Engineering Through Mode Shaping and Lithographical Nanofabrication of Ultrasensitive Nano-plasmonic Sensors for Molecular Detection

  • Srdjan S. Aćimović
  • Mark P. Kreuzer
  • Romain QuidantEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


The resonance change of plasmonic nanostructures to a small variation of the shallow refractive index as induced by the binding of molecules to the metal surface determines the sensitivity of plasmonic sensors. The magnitude of this change is strongly determined by a number of factors including dielectric constant of the metal at the working wavelength, refractive indices of analyte, and surroundings [J Phys Chem B 109:21556–21565, 2005], but also the spatial overlap between the region of local refractive index change and the plasmon mode. In this chapter we discuss how the plasmon modes of lithographically prepared plasmonic nanostructures can be accurately engineered to design bio-chemical sensors with improved sensitivities.

We first describe how metal nanostructures can be designed to control the confinement of light modes down to the nanometer scale. Using 3D calculations based on the finite element method, we then discuss the influence on the sensitivity of the nanostructure geometry and location of the sensed molecule. Finally, we present experimental results that demonstrate this enhanced sensitivity to the detection of small molecules in arrays of gold dimers.


Localize Surface Plasmon Resonance Electron Beam Lithography Plasmonic Nanostructures Resonance Shift Mercapto Undecanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109:21556–65.CrossRefGoogle Scholar
  2. 2.
    Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.CrossRefGoogle Scholar
  3. 3.
    Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir. 2006;22:32–41.CrossRefGoogle Scholar
  4. 4.
    Unger A, Kreiter M. Analyzing the performance of plasmonic resonators for dielectric sensing. J Phys Chem C. 2009;113:12243–51.CrossRefGoogle Scholar
  5. 5.
    Andreas B. Dahlin and Magnus P. Jonsson, Performance of Nanoplasmonic Biosensors in A. Dmitriev (ed.), Nanoplasmonic Sensors, Integrated Analytical Systems. 2012Google Scholar
  6. 6.
    Malinsky MD, Kelly KL, Schatz GC, Van Duyne RP. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc. 2001;123:1471–82.CrossRefGoogle Scholar
  7. 7.
    Barbillon G, Bijeon JL, Plain J, Lamy de la Chapelle M, Adam PM, Royer P. Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf Sci. 2007;601:5057–61.CrossRefGoogle Scholar
  8. 8.
    Kreno LE, Hupp JT, Van Duyne RP. Metal−organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem. 2010;82(19):8042–6.CrossRefGoogle Scholar
  9. 9.
    Grigorenko AN, Gleeson HF, Zhang Y, Roberts NW, Sidorov AR, Panteleev AA. Antisymmetric plasmon resonance in coupled gold nanoparticles as a sensitive tool for detection of local index of refraction. Appl Phys Lett. 2006;88:124103.CrossRefGoogle Scholar
  10. 10.
    Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124(35):10596–604.CrossRefGoogle Scholar
  11. 11.
    Chen S, Svedendahl M, Kall M, Gunnarsson L, Dimtriev A. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology. 2009;20:434015.CrossRefGoogle Scholar
  12. 12.
    Barbillon G, Bijeon J-L, Lérondel G, Plain J, Royer P. Detection of chemical molecules with integrated plasmonics glass nanotips. Surf Sci. 2008;602:119–22.CrossRefGoogle Scholar
  13. 13.
    Aćimović SS, Kreuzer MP, González MU, Quidant R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano. 2009;3:1231–7.CrossRefGoogle Scholar
  14. 14.
    Xu H, Aizpurua J, Käll M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E. 2000;62:4318–24.CrossRefGoogle Scholar
  15. 15.
    Ringler M, Klar TA, Schwemer A, Susha AS, Stehr J, Rasche G, Funk S, Borowski M, Nichtl A, Kurzinger K, Phillips RT, Feldman J. Moving nanoparticles with Raman scattering. Nanoletters. 2007;7(9):2753–7.CrossRefGoogle Scholar
  16. 16.
