Skip to main content

An Introduction to Plasmonic Refractive Index Sensing

  • Chapter
  • First Online:
Nanoplasmonic Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

This chapter introduces the basics of plasmon-based refractometric sensing, its application in label-free biomolecular analysis, and discusses differences between propagating plasmons and localized plasmons in terms of refractive index sensitivity, sensing volume and measurement methodology. Based on some recent nanoplasmonic sensing studies, we discuss plasmon–substrate interactions and the possibility to perform long-range nanoplasmonic sensing. We also discuss an experimental comparison between particle-based and thin film plasmonic biosensing, and we describe a method to enhance the sensitivity of nanoplasmonic sensing towards the single molecule limit using enzymatic signal amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nylander C, Liedberg B, Lind T. Gas-detection by means of surface-plasmon resonance. Sens Actuators. 1982;3(1):79–88.

    CAS  Google Scholar 

  2. Liedberg B, Nylander C, Lundstrom I. Surface-plasmon resonance for gas-detection and biosensing. Sens Actuators. 1983;4(2):299–304.

    CAS  Google Scholar 

  3. Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit. 2004;17(3):151–61.

    Article  CAS  Google Scholar 

  4. Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.

    Article  CAS  Google Scholar 

  5. Wassaf D, et al. High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem. 2006;351(2):241–53.

    Article  CAS  Google Scholar 

  6. Rees DC, et al. Fragment-based lead discovery. Nat Rev Drug Discov. 2004;3(8):660–72.

    Article  CAS  Google Scholar 

  7. Mozsolits H, Thomas WG, Aguilar MI. Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J Pept Sci. 2003;9(2):77–89.

    Article  CAS  Google Scholar 

  8. Navratilova I, Hopkins AL. Fragment screening by surface plasmon resonance. ACS Med Chem Lett. 2010;1(1):44–8.

    Article  CAS  Google Scholar 

  9. Neumann T, et al. SPR-based fragment screening: advantages and applications. Curr Top Med Chem. 2007;7(16):1630–42.

    Article  CAS  Google Scholar 

  10. Taylor AD, et al. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron. 2006;22(5):752–8.

    Article  CAS  Google Scholar 

  11. Guidi A, et al. Comparison of a conventional immunoassay (ELISA) with a surface plasmon resonance-based biosensor for IGF-1 detection in cows’ milk. Biosens Bioelectron. 2001;16(9–12):971–7.

    Article  CAS  Google Scholar 

  12. Wei D, et al. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J Microbiol Methods. 2007;69(1):78–85.

    Article  CAS  Google Scholar 

  13. Ferguson JP, et al. Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor. Analyst. 2002;127(7):951–6.

    Article  CAS  Google Scholar 

  14. Crooks SRH, et al. Immunobiosensor-an alternative to enzyme immunoassay screening for residues of two sulfonamides in pigs[dagger]. Analyst. 1998;123(12):2755–7.

    Article  CAS  Google Scholar 

  15. Nilsson CE, et al. A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine. 2010;28(3):759–66.

    Article  Google Scholar 

  16. Naimushin AN, et al. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron. 2002;17(6–7):573–84.

    Article  CAS  Google Scholar 

  17. Fu E, et al. SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. In: Malamud D, Niedbala RS, editors. Oral-based diagnostics. Blackwell; 2007. p. 335–44.

    Google Scholar 

  18. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123(7):1599–603.

    Article  CAS  Google Scholar 

  19. Neuxil P, Reboud J. Palm-sized biodetection system based on localized surface plasmon resonance. Anal Chem. 2008;80(15):6100–3.

    Article  Google Scholar 

  20. Hiep HM, et al. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Technol Adv Mater. 2007;8(4):331–8.

    Article  CAS  Google Scholar 

  21. Chen S, et al. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology. 2009;20(43):9.

    Article  Google Scholar 

  22. Guo ZR, et al. Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Res Lett. 2009;4(12):1428–33.

    Article  CAS  Google Scholar 

  23. Svedendahl M, et al. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9(12):4428–33.

    Article  CAS  Google Scholar 

  24. Larsson EM, et al. Nanoplasmonic probes of catalytic reactions. Science. 2009;326(5956):1091–4.

    Article  CAS  Google Scholar 

  25. Okamoto T, Yamaguchi I, Kobayashi T. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett. 2000;25(6):372–4.

    Article  CAS  Google Scholar 

  26. Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74(3):504–9.

