–5.CrossRefGoogle Scholar
  32. 32.
    Wang A, Docherty A, Kuhlmey BT, Cox FM, Large MCJ. Side-hole fiber sensor based on surface plasmon resonance. Opt Lett. 2009;34(24):3890–2.CrossRefGoogle Scholar
  33. 33.
    Lv Q, Huang DX, Yuan XH, Hou R. Fiber optic surface plasmon resonance sensors for imaging systems. Opt Eng. 2007;46(5):054403.CrossRefGoogle Scholar
  34. 34.
    Knight JC. Photonic crystal fibres. Nature. 2003;424(6950):847–51.CrossRefGoogle Scholar
  35. 35.
    Zolla F, Renversez G, Nicolet A, Kuhlmey B, Guenneau S, Felbacq D. Foundations of photonic crystal fibres. London: Imperial College Press; 2005. p. 326.CrossRefGoogle Scholar
  36. 36.
    Mullen KI, Carron KT. Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes. Anal Chem. 1991;63(19):2196–9.CrossRefGoogle Scholar
  37. 37.
    Viets C, Hill W. Laser power effects in SERS spectroscopy at thin metal films. J Phys Chem B. 2001;105(27):6330–6.CrossRefGoogle Scholar
  38. 38.
    Viets C, Hill W. Fibre-optic SERS sensors with conically etched tips. J Mol Struct. 2001;563:163–6.CrossRefGoogle Scholar
  39. 39.
    Meriaudeau F, Wig A, Passian A, Downey T, Buncick M, Ferrell TL. Gold island fiber optic sensor for refractive index sensing. Sens Actuators B Chem. 2000;69(1–2):51–7.CrossRefGoogle Scholar
  40. 40.
    Viets C, Hill W. Comparison of fibre-optic SERS sensors with differently prepared tips. Sens Actuators B Chem. 1998;51:92–9.CrossRefGoogle Scholar
  41. 41.
    Stokes DL, Vo-Dinh T. Development of an integrated single-fiber SERS sensor. Sens Actuators B Chem. 2000;69(1–2):28–36.CrossRefGoogle Scholar
  42. 42.
    Demaria L, Martinelli M, Vegetti G. Fiberoptic sensor-based on surface-plasmon interrogation. Sens Actuators B Chem. 1993;12(3):221–3.CrossRefGoogle Scholar
  43. 43.
    Fontana E, Dulman HD, Doggett DE, Pantell RH. Surface plasmon resonance on a single mode optical fiber. IEEE Trans Instrum Meas. 1998;47(1):168–73.CrossRefGoogle Scholar
  44. 44.
    Jorgenson RC, Yee SS. Control of the dynamic-range and sensitivity of a surface-plasmon resonance based fiber optic sensor. Sens Actuators A Phys. 1994;43(1–3):44–8.CrossRefGoogle Scholar
  45. 45.
    Suzuki H, Sugimoto M, Matsui Y, Kondoh J. Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor. Sens Actuators B Chem. 2008;132(1):26–33.CrossRefGoogle Scholar
  46. 46.
    Obando LL, Booksh KS. Tuning dynamic range and sensitivity of white-light, multimode, fiber-optic surface plasmon resonance sensors. Anal Chem. 1999;71(22):5116–22.CrossRefGoogle Scholar
  47. 47.
    Obando LA, Gentleman DJ, Holloway JR, Booksh KS. Manufacture of robust surface plasmon resonance fiber optic based dip-probes. Sens Actuators B Chem. 2004;100(3):439–49.CrossRefGoogle Scholar
  48. 48.
    Chang YJ, Chen YC, Kuo HL, Wei PK. Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip. J Biomed Opt. 2006;11(1):014032.CrossRefGoogle Scholar
  49. 49.
    Masson JF, Kim YC, Obando LA, Peng W, Booksh KS. Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region. Appl Spectrosc. 2006;60(11):1241–6.CrossRefGoogle Scholar
  50. 50.
    Kim YC, Masson JF, Booksh KS. Single-crystal sapphire-fiber optic sensors based on surface plasmon resonance spectroscopy for in situ monitoring. Talanta. 2005;67(5):908–17.CrossRefGoogle Scholar
  51. 51.
    Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T. SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem. 2009;393(4):1135–41.CrossRefGoogle Scholar
  52. 52.
    Chaigneau M, Balaa K, Minea T, Louarn G. Plasmon resonance microsensor for droplet analysis. Opt Lett. 2007;32(16):2435–7.CrossRefGoogle Scholar
  53. 53.
    Kurihara K, Ohkawa H, Iwasaki Y, Niwa O, Tobita T, Suzuki K. Fiber-optic conical microsensors for surface plasmon resonance using chemically etched single-mode fiber. Anal Chim Acta. 2004;523(2):165–70.CrossRefGoogle Scholar
  54. 54.
    Janunts NA, Baghdasaryan KS, Nerkararyan KV, Hecht B. Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Opt Commun. 2005;253(1–3):118–24.CrossRefGoogle Scholar
  55. 55.
    Ding W, Andrews SR, Maier SA. Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys Rev A. 2007;75(6):063822.CrossRefGoogle Scholar
  56. 56.
