Advertisement

Scientific Satellite Spacecraft

  • Richard SchmudeJr.
Chapter
Part of the Astronomers' Observing Guides book series (OBSERVING)

Abstract

Many satellites are designed to gather information on extraterrestrial bodies. We will call these “spacecraft.” One of the earliest spacecraft, Luna 3, imaged the far side of the Moon. The former USSR launched it on the second anniversary of Sputnik 1. Since 1959, the United States, the former USSR, Japan, China, India and the European Space Agency have launched spacecraft beyond Earth’s orbit. The main objective of these has been to gather scientific data. Some have enabled astronomers to better understand our Sun and how it heats Earth, while others have given us a better understanding of the processes at work on other planets. In this chapter, we will give an overview of the different types of spacecraft missions. Afterwards, we will describe seven specific spacecraft in detail. These seven and the countries/agencies that launched them are: Chang’e-1 (China), Chandrayaan-1 (India), Hayabusa (Japan), Hubble Space Telescope (United States), Cassini (United States and the European Space Agency), Spektr-R (Russia) and Gaia (European Space Agency).

Keywords

Lunar Surface Hubble Space Telescope Very Large Array Cosmic Origin Spectrograph Space Telescope Image Spectrograph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe S, Mukai T, Hirata N et al (2006a) Mass and local topography measurements of Itokawa by Hayabusa. Science 312:1344–1347ADSCrossRefGoogle Scholar
  2. Abe M, Takagi Y, Kitazato K et al (2006b) Near-infrared spectral results of asteroid Itokawa from the Hayabusa spacecraft. Science 312:1334–1338ADSCrossRefGoogle Scholar
  3. Atkins P, de Paula J (2002) Physical chemistry, 7th edn. W H Freeman and Company, New YorkGoogle Scholar
  4. Barabash S, Bhardwaj A, Wieser M et al (2009) Investigation of the solar wind – moon interaction onboard Chandrayaan-1 mission with the SARA experiment. Curr Sci 96:526–532Google Scholar
  5. Barnes JW, Brown RH, Soderblom JM et al (2009) Shoreline features of Titan’s Ontario Lacus from Cassini/VIMS observations. Icarus 201:217–225ADSCrossRefGoogle Scholar
  6. Beatty JK (2001) NEAR falls for Eros. Sky Telesc 101(5):34–37ADSGoogle Scholar
  7. Beatty JK (2006a) Hayabusa mission gets long delay. Sky Telesc 111(3):24Google Scholar
  8. Beatty JK (2008) A Martian wonderland. Sky Telesc 116(4):22–24Google Scholar
  9. Beatty JK (2010a) NASA slams the moon. Sky Telesc 119(2):28–32Google Scholar
  10. Beatty JK, Chaikin A (1990) The new solar system, 3rd edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  11. Bhandari N (2005) Chandrayaan-1: science goals. J Earth Syst Sci 114:699–709ADSGoogle Scholar
  12. Bhardwaj A, Barabash S, Futaana Y et al (2005) Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission. J Earth Syst Sci 114:749–760ADSCrossRefGoogle Scholar
  13. Blades JC (2008) Fixing Hubble one last time. Sky Telesc 116(4):26–31Google Scholar
  14. Brown RH, Baines KH, Bellucci G et al (2005) The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci Rev 115:111–168ADSCrossRefGoogle Scholar
  15. Brown RH, Soderblom LA, Soderblom JM et al (2008) The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454:607–610ADSCrossRefGoogle Scholar