    Stockman MI. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett. 2004;93:137404.CrossRefGoogle Scholar
  17. 17.
    De Angelis F, Patrini M, Das G, Maksymov I, Galli M, Businaro L, Andreani LC, Di Fabrizio E. A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. Nano Lett. 2008;8:2321–7.CrossRefGoogle Scholar
  18. 18.
    Li K, Stockman MI, Bergman DJ. Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett. 2003;91:227402.CrossRefGoogle Scholar
  19. 19.
    Romero I, Aizpurua J, Bryant GW, GarcíaDeAbajo FJ. Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt Express. 2006;14:9988–99.CrossRefGoogle Scholar
  20. 20.
    Kottmann J, Martin O. Retardation-induced plasmon resonances in coupled nanoparticles. Opt Lett. 2001;26:1096–8.Google Scholar
  21. 21.
    Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev. 2005;249(17–18):1870–901.CrossRefGoogle Scholar
  22. 22.
    Malaquin L, Kraus T, Schmid H, Delamarche E, Wolf H. Controlled particle placement through convective and capillary assembly. Langmuir. 2007;23:11513–21.CrossRefGoogle Scholar
  23. 23.
    Biswas A, Wang T, Biris AS. single metal nanoparticle spectroscopy: optical characterization of individual nanosystems for biomedical applications. Nanoscale. 2010;2:1560–72.CrossRefGoogle Scholar
  24. 24.
    Nehl CL, Liao H, Hafner JH. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006;6(4):683–8.CrossRefGoogle Scholar
  25. 25.
    Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 2008;8:3450–5.CrossRefGoogle Scholar
  26. 26.
    Becker J, Schubert O, Sönnichsen C. Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Lett. 2007;7(6):1664–9.CrossRefGoogle Scholar
  27. 27.
    Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne RP. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C. 2009;113(39):16839–42.CrossRefGoogle Scholar
  28. 28.
    Hicks EM, Zou S, Schatz GC, Spears KG, Van Duyne RP, Gunnarsson L, Rindzevicius T, Kasemo B, Käll M. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 2005;5:1065–70.CrossRefGoogle Scholar
  29. 29.
    Kravets VG, Schedin F, Grigorenko AN. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett. 2008;101:087403.CrossRefGoogle Scholar
  30. 30.
    Auguie B, Barnes WL. Collective resonances in gold nanoparticle arrays. Phys Rev Lett. 2008;101:143902.CrossRefGoogle Scholar
  31. 31.
    Jain PK, Huang W, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7:2080–8.CrossRefGoogle Scholar
  32. 32.
    Zhang WH, Fischer H, Schmid T, Zenobi R, Martin OJF. Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C. 2009;113:14672–5.CrossRefGoogle Scholar
  33. 33.
    Smythe EJ, Cubukcu E, Capasso F. Optical properties of surface plasmon resonances of coupled metallic nanorods. Opt Express. 2007;15(12):7439–47.CrossRefGoogle Scholar
  34. 34.
    Graells S, Alcubilla R, Badenes G, Quidant R. Growth of plasmonic gold nanostructures by electron beam induced deposition. Appl Phys Lett. 2007;91:121112.CrossRefGoogle Scholar
  35. 35.
    Farahani JN, Pohl DW, Eisler HJ, Hecht B. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett. 2005;95:017402.CrossRefGoogle Scholar
  36. 36.
    chapters 2–4Google Scholar
  37. 37.
    Chou SY, Krauss PR, Zhang W, Guo LJ, Zhuang L. Sub-10nm imprint lithography and applications. J Vac Sci Technol B. 1997;15:2897–904.CrossRefGoogle Scholar
  38. 38.
    Guo LJ. Nanoimprint lithography: methods and material requirements. Adv Mater. 2007;19:495–513.CrossRefGoogle Scholar
  39. 39.
    Zhdanov A, Kreuzer MP, Rao S, Fedyanin A, Ghenuche P, Quidant R, Petrov D. Detection of plasmon-enhanced luminescence fields from an optically manipulated pair of partially metal covered dielectric spheres. Opt Lett. 2008;33(23):2749–51.CrossRefGoogle Scholar
  40. 40.
    Fischer H, Martin OJF. Engineering the optical response of plasmonic nanoantennas. Opt Express. 2008;16:9144–54.CrossRefGoogle Scholar
  41. 41.