    Article  CAS  Google Scholar 

  27. Malinsky MD, et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc. 2001;123(7):1471–82.

    Article  CAS  Google Scholar 

  28. Himmelhaus M, Takei H. Cap-shaped gold nanoparticles for an optical biosensor. Sens Actuators B Chem. 2000;63(1–2):24–30.

    Article  Google Scholar 

  29. Haes AJ, Van Duyne RP. A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124(35):10596–604.

    Article  CAS  Google Scholar 

  30. Kretschm E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A. 1968;A23(12):2135.

    Google Scholar 

  31. Novotny L, Hecht B. Principles of nano optics. Cambridge: Cambridge University Press; 2006.

    Book  Google Scholar 

  32. Vukusic PS, Bryanbrown GP, Sambles JR. Surface-plasmon resonance on gratings as a novel means for gas sensing. Sens Actuators B Chem. 1992;8(2):155–60.

    Article  Google Scholar 

  33. Cullen DC, Brown RGW, Lowe CR. Detection of immuno-complex formation via surface-plasmon resonance on gold-coated diffraction gratings. Biosensors. 1987;3(4):211–25.

    Article  CAS  Google Scholar 

  34. Piliarik M, et al. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosens Bioelectron. 2009;24(12):3430–5.

    Article  CAS  Google Scholar 

  35. Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express. 2009;17(19):16505–17.

    Article  CAS  Google Scholar 

  36. Hickel W, Rothenhausler B, Knoll W. Surface plasmon microscopic characterization of external surfaces. J Appl Phys. 1989;66(10):4832–6.

    Article  CAS  Google Scholar 

  37. Rothenhausler B, Knoll W. Surface–plasmon microscopy. Nature. 1988;332(6165):615–7.

    Article  Google Scholar 

  38. Nelson BP, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem. 2001;73(1):1–7.

    Article  CAS  Google Scholar 

  39. Brockman JM, Nelson BP, Corn RM. Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem. 2000;51:41–63.

    Article  CAS  Google Scholar 

  40. Andersson O, et al. Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study. Biomacromolecules. 2008;10(1):142–8.

    Article  Google Scholar 

  41. Homola J. Surface plasmon resonance based sensors. In: Wolfbeis OS, editor. Springer series on chemical sensors and biosensors. Berlin: Springer; 2006.

    Google Scholar 

  42. Rindzevicius T, et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5(11):2335–9.

    Article  CAS  Google Scholar 

  43. Bingham JM, et al. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C. 2009;113(39):16839–42.

    Article  CAS  Google Scholar 

  44. Raschke G, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.

    Article  CAS  Google Scholar 

  45. Mayer KM, et al. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology. 2010;21(25):255503.

    Article  Google Scholar 

  46. Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78(13):4416–23.

    Article  CAS  Google Scholar 

  47. Dahlin AB, et al. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem. 2009;81(16):6572–80.

    Article  CAS  Google Scholar 

  48. Sherry LJ, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 2006;6(9):2060–5.

    Article  CAS  Google Scholar 

  49. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109(46):21556–65.

    Article  CAS  Google Scholar 

  50. Kvasnicka P, Homola J. Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations. Biointerphases. 2008;3(3):FD4–11.

    Article  CAS  Google Scholar 

  51. Johnson PB, Christy RW. Optical-constants of noble-metals. Phys Rev B. 1972;6(12):4370–9.

    Article  CAS  Google Scholar 

  52. Shegai T, et al. Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates. ACS Nano. 2011;5(3):2036–41.

    Article  CAS  Google Scholar 

  53. Shegai T, et al. Unidirectional broadband light emission from supported plasmonic nanowires. Nano Lett. 2011;11(2):706–11.

