An Introduction to Plasmonic Refractive Index Sensing

  • Mikael Svedendahl
  • Si Chen
  • Mikael KällEmail author
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter introduces the basics of plasmon-based refractometric sensing, its application in label-free biomolecular analysis, and discusses differences between propagating plasmons and localized plasmons in terms of refractive index sensitivity, sensing volume and measurement methodology. Based on some recent nanoplasmonic sensing studies, we discuss plasmon–substrate interactions and the possibility to perform long-range nanoplasmonic sensing. We also discuss an experimental comparison between particle-based and thin film plasmonic biosensing, and we describe a method to enhance the sensitivity of nanoplasmonic sensing towards the single molecule limit using enzymatic signal amplification.


Surface Plasmon Resonance Refractive Index Change Decay Length Surface Plasmon Resonance Sensor Thin Metal Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nylander C, Liedberg B, Lind T. Gas-detection by means of surface-plasmon resonance. Sens Actuators. 1982;3(1):79–88.Google Scholar
  2. 2.
    Liedberg B, Nylander C, Lundstrom I. Surface-plasmon resonance for gas-detection and biosensing. Sens Actuators. 1983;4(2):299–304.Google Scholar
  3. 3.
    Karlsson R. SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recognit. 2004;17(3):151–61.CrossRefGoogle Scholar
  4. 4.
    Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials. 2007;28(15):2380–92.CrossRefGoogle Scholar
  5. 5.
    Wassaf D, et al. High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays. Anal Biochem. 2006;351(2):241–53.CrossRefGoogle Scholar
  6. 6.
    Rees DC, et al. Fragment-based lead discovery. Nat Rev Drug Discov. 2004;3(8):660–72.CrossRefGoogle Scholar
  7. 7.
    Mozsolits H, Thomas WG, Aguilar MI. Surface plasmon resonance spectroscopy in the study of membrane-mediated cell signalling. J Pept Sci. 2003;9(2):77–89.CrossRefGoogle Scholar
  8. 8.
    Navratilova I, Hopkins AL. Fragment screening by surface plasmon resonance. ACS Med Chem Lett. 2010;1(1):44–8.CrossRefGoogle Scholar
  9. 9.
    Neumann T, et al. SPR-based fragment screening: advantages and applications. Curr Top Med Chem. 2007;7(16):1630–42.CrossRefGoogle Scholar
  10. 10.
    Taylor AD, et al. Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron. 2006;22(5):752–8.CrossRefGoogle Scholar
  11. 11.
    Guidi A, et al. Comparison of a conventional immunoassay (ELISA) with a surface plasmon resonance-based biosensor for IGF-1 detection in cows’ milk. Biosens Bioelectron. 2001;16(9–12):971–7.CrossRefGoogle Scholar
  12. 12.
    Wei D, et al. Development of a surface plasmon resonance biosensor for the identification of Campylobacter jejuni. J Microbiol Methods. 2007;69(1):78–85.CrossRefGoogle Scholar
  13. 13.
    Ferguson JP, et al. Detection of streptomycin and dihydrostreptomycin residues in milk, honey and meat samples using an optical biosensor. Analyst. 2002;127(7):951–6.CrossRefGoogle Scholar
  14. 14.
    Crooks SRH, et al. Immunobiosensor-an alternative to enzyme immunoassay screening for residues of two sulfonamides in pigs[dagger]. Analyst. 1998;123(12):2755–7.CrossRefGoogle Scholar
  15. 15.
    Nilsson CE, et al. A novel assay for influenza virus quantification using surface plasmon resonance. Vaccine. 2010;28(3):759–66.CrossRefGoogle Scholar
  16. 16.
    Naimushin AN, et al. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron. 2002;17(6–7):573–84.CrossRefGoogle Scholar
  17. 17.
    Fu E, et al. SPR imaging-based salivary diagnostics system for the detection of small molecule analytes. In: Malamud D, Niedbala RS, editors. Oral-based diagnostics. Blackwell; 2007. p. 335–44.Google Scholar
  18. 18.
    Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123(7):1599–603.CrossRefGoogle Scholar
  19. 19.
    Neuxil P, Reboud J. Palm-sized biodetection system based on localized surface plasmon resonance. Anal Chem. 2008;80(15):6100–3.CrossRefGoogle Scholar
  20. 20.
    Hiep HM, et al. A localized surface plasmon resonance based immunosensor for the detection of casein in milk. Sci Technol Adv Mater. 2007;8(4):331–8.CrossRefGoogle Scholar
  21. 21.
    Chen S, et al. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology. 2009;20(43):9.CrossRefGoogle Scholar
  22. 22.
    Guo ZR, et al. Fabrication of anti-human cardiac troponin I immunogold nanorods for sensing acute myocardial damage. Nanoscale Res Lett. 2009;4(12):1428–33.CrossRefGoogle Scholar
  23. 23.