    Lereu AL, Sánchez-Mosteiro G, Ghenuche P, Quidant R, van Hulst NF. Individual gold dimers investigated by far- and near-field imaging. J Microsc. 2008;229:254–8.CrossRefGoogle Scholar
  42. 42.
    Schnell M, García-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R. Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photon. 2009;3:287–91.CrossRefGoogle Scholar
  43. 43.
    Bouhelier A, Bachelot R, Lerondel G, Kostcheev S, Royer P, Wiederrecht GP. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys Rev Lett. 2005;95:267405.CrossRefGoogle Scholar
  44. 44.
    Ghenuche P, Cherukulappurath S, Taminiau TH, van Hulst NF, Quidant R. Spectroscopic mode mapping of resonant plasmon nanoantennas. Phys Rev Lett. 2008;101:116805.CrossRefGoogle Scholar
  45. 45.
    Wissert MD, Ilin KS, Siegel M, Lemmer U, Eisler HJ. Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation. Nano Lett. 2010;10(10):4161–5.Google Scholar
  46. 46.
    Messinger BJ, von Raben KU, Chang RK, Barber PW. Local fields at the surface of noble-metal microspheres. Phys Rev B. 1981;24:649.CrossRefGoogle Scholar
  47. 47.
    Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett. 2005;5(4):803–7.CrossRefGoogle Scholar
  48. 48.
    Ferreira J, Santos MJL, Rahman MM, Brolo AG, Gordon R, Sinton D, Girotto EM. Attomolar protein detection using in-hole surface plasmon resonance. J Am Chem Soc. 2009;131(2):436–7.CrossRefGoogle Scholar
  49. 49.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81:4308–11.CrossRefGoogle Scholar
  50. 50.
    Jonsson MP, Dahlin AB, Feuz L, Petronis A, Hook F. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94.CrossRefGoogle Scholar
  51. 51.
    Enoch S, Quidant R, Badenes G. Optical sensing based on plasmon coupling in nanoparticle arrays. Opt Express. 2004;12:3422–7.CrossRefGoogle Scholar
  52. 52.
    Atay T, Song JH, Nurmikko AV. Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime. Nano Lett. 2004;4:1627–31.CrossRefGoogle Scholar
  53. 53.
    Fromm DP, Sundaramurthy A, Schuck PJ, Kino G, Moerner WE. Gap-dependent optical coupling of single bowtie nanoantenas resonant in the visible. Nano Lett. 2004;4:957–61.CrossRefGoogle Scholar
  54. 54.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005;23:741–5.CrossRefGoogle Scholar
  55. 55.
    Huang W, Qian W, Jain PK, El-Sayed MA. The effect of plasmon field on the coherent lattice phonon oscillation in electron-beam fabricated gold nanoparticle pairs. Nano Lett. 2007;7(10):3227–34.CrossRefGoogle Scholar
  56. 56.
    Félidj N, Grand J, Laurent G, Aubard J, Lévi G, Hohenau A, Galler N, Aussenegg FR, Krenn JR. Multipolar surface plasmon peaks on gold nanotriangles. J Chem Phys. 2008;128:094702.CrossRefGoogle Scholar
  57. 57.
    Malmsten M. Ellipsometry studies of the effects of surface hydrophobicity on protein adsorption. Colloids Surf B. 1995;3:297–308.CrossRefGoogle Scholar
  58. 58.
    Fukuzaki S, Urano H, Nagata K. Adsorption of bovine serum albumin onto metal oxide surfaces. J Ferment Bioeng. 1996;81(2):163–7.CrossRefGoogle Scholar
  59. 59.
    Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir. 2005;21:9303–7.CrossRefGoogle Scholar
  60. 60.
    Thorsen T, Maerkl SJ, Quake SR. Microfluidic large-scale integration. Science. 2002;298(5593):580–4.CrossRefGoogle Scholar
  61. 61.
    Gerion D, Day G. Label-free and labeled technology for protein characterization and quantitation. Biopharm Int. 2010;23(9):38–45.Google Scholar
  62. 62.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR. Optical properties of two interacting gold nanoparticles. Opt Commun. 2003;220:137–41.CrossRefGoogle Scholar
  63. 63.
    Jain PK, El-Sayed MA. Plasmonic coupling in noble metal nanostructures. Chem Phys Lett. 2010;487:153–64.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Srdjan S. Aćimović
    • 1
  • Mark P. Kreuzer
    • 1
  • Romain Quidant
    • 1
    • 2
    Email author
  1. 1.ICFO-Institut de Ciencies FotoniquesCastelldefelsSpain
  2. 2.ICREA-Institució Catalana de Recerca I Estudis AvançatsBarcelonaSpain

Personalised recommendations