  16. Burchell MJ, Robin-Williams R, Foing BH (2010) The SMART-1 lunar impact. Icarus 207:28–38ADSCrossRefGoogle Scholar
  17. Clery D (2011) Russia launches a telescope, decades in the making. Science 333:512ADSCrossRefGoogle Scholar
  18. Dachev T, Tomov B, Dimitrov P et al (2009) Monitoring lunar radiation environment: RADOM instrument on Chandrayaan-1. Curr Sci 96:544–546Google Scholar
  19. Dambeck T (2008) Gaia’s mission to the Milky Way. Sky Telesc 115(3):36–39Google Scholar
  20. Demura H, Kobayashi S, Nemoto E et al (2006) Pole and global shape of 25143 Itokawa. Science 312:1347–1349ADSCrossRefGoogle Scholar
  21. Dougherty MK, Achilleos N, Andre N (2005) Cassini magnetometer observations during Saturn orbit insertion. Science 307:1266–1270ADSCrossRefGoogle Scholar
  22. Dougherty MK, Kellock S, Southwood DJ et al (2004) The Cassini magnetic field investigation. Space Sci Rev 114:331–383ADSCrossRefGoogle Scholar
  23. Elachi C, Allison MD, Borgarelli L et al (2005) Radar: the Cassini Titan radar mapper. Space Sci Rev 115:71–110ADSCrossRefGoogle Scholar
  24. Esposito LW, Barth CA, Colwell JE et al (2005a) The Cassini ultraviolet imaging spectrograph investigation. Space Sci Rev 115:299–361ADSCrossRefGoogle Scholar
  25. Esposito LW, Colwell JE, Larsen K et al (2005b) Ultraviolet imaging spectroscopy shows an active saturnian system. Science 307:1251–1255ADSCrossRefGoogle Scholar
  26. Flasar FM, Achterberg RK, Conrath BJ et al (2005a) Temperatures, winds, and composition in the saturnian system. Science 307:1247–1251ADSCrossRefGoogle Scholar
  27. Flasar FM, Kunde VG, Abbas MM et al (2005b) Exploring the Saturn system in the thermal infrared: the composite infrared spectrometer. Space Sci Rev 115:169–297ADSCrossRefGoogle Scholar
  28. Foing BH, Racca GD, Marini A et al (2005) SMART-1 after lunar capture: first results and perspectives. J Earth Syst Sci 114:689–697ADSCrossRefGoogle Scholar
  29. Fujiwara A, Kawaguchi J, Yeomans DK et al (2006) The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312:1330–1334ADSCrossRefGoogle Scholar
  30. Galimov EM (2005) Luna-Glob project in the context of the past and present lunar exploration in Russia. J Earth Syst Sci 114:801–806ADSCrossRefGoogle Scholar
  31. Goswami JN, Banerjee D, Bhandari N et al (2005) High energy X-ray spectrometer on the Chandrayaan-1 mission to the moon. J Earth Syst Sci 114:733–738ADSCrossRefGoogle Scholar
  32. Grande M, Maddison BJ, Sreekumar P et al (2009) The Chandrayaan-1 x-ray spectrometer. Curr Sci 96:517–519Google Scholar
  33. Guerlet S, Fouchet T, Bézard B et al (2009) Vertical and meridional distribution of ethane, acetylene and propane in Saturn’s stratosphere from CIRS /Cassini limb observations. Icarus 203:214–232ADSCrossRefGoogle Scholar
  34. Guerlet S, Fouchet T, Bézard B et al (2010) Meridional distribution of CH3C2H and C4H2 in Saturn’s stratosphere from CIRS/Cassini limb and nadir observations. Icarus 209:682–695ADSCrossRefGoogle Scholar
  35. Gurnett DA, Kurth WS, Hospodarksy GB et al (2005) Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307:1255–1259ADSCrossRefGoogle Scholar
  36. Gurnett DA, Kurth WS, Kirchner DL et al (2004) The Cassini radio and plasma pave investigation. Space Sci Rev 114:395–463ADSCrossRefGoogle Scholar