    Svedendahl M, et al. Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. Nano Lett. 2009;9(12):4428–33.CrossRefGoogle Scholar
  24. 24.
    Larsson EM, et al. Nanoplasmonic probes of catalytic reactions. Science. 2009;326(5956):1091–4.CrossRefGoogle Scholar
  25. 25.
    Okamoto T, Yamaguchi I, Kobayashi T. Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett. 2000;25(6):372–4.CrossRefGoogle Scholar
  26. 26.
    Nath N, Chilkoti A. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74(3):504–9.CrossRefGoogle Scholar
  27. 27.
    Malinsky MD, et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc. 2001;123(7):1471–82.CrossRefGoogle Scholar
  28. 28.
    Himmelhaus M, Takei H. Cap-shaped gold nanoparticles for an optical biosensor. Sens Actuators B Chem. 2000;63(1–2):24–30.CrossRefGoogle Scholar
  29. 29.
    Haes AJ, Van Duyne RP. A nanoscale optical blosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124(35):10596–604.CrossRefGoogle Scholar
  30. 30.
    Kretschm E, Raether H. Radiative decay of non radiative surface plasmons excited by light. Z Naturforsch A. 1968;A23(12):2135.Google Scholar
  31. 31.
    Novotny L, Hecht B. Principles of nano optics. Cambridge: Cambridge University Press; 2006.CrossRefGoogle Scholar
  32. 32.
    Vukusic PS, Bryanbrown GP, Sambles JR. Surface-plasmon resonance on gratings as a novel means for gas sensing. Sens Actuators B Chem. 1992;8(2):155–60.CrossRefGoogle Scholar
  33. 33.
    Cullen DC, Brown RGW, Lowe CR. Detection of immuno-complex formation via surface-plasmon resonance on gold-coated diffraction gratings. Biosensors. 1987;3(4):211–25.CrossRefGoogle Scholar
  34. 34.
    Piliarik M, et al. Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons. Biosens Bioelectron. 2009;24(12):3430–5.CrossRefGoogle Scholar
  35. 35.
    Piliarik M, Homola J. Surface plasmon resonance (SPR) sensors: approaching their limits? Opt Express. 2009;17(19):16505–17.CrossRefGoogle Scholar
  36. 36.
    Hickel W, Rothenhausler B, Knoll W. Surface plasmon microscopic characterization of external surfaces. J Appl Phys. 1989;66(10):4832–6.CrossRefGoogle Scholar
  37. 37.
    Rothenhausler B, Knoll W. Surface–plasmon microscopy. Nature. 1988;332(6165):615–7.CrossRefGoogle Scholar
  38. 38.
    Nelson BP, et al. Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem. 2001;73(1):1–7.CrossRefGoogle Scholar
  39. 39.
    Brockman JM, Nelson BP, Corn RM. Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem. 2000;51:41–63.CrossRefGoogle Scholar
  40. 40.
    Andersson O, et al. Gradient hydrogel matrix for microarray and biosensor applications: an imaging SPR study. Biomacromolecules. 2008;10(1):142–8.CrossRefGoogle Scholar
  41. 41.
    Homola J. Surface plasmon resonance based sensors. In: Wolfbeis OS, editor. Springer series on chemical sensors and biosensors. Berlin: Springer; 2006.Google Scholar
  42. 42.
    Rindzevicius T, et al. Plasmonic sensing characteristics of single nanometric holes. Nano Lett. 2005;5(11):2335–9.CrossRefGoogle Scholar
  43. 43.
    Bingham JM, et al. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C. 2009;113(39):16839–42.CrossRefGoogle Scholar
  44. 44.
    Raschke G, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3(7):935–8.CrossRefGoogle Scholar
  45. 45.
    Mayer KM, et al. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology. 2010;21(25):255503.CrossRefGoogle Scholar
  46. 46.
    Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78(13):4416–23.CrossRefGoogle Scholar
  47. 47.
    Dahlin AB, et al. High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. Anal Chem. 2009;81(16):6572–80.CrossRefGoogle Scholar
  48. 48.
    Sherry LJ, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 2006;6(9):2060–5.CrossRefGoogle Scholar
  49. 49.
    Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J Phys Chem B. 2005;109(46):21556–65.CrossRefGoogle Scholar
  50. 50.
    Kvasnicka P, Homola J. Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations. Biointerphases. 2008;3(3):FD4–11.CrossRefGoogle Scholar
  51. 51.
    Johnson PB, Christy RW. Optical-constants of noble-metals. Phys Rev B. 1972;6(12):4370–9.CrossRefGoogle Scholar
  52. 52.
    Shegai T, et al. Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates. ACS Nano. 2011;5(3):2036–41.CrossRefGoogle Scholar
  53. 53.
    Shegai T, et al. Unidirectional broadband light emission from supported plasmonic nanowires. Nano Lett. 2011;11(2):706–11.CrossRefGoogle Scholar
  54. 54.