    White DJ, Stoddart PR. Nanostructured optical fiber with surface-enhanced Raman scattering functionality. Opt Lett. 2005;30(6):598–600.CrossRefGoogle Scholar
  57. 57.
    White DJ, Mazzolini AP, Stoddart PR. Fabrication of a range of SERS substrates on nanostructured multicore optical fibres. J Raman Spectrosc. 2007;38(4):377–82.CrossRefGoogle Scholar
  58. 58.
    Guieu V, Lagugne-Labarthet F, Servant L, Talaga D, Sojic N. Ultrasharp optical-fiber nanoprobe array for Raman local-enhancement imaging. Small. 2008;4(1):96–9.CrossRefGoogle Scholar
  59. 59.
    Shevchenko YY, Albert J. Plasmon resonances in gold-coated tilted fiber Bragg gratings. Opt Lett. 2007;32(3):211–3.CrossRefGoogle Scholar
  60. 60.
    Spackova B, Piliarik M, Kvasnicka P, Themistos C, Rajarajan M, Homola J. Novel concept of multi-channel fiber optic surface plasmon resonance sensor. Sens Actuators B Chem. 2009;139:199–203.CrossRefGoogle Scholar
  61. 61.
    Kitahama Y, Itoh T, Aoyama J, Nishikata K, Ozaki Y. SERRS fiber probe: fabrication of silver nanoparticles at the aperture of an optical fiber used for SNOM. Chem Commun. 2009;43:6563–5.CrossRefGoogle Scholar
  62. 62.
    Zheng XL, Guo DW, Shao YL, Jia SJ, Xu SP, Zhao B, Xu WQ, Corredor C, Lombardi JR. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor. Langmuir. 2008;24(8):4394–8.CrossRefGoogle Scholar
  63. 63.
    Lucotti A, Zerbi G. Fiber-optic SERS sensor with optimized geometry. Sens Actuators B Chem. 2007;121(2):356–64.CrossRefGoogle Scholar
  64. 64.
    Lan XW, Han YK, Wei T, Zhang YN, Jiang L, Tsai HL, Xiao H. Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser. Opt Lett. 2009;34(15):2285–7.CrossRefGoogle Scholar
  65. 65.
    Polwart E, Keir RL, Davidson CM, Smith WE, Sadler DA. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles. Appl Spectrosc. 2000;54(4):522–7.CrossRefGoogle Scholar
  66. 66.
    Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86(17):3391–5.CrossRefGoogle Scholar
  67. 67.
    Andrade GFS, Fan M, Brolo AG. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens Bioelectron. 2010;25:2270–5.CrossRefGoogle Scholar
  68. 68.
    Fan M, Brolo AG. Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys Chem Chem Phys. 2009;11:7381–9.CrossRefGoogle Scholar
  69. 69.
    Mitsui K, Handa Y, Kajikawa K. Optical fiber affinity biosensor based on localized surface plasmon resonance. Appl Phys Lett. 2004;85(18):4231–3.CrossRefGoogle Scholar
  70. 70.
    Volkan M, Stokes DL, Tuan VD. Surface-enhanced Raman of dopamine and neurotransmitters using sol–gel substrates and polymer-coated fiber-optic probes. Appl Spectrosc. 2000;54(12):1842–8.CrossRefGoogle Scholar
  71. 71.
    Lin TJ, Lou CT. Reflection-based localized surface plasmon resonance fiber-optic probe for chemical and biochemical sensing at high-pressure conditions. J Supercrit Fluids. 2007;41(2):317–25.CrossRefGoogle Scholar
  72. 72.
    Xie ZG, Tao J, Lu YH, Lin KQ, Yan J, Wang P, Ming H. Polymer optical fiber SERS sensor with gold nanorods. Opt Commun. 2009;282(3):439–42.CrossRefGoogle Scholar
  73. 73.
    Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–62.CrossRefGoogle Scholar
  74. 74.
    Zamuner M, Talaga D, Deiss F, Guieu V, Kuhn A, Ugo P, Sojic N. Fabrication of a macroporous microwell array for surface-enhanced Raman scattering. Adv Funct Mater. 2009;19(19):3129–35.CrossRefGoogle Scholar
  75. 75.
    Chen SQ, Han L, Schulzgen A, Li HB, Li L, Moloney JV, Peyghambarian N. Local electric field enhancement and polarization effects in a surface-enhanced Raman scattering fiber sensor with chessboard nanostructure. Opt Express. 2008;16(17):13016–23.CrossRefGoogle Scholar
  76. 76.
    Dhawan A, Gerhold MD, Muth JF. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications. IEEE Sens J. 2008;8(5–6):942–50.CrossRefGoogle Scholar
  77. 77.
    Dhawan A, Muth JF. Engineering surface plasmon based fiber-optic sensors. Mater Sci Eng B. 2008;149(3):237–41.CrossRefGoogle Scholar
  78. 78.
    Dhawan A, Muth JF, Leonard DN, Gerhold MD, Gleeson J, Vo-Dinh T, Russell PE. Focused in beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications. J Vac Sci Technol B. 2008;26:2168–73.CrossRefGoogle Scholar
  79. 79.