  37. Huixian S, Shuwu D, Jianfeng Y et al (2005) Scientific objectives and payloads of Chang’E-1 lunar satellite. J Earth Syst Sci 114:787–794ADSCrossRefGoogle Scholar
  38. Kamalakar JA, Bhaskar KVS, Prasad ASL et al (2005) Lunar ranging instrument for Chandrayaan-1. J Earth Syst Sci 114:725–731ADSCrossRefGoogle Scholar
  39. Kamalakar JA, Prasad ASL, Bhaskar KVS et al (2009) Lunar laser ranging instrument (LLRI): a tool for the study of topography and gravitational field of the moon. Curr Sci 96:512–516Google Scholar
  40. Kempf S, Srama R, Postberg F et al (2005) Composition of saturnian stream particles. Science 307:1274–1276ADSCrossRefGoogle Scholar
  41. Kliore AJ, Anderson JD, Armstrong JW et al (2005) Cassini radio science. Space Sci Rev 115:1–70ADSCrossRefGoogle Scholar
  42. Krishna A, Gopinath NS, Hegde NS et al (2005) Imaging and power generation strategies for Chandrayaan-1. J Earth Syst Sci 114:739–748ADSCrossRefGoogle Scholar
  43. Krimigis SM, Mitchell DG, Hamilton DC et al (2004) Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci Rev 114:233–329ADSCrossRefGoogle Scholar
  44. Kumar ASK, Chowdhury AR (2005a) Terrain mapping camera for Chandrayaan-1. J Earth Syst Sci 114:717–720ADSCrossRefGoogle Scholar
  45. Kumar ASK, Chowdhury AR (2005b) Hyper-spectral imager in visible and near-infrared band for lunar compositional mapping. J Earth Syst Sci 114:721–724ADSCrossRefGoogle Scholar
  46. Kumar ASK, Chowdhury AR, Banerjee A et al (2009a) Terrain mapping camera: a stereoscopic high-resolution instrument on Chandrayaan-1. Curr Sci 96:492–495Google Scholar
  47. Kumar ASK, Chowdhury AR, Banerjee A et al (2009b) Hyper spectral imager for lunar mineral mapping in visible and near infrared band. Curr Sci 96:496–499Google Scholar
  48. Kumar Y, MIP Project Team (2009) The moon impact probe on Chandrayaan-1. Curr Sci 96:540–543Google Scholar
  49. Lide DR (ed) (2008) CRS handbook of chemistry and physics, 89th edn. CRS Press, Boca Raton, Editor in ChiefGoogle Scholar
  50. Mall U, Banaszkiewic M, Bronstad K et al (2009) Near infrared spectrometer SIR-2 on Chandrayaan-1. Curr Sci 96:506–511Google Scholar
  51. McDowell J (2004) Mission update. Sky Telesc 108(6):26MathSciNetGoogle Scholar
  52. McDowell J (2006e) Mission update. Sky Telesc 112(1):26MathSciNetADSGoogle Scholar
  53. McDowell J (2006h) Mission update. Sky Telesc 112(5):22ADSGoogle Scholar
  54. McDowell J (2007g) Mission update. Sky Telesc 114(3):20Google Scholar
  55. McDowell J (2007h) Mission update. Sky Telesc 114(4):17ADSGoogle Scholar
  56. McDowell J (2008a) Mission update. Sky Telesc 115(2):19ADSGoogle Scholar
  57. McDowell J (2008h) Mission update. Sky Telesc 116(3):15Google Scholar
  58. McDowell J (2008i) Mission update. Sky Telesc 116(4):18Google Scholar
  59. McDowell J (2009e) Mission update. Sky Telesc 117(5):20Google Scholar
  60. McDowell J (2009f) Mission update. Sky Telesc 117(6):16Google Scholar
  61. Nakamura T, Noguchi T, Tanaka M et al (2011) Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333:1113–1116ADSCrossRefGoogle Scholar
  62. Narendranath S, Athiray PS, Sreekumar P et al (2011) Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray spectrometer (C1XS): results from the nearside southern highlands. Icarus 214:53–66ADSCrossRefGoogle Scholar
  63. Narvaez P (2004) The magnetostatic cleanliness program for the cassini spacecraft. Space Sci Rev 114:385–394ADSCrossRefGoogle Scholar