    Article  CAS  Google Scholar 

  54. Brian B, et al. Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. Opt Express. 2009;17(3):2015–23.

    Article  CAS  Google Scholar 

  55. Alaverdyan Y, et al. Optical antennas based on coupled nanoholes in thin metal films. Nat Phys. 2007;3(12):884–9.

    Article  CAS  Google Scholar 

  56. Dmitriev A, et al. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008;8(11):3893–8.

    Article  CAS  Google Scholar 

  57. Aouani H, et al. Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. ACS Nano. 2009;3(7):2043–8.

    Article  CAS  Google Scholar 

  58. Jiao XJ, et al. Localization of near-field resonances in bowtie antennae: influence of adhesion layers. Plasmonics. 2009;4(1):37–50.

    Article  CAS  Google Scholar 

  59. Zhang SP, et al. Substrate-induced Fano resonances of a plasmonic: nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11(4):1657–63.

    Article  CAS  Google Scholar 

  60. Sepúlveda B, Lechuga LM, Armelles G. Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J Lightwave Technol. 2006;24(2):945.

    Article  Google Scholar 

  61. Jung LS, et al. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.

    Article  CAS  Google Scholar 

  62. Raether H. Surface-plasmons on smooth and rough surfaces and on gratings Springer tracts in modern physics, Vol. 111. New York: Springer; 1988. p. 1–133.

    Google Scholar 

  63. Xu HX, Kall M. Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sens Actuators B Chem. 2002;87(2):244–9.

    Article  Google Scholar 

  64. Rindzevicius T, et al. Long-range refractive index sensing using plasmonic nanostructures. J Phys Chem C. 2007;111(32):11806–10.

    Article  CAS  Google Scholar 

  65. Jain PK, Huang WY, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7(7):2080–8.

    Article  CAS  Google Scholar 

  66. Murray WA, Auguie B, Barnes WL. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J Phys Chem C. 2009;113(13):5120–5.

    Article  CAS  Google Scholar 

  67. Sonnichsen C, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88(7):077402.

    Article  CAS  Google Scholar 

  68. Evlyukhin AB, et al. Detuned electrical dipoles for plasmonic sensing. Nano Lett. 2010;10(11):4571–7.

    Article  CAS  Google Scholar 

  69. Henzie J, Lee MH, Odom TW. Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol. 2007;2(9):549–54.

    Article  CAS  Google Scholar 

  70. Sonnefraud Y, et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano. 2010;4(3):1664–70.

    Article  CAS  Google Scholar 

  71. Hao F, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008;8(11):3983–8.

    Article  CAS  Google Scholar 

  72. Hao F, et al. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano. 2009;3(3):643–52.

    Article  CAS  Google Scholar 

  73. Dondapati SK, et al. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano. 2010;4(11):6318–22.

    Article  CAS  Google Scholar 

  74. Chen S, et al. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 2011;11(4):1826–30.

    Article  CAS  Google Scholar 

  75. Xu HX, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83(21):4357–60.

    Article  CAS  Google Scholar 

  76. Rissin DM, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28(6):595–9.

    Article  CAS  Google Scholar 

  77. Curto AG, et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science. 2010;329(5994):930–3.

    Article  CAS  Google Scholar 

  78. Luk’yanchuk B, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater. 2010;9(9):707–15.

    Article  Google Scholar 

  79. Kabashin AV, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867–71.

    Article  CAS  Google Scholar 

  80. Dahlin AB, et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano. 2008;2(10):2174–82.

    Article  CAS  Google Scholar 

  81. Jonsson MP, Jonsson P, Hook F. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass. Anal Chem. 2008;80(21):7988–95.

    Article  CAS  Google Scholar 

  82. Shopova SI, et al. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett. 2011;98(24):243104.

    Article  Google Scholar 

  83. Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods. 2008;5(7):591–6.

    Article  CAS  Google Scholar 

  84. Min BK, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature. 2009;457(7228):455–8.

    Article  CAS  Google Scholar 

  85. White IM, Gohring J, Fan XD. SERS-based detection in an optofluidic ring resonator platform. Opt Express. 2007;15(25):17433–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikael Käll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svedendahl, M., Chen, S., Käll, M. (2012). An Introduction to Plasmonic Refractive Index Sensing. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_1

Download citation

Publish with us

Policies and ethics