    Dhawan A, Gerhold M, Madison A, Fowlkes J, Russell PE, Vo-Dinh T, Leonard DN. Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition. Scanning. 2009;31(4):139–46.CrossRefGoogle Scholar
  80. 80.
    Gordon R, Sinton D, Kavanagh KL, Brolo AG. A new generation of sensors based on extraordinary optical transmission. Acc Chem Res. 2008;41(8):1049–57.CrossRefGoogle Scholar
  81. 81.
    Andrade GFS, Hayashi JG, Rahman MM, Cordeiro CMB, Brolo AG. Au nanohole arrays on optical fiber tips as SPR and SERS chemical and bio-sensors; 2012. Submitted for publication.Google Scholar
  82. 82.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL. Nanohole-enhanced Raman scattering. Nano Lett. 2004;4(10):2015–8.CrossRefGoogle Scholar
  83. 83.
    Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem. 1990;185(1):131–5.CrossRefGoogle Scholar
  84. 84.
    Smythe EJ, Dickey MD, Bao JM, Whitesides GM, Capasso F. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection. Nano Lett. 2009;9(3):1132–8.CrossRefGoogle Scholar
  85. 85.
    Kostovski G, White DJ, Mitchell A, Austin MW, Stoddart PR. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing. Biosens Bioelectron. 2009;24:1531–5.CrossRefGoogle Scholar
  86. 86.
    Amezcua-Correa A, Yang J, Finlayson CE, Peacock AC, Hayes JR, Sazio PJA, Baumberg JJ, Howdle SM. Surface-enhanced Raman scattering using microstructured optical fiber substrates. Adv Funct Mater. 2007;17(13):2024–30.CrossRefGoogle Scholar
  87. 87.
    Oo MKK, Han Y, Martini R, Sukhishvili S, Du H. Forward-propagating surface-enhanced Raman scattering and intensity distribution in photonic crystal fiber with immobilized Ag nanoparticles. Opt Lett. 2009;34(7):968–70.CrossRefGoogle Scholar
  88. 88.
    Oo MKK, Han Y, Kanka J, Sukhishvili S, Du H. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy. Opt Lett. 2010;35(4):466–8.CrossRefGoogle Scholar
  89. 89.
    de Matos CJ, Cordeiro CMB, Andrade GFS, Brolo AG, Brito-Silva AM, Temperini MLA, Galembeck A, de Araújo CB. Creating and fixing a metal nanoparticle layer on the holes of microstructured fibers for plasmonic applications. In CLEO/QLES conference on photonic applications of systems technologies, San Jose, CA, USA; 2008.Google Scholar
  90. 90.
    Florous NJ, Saitoh K, Koshiba M. Numerical modeling of cryogenic temperature sensors based on plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers. IEEE Photonics Technol Lett. 2007;19(5–8):324–6.CrossRefGoogle Scholar
  91. 91.
    Hautakorpi M, Mattinen M, Ludvigsen H. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express. 2008;16(12):8427–32.CrossRefGoogle Scholar
  92. 92.
    Hassani A, Skorobogatiy M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness. J Opt Soc Am B Opt Phys. 2009;26(8):1550–7.CrossRefGoogle Scholar
  93. 93.
    Kejalakshmy N, Rahman BMA, Agrawal A, Tanvir HM, Grattan KTV. Metal-coated defect-core photonic crystal fiber for THz propagation. J Lightwave Technol. 2009;27(11):1631–7.CrossRefGoogle Scholar
  94. 94.
    Yu X, Zhang Y, Pan SS, Shum P, Yan M, Leviatan Y, Li CM. A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt A Pure Appl Opt. 2010;12(1):015005.Google Scholar
  95. 95.
    Orellana G, Haigh D. New trends in fiber-optic chemical and biological sensors. Curr Anal Chem. 2008;4(4):273–95.CrossRefGoogle Scholar
  96. 96.
    Crane LG, Wang DX, Sears LM, Heyns B, Carron K. SERS surfaces modified with a 4-(2-pyridylazo)resorcinol disulfide derivative—detection of copper, lead, and cadmium. Anal Chem. 1995;67(2):360–4.CrossRefGoogle Scholar
  97. 97.
    Stokes DL, Chi ZH, Vo-Dinh T. Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis. Appl Spectrosc. 2004;58(3):292–8.CrossRefGoogle Scholar
  98. 98.
    Kim YC, Banerji S, Masson JF, Peng W, Booksh KS. Fiber-optic surface plasmon resonance for vapor phase analyses. Analyst. 2005;130(6):838–43.CrossRefGoogle Scholar
  99. 99.
    Kunz U, Katerkamp A, Reinhard R, Spener F, Cammann K. Sensing fatty acid binding protein with planar and fiber-optical surface plasmon resonance spectroscopy devices. Sens Actuators B Chem. 1996;32(2):149–55.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Departamento de QuimicaUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  2. 2.Department of ChemistryUniversity of VictoriaVictoriaCanada

Personalised recommendations