  64. Okada T, Shirai K, Yamamoto Y et al (2006) X-ray fluorescence spectrometry of asteroid Itokawa by Hayabusa. Sky Telesc 312:1338–1341Google Scholar
  65. Petersen CC, Brandt JC (1998) Hubble vision, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  66. Pieters CM, Boardman J, Buratti B et al (2009) The moon mineralogy mapper (M3) on Chandrayaan-1. Curr Sci 96:500–505Google Scholar
  67. Porco CC, Baker BJ et al (2005a) Cassini imaging science: initial results on Saturn’s atmosphere. Science 307:1243–1247ADSCrossRefGoogle Scholar
  68. Porco CC, West RA, Squyres S et al (2005b) Cassini imaging science: instrument characteristics and anticipated scientific investigations at Saturn. Space Sci Rev 115:363–497ADSCrossRefGoogle Scholar
  69. Rappaport NJ, Iess L, Tortora P et al (2005) Gravity science in the saturnian system: the masses of Phoebe, Iapetus, Dione and Enceladus. Bull Am Astron Soc 37:704ADSGoogle Scholar
  70. Redfern G (2009) Lunar fireworks. Sky Telesc 117(6):20–25Google Scholar
  71. Saito J, Miyamoto H, Nakamura R et al (2006) Detailed images of asteroid 25143 Itokawa from Hayabusa. Sky Telesc 312:1341–1344Google Scholar
  72. Schmude RW Jr (2010) Comets and how to observe them. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  73. Sierks H, Lamy P, Barbieri C et al (2011) Images of asteroid 21 lutetia: a remnant planetesimal from the early solar system. Science 334:487–490ADSCrossRefGoogle Scholar
  74. (2011a) Sky Telesc 121(2):14, 16Google Scholar
  75. (2011b) Sky & Telescope 121(2):18Google Scholar
  76. Sparrow G (2009) Spaceflight. DK Publishing, New YorkGoogle Scholar
  77. Spudis P, Nozette S, Bussey B et al (2009) Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the moon. Curr Sci 96:533–539Google Scholar
  78. Srama R, Ahrens TJ, Altobelli N et al (2004) The Cassini cosmic dust analyzer. Space Sci Rev 114:465–518ADSCrossRefGoogle Scholar
  79. Sreekumar P, Acharya YB, Umapathy CN et al (2009) High energy x-ray spectrometer on Chandrayaan-1. Curr Sci 96:520–525Google Scholar
  80. Stofan ER, Elachi C, Lunine JI et al (2007) The lakes of Titan. Nature 445:61–64ADSCrossRefGoogle Scholar
  81. Tsuchiyama A, Uesugi M, Matsushima T et al (2011) Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333:1125–1128ADSCrossRefGoogle Scholar
  82. Tytell D (2005a) Titan: a whole new world. Sky Telesc 109(4):34–38Google Scholar
  83. Tytell D (2007) Postcards from Mars and Jupiter. Sky Telesc 113(6):16–17Google Scholar
  84. Waite JH Jr, Lewis WS, Kasprzak WT et al (2004) The Cassini ion and neutral mass spectrometer (INMS) investigation. Space Sci Rev 114:113–231ADSCrossRefGoogle Scholar
  85. Watts RN Jr (1968) NASA‘s tenth anniversary. Sky Telesc 36:292–293ADSGoogle Scholar
  86. Young DT, Berthelier JJ, Blanc M et al (2004) Cassini plasma spectrometer investigation. Space Sci Rev 114:1–112ADSCrossRefGoogle Scholar
  87. Zhi-Jian Y, Li-Chang L, Yung-Chun L et al (2005) Space operation system for Chang’E program and its capability evaluation. J Earth Syst Sci 114:795–799ADSCrossRefGoogle Scholar
  88. Zimmerman R (2000) The chronological encyclopedia of discoveries in space. Oryx Press, PhoenixGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Richard SchmudeJr.
    • 1
  1. 1.BarnesvilleUSA

Personalised recommendations