    Brian B, et al. Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. Opt Express. 2009;17(3):2015–23.CrossRefGoogle Scholar
  55. 55.
    Alaverdyan Y, et al. Optical antennas based on coupled nanoholes in thin metal films. Nat Phys. 2007;3(12):884–9.CrossRefGoogle Scholar
  56. 56.
    Dmitriev A, et al. Enhanced nanoplasmonic optical sensors with reduced substrate effect. Nano Lett. 2008;8(11):3893–8.CrossRefGoogle Scholar
  57. 57.
    Aouani H, et al. Crucial role of the adhesion layer on the plasmonic fluorescence enhancement. ACS Nano. 2009;3(7):2043–8.CrossRefGoogle Scholar
  58. 58.
    Jiao XJ, et al. Localization of near-field resonances in bowtie antennae: influence of adhesion layers. Plasmonics. 2009;4(1):37–50.CrossRefGoogle Scholar
  59. 59.
    Zhang SP, et al. Substrate-induced Fano resonances of a plasmonic: nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 2011;11(4):1657–63.CrossRefGoogle Scholar
  60. 60.
    Sepúlveda B, Lechuga LM, Armelles G. Magnetooptic effects in surface-plasmon-polaritons slab waveguides. J Lightwave Technol. 2006;24(2):945.CrossRefGoogle Scholar
  61. 61.
    Jung LS, et al. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir. 1998;14(19):5636–48.CrossRefGoogle Scholar
  62. 62.
    Raether H. Surface-plasmons on smooth and rough surfaces and on gratings Springer tracts in modern physics, Vol. 111. New York: Springer; 1988. p. 1–133.Google Scholar
  63. 63.
    Xu HX, Kall M. Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sens Actuators B Chem. 2002;87(2):244–9.CrossRefGoogle Scholar
  64. 64.
    Rindzevicius T, et al. Long-range refractive index sensing using plasmonic nanostructures. J Phys Chem C. 2007;111(32):11806–10.CrossRefGoogle Scholar
  65. 65.
    Jain PK, Huang WY, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7(7):2080–8.CrossRefGoogle Scholar
  66. 66.
    Murray WA, Auguie B, Barnes WL. Sensitivity of localized surface plasmon resonances to bulk and local changes in the optical environment. J Phys Chem C. 2009;113(13):5120–5.CrossRefGoogle Scholar
  67. 67.
    Sonnichsen C, et al. Drastic reduction of plasmon damping in gold nanorods. Phys Rev Lett. 2002;88(7):077402.CrossRefGoogle Scholar
  68. 68.
    Evlyukhin AB, et al. Detuned electrical dipoles for plasmonic sensing. Nano Lett. 2010;10(11):4571–7.CrossRefGoogle Scholar
  69. 69.
    Henzie J, Lee MH, Odom TW. Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol. 2007;2(9):549–54.CrossRefGoogle Scholar
  70. 70.
    Sonnefraud Y, et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano. 2010;4(3):1664–70.CrossRefGoogle Scholar
  71. 71.
    Hao F, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008;8(11):3983–8.CrossRefGoogle Scholar
  72. 72.
    Hao F, et al. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano. 2009;3(3):643–52.CrossRefGoogle Scholar
  73. 73.
    Dondapati SK, et al. Label-free biosensing based on single gold nanostars as plasmonic transducers. ACS Nano. 2010;4(11):6318–22.CrossRefGoogle Scholar
  74. 74.
    Chen S, et al. Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. Nano Lett. 2011;11(4):1826–30.CrossRefGoogle Scholar
  75. 75.
    Xu HX, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett. 1999;83(21):4357–60.CrossRefGoogle Scholar
  76. 76.
    Rissin DM, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol. 2010;28(6):595–9.CrossRefGoogle Scholar
  77. 77.
    Curto AG, et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science. 2010;329(5994):930–3.CrossRefGoogle Scholar
  78. 78.
    Luk’yanchuk B, et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater. 2010;9(9):707–15.CrossRefGoogle Scholar
  79. 79.
    Kabashin AV, et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater. 2009;8(11):867–71.CrossRefGoogle Scholar
  80. 80.
    Dahlin AB, et al. Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano. 2008;2(10):2174–82.CrossRefGoogle Scholar
  81. 81.
    Jonsson MP, Jonsson P, Hook F. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass. Anal Chem. 2008;80(21):7988–95.CrossRefGoogle Scholar
  82. 82.
    Shopova SI, et al. Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection. Appl Phys Lett. 2011;98(24):243104.CrossRefGoogle Scholar
  83. 83.
    Vollmer F, Arnold S. Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods. 2008;5(7):591–6.CrossRefGoogle Scholar
  84. 84.
    Min BK, et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature. 2009;457(7228):455–8.CrossRefGoogle Scholar
  85. 85.
    White IM, Gohring J, Fan XD. SERS-based detection in an optofluidic ring resonator platform. Opt Express. 2007;15(25):17433–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations