Performance of Nanoplasmonic Biosensors

  • Andreas B. DahlinEmail author
  • Magnus P. Jonsson
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter aims to give an overview of how to optimize the performance of nanoplasmonic sensors. Specific biosensing challenges beyond the capability of current nanoplasmonic sensors will be discussed. Various methods to improve sensor performance will then be introduced, including solving issues related to surface chemistry. We distinguish the concept of signal enhancement, which is related to the choice of nanostructure and surface functionalization, from the concept of noise minimization, which is related to the spectroscopy techniques employed. The concepts of bulk sensitivity, figure of merit, nanostructure performance, and their relation to detection limit are discussed in detail.

The most important points addressed are:
  • The challenges which require the development of nanoplasmonic sensors with better performance are diverse in nature. Different improvements will solve different problems.

  • More effort needs to be put into improving surface functionalization for specific binding, especially if nanoplasmonic sensors are to be useful in medical diagnostics.

  • The sensing performance of a plasmonic nanostructure is best defined in terms of relative intensity changes (e.g., extinction in absorbance units) per refractive index change, because this is what is measured by optical spectroscopy. The signals upon local changes in refractive index also depend on the extension of the plasmonic field.

  • In most sensing situations, except single nanoparticle/hole analysis or imaging applications, extinction spectroscopy in transmission mode will outperform scattering spectroscopy under dark-field illumination.


Shot Noise Extinction Spectrum Refractive Index Change Biomolecular Interaction Relative Intensity Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Healy DA, et al. Biosensor developments: application to prostate-specific antigen detection. Trends Biotechnol. 2007;25(3):125–31.CrossRefGoogle Scholar
  2. 2.
    Dahlin AB, et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano. 2008;2(10):2174–82.CrossRefGoogle Scholar
  3. 3.
    Jung LS, et al. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.CrossRefGoogle Scholar
  4. 4.
    Feuz L, et al. Improving the limit of detection of nanoscale sensors by directed binding to high-sensitivity areas. ACS Nano. 2010;4(4):2167–77.CrossRefGoogle Scholar
  5. 5.
    Hibbert DB, Gooding JJ, Erokhin P. Kinetics of irreversible adsorption with diffusion: application to biomolecule immobilization. Langmuir. 2002;18(5):1770–6.CrossRefGoogle Scholar
  6. 6.
    Sheehan PE, Whitman LJ. Detection limits for nanoscale biosensors. Nano Lett. 2005;5(4):803–7.CrossRefGoogle Scholar
  7. 7.
    Squires TM, Messinger RJ, Manalis SR. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol. 2008;26(4):417–26.CrossRefGoogle Scholar
  8. 8.
    Bendikov TA, et al. Biological sensing and interface design in gold island film based localized plasmon transducers. Anal Chem. 2008;80(19):7487–98.CrossRefGoogle Scholar
  9. 9.
    Curry A, et al. Analysis of total uncertainty in spectral peak measurements for plasmonic nanoparticle-based biosensors. Appl Opt. 2007;46(10):1931–9.CrossRefGoogle Scholar
  10. 10.
    Dahlin AB, et al. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem. 2009;81(16):6572–80.CrossRefGoogle Scholar
  11. 11.
    Nusz GJ, et al. Label-free plasmonic detection of biomolecular binding by a single gold nanorod. Anal Chem. 2008;80(4):984–9.CrossRefGoogle Scholar
  12. 12.
    Baciu CL, et al. Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett. 2008;8(6):1724–8.CrossRefGoogle Scholar
  13. 13.
    McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3(8):1057–62.CrossRefGoogle Scholar
  14. 14.
    Raschke G, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.CrossRefGoogle Scholar
  15. 15.
    Sannomiya T, Hafner C, Voros J. In situ sensing of single binding events by localized surface plasmon resonance. Nano Lett. 2008;8(10):3450–5.CrossRefGoogle Scholar
  16. 16.
    Nair PR, Alam MA. Performance limits of nanobiosensors. Appl Phys Lett. 2006;88(23):233120.CrossRefGoogle Scholar
  17. 17.
    Andersson H, van den Berg A. Microtechnologies and nanotechnologies for single-cell analysis. Curr Opin Biotechnol. 2004;15(1):44–9.CrossRefGoogle Scholar
  18. 18.
    Eftekhari F, et al. Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem. 2009;81(11):4308–11.CrossRefGoogle Scholar
  19. 19.
    Jonsson MP, et al. Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem. 2010;82(5):2087–94.CrossRefGoogle Scholar
  20. 20.
    Yanik AA, et al. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett. 2010;96(2):021101.CrossRefGoogle Scholar
  21. 21.
    Green NM. Avidin. 1. The use of [14c] biotin for kinetic studies and for assay. Biochem J. 1963;89(3):585–91.Google Scholar
  22. 22.
    Hock B, Seifert M, Kramer K. Engineering receptors and antibodies for biosensors. Biosens Bioelectron. 2002;17(3):239–49.CrossRefGoogle Scholar
  23. 23.
    Gresham D, Dunham MJ, Botstein D. Comparing whole genomes using DNA microarrays. Nat Rev Genet. 2008;9(4):291–302.CrossRefGoogle Scholar
  24. 24.
    Service RF. Proteomics ponders prime time. Science. 2008;321(5897):1758–61.CrossRefGoogle Scholar
  25. 25.
    Kabashin AV, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867–71.CrossRefGoogle Scholar
  26. 26.
    Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78(13):4416–23.CrossRefGoogle Scholar
  27. 27.
    Swann MJ, et al. Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal Biochem. 2004;329(2):190–8.CrossRefGoogle Scholar
  28. 28.
    Song SP, et al. Aptamer-based biosensors. Trac Trends Anal Chem. 2008;27(2):108–17.CrossRefGoogle Scholar
  29. 29.
    Cooper MA. Advances in membrane receptor screening and analysis. J Mol Recognit. 2004;17(4):286–315.CrossRefGoogle Scholar
  30. 30.
    Bearinger JP, et al. Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater. 2003;2(4):259–64.CrossRefGoogle Scholar
  31. 31.
    Kenausis GL, et al. Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J Phys Chem B. 2000;104(14):3298–309.CrossRefGoogle Scholar
  32. 32.
    Ma HW, et al. “Non-fouling” oligo(ethylene glycol)-functionalized polymer brushes synthesized by surface-initiated atom transfer radical polymerization. Adv Mater. 2004;16(4):338–41.CrossRefGoogle Scholar
  33. 33.
    Pasche S, et al. Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir. 2003;19(22):9216–25.CrossRefGoogle Scholar
  34. 34.
    Pasche S, et al. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces. Langmuir. 2005;21(14):6508–20.CrossRefGoogle Scholar
  35. 35.
    Dahlin AB, Jonsson MP, Hook F. Specific self-assembly of single lipid vesicles in nanoplasmonic apertures in gold. Adv Mater. 2008;20(8):1436–42.CrossRefGoogle Scholar
  36. 36.
    Haes AJ, et al. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127(7):2264–71.CrossRefGoogle Scholar
  37. 37.
    Marinakos SM, Chen SH, Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal Chem. 2007;79(14):5278–83.CrossRefGoogle Scholar
  38. 38.
    Huang NP, et al. Biotin-derivatized poly(L-lysine)-g-poly(ethylene glycol): a novel polymeric interface for bioaffinity sensing. Langmuir. 2002;18(1):220–30.CrossRefGoogle Scholar
  39. 39.
    Dahlin A, et al. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc. 2005;127(14):5043–8.CrossRefGoogle Scholar
  40. 40.
    Marie R, et al. Generic surface modification strategy for sensing applications based on Au/SiO2 nanostructures. Biointerphases. 2007;2(1):49–55.CrossRefGoogle Scholar
  41. 41.
    Whitney AV, et al. Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B. 2005;109(43):20522–8.CrossRefGoogle Scholar
  42. 42.
    Nenninger GG, Piliarik M, Homola J. Data analysis for optical sensors based on spectroscopy of surface plasmons. Meas Sci Technol. 2002;13(12):2038–46.CrossRefGoogle Scholar
  43. 43.
    Becker J, et al. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics. 2010;5(2):161–7.CrossRefGoogle Scholar
  44. 44.
    Stewart ME, et al. Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals. Proc Natl Acad Sci U S A. 2006;103(46):17143–8.CrossRefGoogle Scholar
  45. 45.
    Svedendahl M, et al. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9(12):4428–33.CrossRefGoogle Scholar
  46. 46.
    Murray-Methot MP, Ratel M, Masson JF. Optical properties of Au, Ag, and bimetallic Au on Ag nanohole arrays. J Phys Chem C. 2010;114(18):8268–75.CrossRefGoogle Scholar
  47. 47.
    Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109(46):21556–65.CrossRefGoogle Scholar
  48. 48.
    Johnson PB, Christy RW. Optical-constants of noble-metals. Phys Rev B. 1972;6(12):4370–9.CrossRefGoogle Scholar
  49. 49.
    Otte MA, et al. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano. 2010;4(1):349–57.CrossRefGoogle Scholar
  50. 50.
    Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001;19(4):316–7.CrossRefGoogle Scholar
  51. 51.
    Langhammer C, et al. Plasmonic properties of supported Pt and Pd nanostructures. Nano Lett. 2006;6(4):833–8.CrossRefGoogle Scholar
  52. 52.
    Langhammer C, et al. Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 2008;8(5):1461–71.CrossRefGoogle Scholar
  53. 53.
    Schwind M, et al. LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles. Nano Lett. 2010;10(3):931–6.CrossRefGoogle Scholar
  54. 54.
    Chan GH, et al. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 2007;7(7):1947–52.CrossRefGoogle Scholar
  55. 55.
    Anker JN, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7(6):442–53.CrossRefGoogle Scholar
  56. 56.
    Jonsson MP, et al. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 2007;7(11):3462–8.CrossRefGoogle Scholar
  57. 57.
    Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108(2):462–93.CrossRefGoogle Scholar
  58. 58.
    Johnsson B, Lofas S, Lindquist G. Immobilization of proteins to a carboxymethyl dextran-modified gold surface for biospecific interaction analysis in surface-plasmon resonance sensors. Anal Biochem. 1991;198(2):268–77.CrossRefGoogle Scholar
  59. 59.
    Graneli A, Edvardsson M, Hook F. DNA-based formation of a supported, three-dimensional lipid vesicle matrix probed by QCM-D and SPR. Chemphyschem. 2004;5(5):729–33.CrossRefGoogle Scholar
  60. 60.
    Johansen K, et al. Surface plasmon resonance: instrumental resolution using photo diode arrays. Meas Sci Technol. 2000;11(11):1630–8.CrossRefGoogle Scholar
  61. 61.
    Hedsten K, et al. Optical label-free nanoplasmonic biosensing using a vertical-cavity surface-emitting laser and charge-coupled device. Anal Chem. 2010;82(4):1535–9.CrossRefGoogle Scholar
  62. 62.
    Mazzotta F, Wang G, Hägglund C, Höök F, Jonsson MP. Biosensors and Bioelectronics. 2010;(26): 1131–1136. doi: 10.1016/j.bios.2010.07.008.
  63. 63.
    Larsson EM, et al. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 2007;7(5):1256–63.CrossRefGoogle Scholar
  64. 64.
    Rindzevicius T, et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5(11):2335–9.CrossRefGoogle Scholar
  65. 65.
    Sonnichsen C, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88(7):077402.CrossRefGoogle Scholar
  66. 66.
    Jain PK, et al. Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics. 2007;2(3):107–18.CrossRefGoogle Scholar
  67. 67.
    Braslavsky I, et al. Objective-type dark-field illumination for scattering from microbeads. Appl Opt. 2001;40(31):5650–7.CrossRefGoogle Scholar
  68. 68.
    Endo T, et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal Chem. 2006;78(18):6465–75.CrossRefGoogle Scholar
  69. 69.
    Rong GX, et al. Resolving sub-diffraction limit encounters in nanoparticle tracking using live cell plasmon coupling microscopy. Nano Lett. 2008;8(10):3386–93.CrossRefGoogle Scholar
  70. 70.
    Scarano S, et al. Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron. 2010;25(5):957–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Division of Bionanophotonics, Department of Applied PhysicsChalmers University of TechnologyGothenburgSweden
  2. 2.Division of Biological Physics, Department of Applied PhysicsChalmers University of TechnologyGothenburgSweden

Personalised recommendations