Skip to main content

Mammals: From Humble Vertebrate Beginnings to Global Terrestrial Dominance

  • Chapter
  • First Online:
Robustness, Plasticity, and Evolvability in Mammals

Part of the book series: SpringerBriefs in Evolutionary Biology ((BRIEFSEVOLUTION))

Abstract

A review of mammals is indicated because of their global terrestrial dominance and diversification and because, relative to other vertebrate classes, mammals are well described. Many mammalian taxa display generalized phenotypes and flexible (thermal) niches, recommending this taxon for research on evolvability. The three extant mammalian lineages evolved independently and the overwhelmingly majority of extant forms are eutherians (“true placentals,” ∼5,000 species). Monotremes (“egg-laying” mammals) retain several synapsid (“mammal-like reptiles”) and avian features as well as a primitive placental structure. Because of their generalized anatomical features, marsupials serve as a “control group” for the Class as a whole (Eisenberg, The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago, 1981). The degree of specialization and mode of reproduction of females in each lineage obligate this sex to maternal care of offspring and reflect patterns of energy exploitation, processing, and allocation for the most efficient conversion of limiting resources into offspring (directly and/or indirectly). Allocation (energy investment) strategies are expected to differ between adult males (mating effort) and reproductive females (reproductive effort) in a population, reflecting feedback regulation maintaining thermal tolerances within sublethal ranges. For females of each lineage, reproductive mode is associated with trade-offs reflected in life-history strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AF (2010) Are males the more ‘sensitive’ sex? Heredity 107:20–21

    Article  PubMed  Google Scholar 

  • Blackburn DG, Flemming AF (2011) Invasive implantation and intimate placental associations in a placentotrophic African lizard, Trachylepis ivensi (Scincidae). J Morphol. doi:10.1002/jmor.11011

    Google Scholar 

  • Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, Weier M, Liechti A et al (2011) The evolution of gene expression levels in mammalian organs. Nature 478:343–348

    Article  PubMed  CAS  Google Scholar 

  • Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Krüger M, Mann M (2011) Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res. doi:dx.doi.org/10.1021/pr101183k

    Google Scholar 

  • Centola D, González-Avella JC, Equíluz V, San Miguel M (2011) Homophily, cultural drift, and the co-evolution of cultural groups. J Conflict Resolut 55:905–929

    Google Scholar 

  • Christie MR, Marine ML, French RA, Blouin MS (2011) Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci USA 109(1):238–242. http://www.pnas.org/cgi/doi/10.1073/pnas.1111073109

  • Cui Q, Purisima EO, Wang E (2009) Protein evolution on a human signaling network. BMC Syst Biol 3:21. doi:10.1186/1752-0509-3-21

    Article  PubMed  Google Scholar 

  • Danchin E, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  PubMed  CAS  Google Scholar 

  • Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70:813–829

    Article  PubMed  CAS  Google Scholar 

  • Dell AI, Pawar S, Savage VM (2011) Systematic variation in the temperature dependence of physiological and ecological traits. Proc Natl Acad Sci USA 108:10591–10596

    Article  PubMed  CAS  Google Scholar 

  • Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC (2011) Morphological innovation, diversification and invasion of a new adaptive zone. Proc R Soc Lond B. doi:10.1098/rspb.2011.2005

    Google Scholar 

  • Eisenberg JF (1981) The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. University of Chicago Press, Chicago

    Google Scholar 

  • Elliot MC, Crespi BJ (2006) Placental invasiveness mediates the evolution of hybrid inviability in mammals. Am Nat 168:114–120

    Article  PubMed  Google Scholar 

  • Emlen JM (1973) Ecology: an evolutionary approach. Addison-Wesley, Reading, MA

    Google Scholar 

  • Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian Conundrum: early divergence and later ecological success in the early history of animals. Science 334:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Ewer RF (1968) Ethology of mammals. Logos, London

    Google Scholar 

  • Francis DD, Szegda K, Campbell G, Martin WD, Insel TR (2003) Epigenetic sources of behavioral differences in mice. Nat Neurosci 6:445–446

    PubMed  CAS  Google Scholar 

  • Gaillard JM, Yoccoz NG, Lebreton JD, Bonenfant C, Devillard S, Loison A, Pontier D, Allaine D (2003) Generation time: a reliable metric to measure life-history variation among mammalian populations. Am Nat 166:119–123

    Article  Google Scholar 

  • Gibb AC, Ashley-Ross MA, Pace CM, Long JH Jr (2011) Fish out of water: terrestrial jumping by fully aquatic fishes. J Exp Zool 313A. doi:10.1002/jez.711

    Google Scholar 

  • Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, Burdge GC, Hanson MA (2007) Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA 104:12796–12800

    Article  PubMed  CAS  Google Scholar 

  • Grant TR, Temple-Smith PD (1998) Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philos Trans R Soc Lond B 353:1081–1091

