Advertisement

Vector Fields

  • Rodney Coleman
Chapter
Part of the Universitext book series (UTX)

Abstract

Let E be a normed vector space and O an open subset of E. A continuous mapping X from O into E is called a vector field. If X is of class C k , with k ≥ 1, then we refer to X as a vector field of class C k .

References

  1. 1.
    Avez, A.: Differential Calculus. J. Wiley and Sons Ltd, New York (1986)zbMATHGoogle Scholar
  2. 11.
    Goldman, L.: Integrals of multinomial systems of ordinary differential equations. J. Pure Appl. Algebra 45, 225–240 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 13.
    Hall, G.R., Meyer, K.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer-Verlag, Berlin (1992)zbMATHGoogle Scholar
  4. 14.
    Hofer, H., Zehnder, E.: Symplectic Invariants and Hamiltonian Dynamics. Birkhauser, Basel (1994)zbMATHCrossRefGoogle Scholar
  5. 15.
    Libermann, P., Marle, C., Tamboer, A.: Symplectic Geometry and Analytical Mechanics. Springer-Verlag, Berlin (2003)Google Scholar
  6. 16.
    Man, Y.K.: First integrals of autonomous systems of differential equations and the Prelle-Singer procedure. J. Phys. A: Math. Gen. 27, 329–332 (1994)MathSciNetCrossRefGoogle Scholar
  7. 18.
    Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations. Trans. Amer. Math. Soc. 279, 215–229 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 23.
    Strelcyn, J.-M., Wojciechowski, S.: A method of finding integrals for three-dimensional dynamical systems. Phys. Lett. A 133, 207–212 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rodney Coleman
    • 1
  1. 1.Laboratoire Jean KuntzmannGrenobleFrance

Personalised recommendations