    Article  CAS  Google Scholar 

  • Greenstreet SPR, McMillan JA, Armstrong (1998) Seasonal variation in the importance of pelagic fish in the diet of piscivorous fish in the Moray Firth, NE Scotland: a response to variation in prey abundance? ICES J Mar Sci 55:121–133

    Article  Google Scholar 

  • Hamilton MJ, Davidson AD, Sibley RM, Brown JH (2011) Universal scaling of production rates across mammalian lineages. Proc R Soc Lond 278:560–566

    Article  Google Scholar 

  • Hanya G, Kiyona M, Hayaishi S (2007) Behavioral thermoregulation of wild Japanese macaques: comparisons between two subpopulations. Am J Primatol 69:802–815

    Article  PubMed  Google Scholar 

  • Huda A, Jordan IK (2009) Epigenetic regulation of mammalian genomes by transposable elements. Ann NY Acad Sci 1178:276–284

    Article  PubMed  CAS  Google Scholar 

  • Ingram T, Mahler DL (2011) Niche diversification follows key innovation in Antarctic fish radiation. Mol Ecol 20:4590–4591

    Article  PubMed  CAS  Google Scholar 

  • Jones CB (1997a) Life history patterns of howler monkeys in a time-varying environment. Boletin Primatologico Latinoamericano 6:1–8

    Google Scholar 

  • Jones CB (2005a) Behavioral flexibility in primates: causes and consequences. Springer, New York

    Google Scholar 

  • Jones CB (2005b) Phenotype as developmental bridge: whither nature and nurture? Am J Psychol 118:141–158, book review of West-Eberhard 2003

    Google Scholar 

  • Jones CB (2005c) Social parasitism in mammals with particular reference to neotropical primates. Mastozoología Neotropical 12:19–35

    Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294

    Article  PubMed  CAS  Google Scholar 

  • Kermack DM, Kermack KA (1984) Evolution of mammalian characters. Croom Helm, London

    Google Scholar 

  • Kussell E, Leibler S (2005) Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078

    Article  PubMed  CAS  Google Scholar 

  • Lerner M (1954) Genetic homeostasis. Dover, New York

    Google Scholar 

  • McNab B (1980) Food habits, energetics, and the population biology of mammals. Am Nat 116:106–124

    Article  Google Scholar 

  • McNab B (1986) The influence of food habits on the energetics of eutherian mammals. Ecol Monogr 56:1–19

    Article  Google Scholar 

  • McNab B (2005) Uniformity in the basal metabolic rate of marsupials: its causes and consequences. Revista Chilena de Historia Natural 78:183–198

    Google Scholar 

  • McNab B (2006) The energetics of reproduction in endotherms and its implication for their conservation. Integr Comp Biol 46:1159–1168

    Article  PubMed  Google Scholar 

  • Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E et al (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524

    Article  PubMed  CAS  Google Scholar 

  • Nugent BM, McCarthy MM (2011) Epigenetic underpinnings of developmental sex differences in the brain. Neuroendocrinology 93:150–158

    Article  PubMed  CAS  Google Scholar 

  • Padykula HA, Taylor JM (1982) Marsupial placentation and its evolutionary significance. J Reprod Fertil 31:95–104

    CAS  Google Scholar 

  • Pyenson ND, Lindberg DR (2011) What happened to gray whales during the Pleistocene? The ecological impact of sea-level change on benthic feeding areas in the north Pacific Ocean? PLoS One 6:e21295

    Article  PubMed  CAS  Google Scholar 

  • Rutherford SL (2000) From genotype to phenotype: buffering mechanisms and the storage of genetic information. BioEssays 22:1095–1105

    Article  PubMed  CAS  Google Scholar 

  • Seebacher F, Brand MD, Else PL, Guderley H, Hulbert AJ, Moyes CD (2010) Plasticity of oxidative metabolism in variable climates: molecular mechanisms. Physiol Biochem Zool 83:721–732

    Article  PubMed  CAS  Google Scholar 

  • Soria-Carrasco V, Castresana J (2011) Patterns of mammalian diversification in recent evolutionary times: global tendencies and methodological issues. J Evol Biol 24:2611–2623

    Article  PubMed  CAS  Google Scholar 

  • Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ (2011) Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res 21:1851–1862

    Article  PubMed  CAS  Google Scholar 

  • Vaughan TA (1972) Mammalogy. W.B. Saunders, Philadelphia, PA

    Google Scholar 

  • Venditti C, Meade A, Pagel M (2011) Multiple routes to mammalian diversity. Nature. doi:10.1038/nature105161

    Google Scholar 

  • Wilson DE, Reeder DM (eds) (2005) Mammal species of the world, 2 vols. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Clara B. Jones

About this chapter

Cite this chapter

Jones, C.B. (2012). Mammals: From Humble Vertebrate Beginnings to Global Terrestrial Dominance. In: Robustness, Plasticity, and Evolvability in Mammals. SpringerBriefs in Evolutionary Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3885-4_2

Download citation

Publish with us

Policies and ethics