Advertisement

Sensors pp 349-352 | Cite as

Optical Fiber Sensor for DNA Detection Based on Doubled-Tilted Bragg Grating

  • Alessandro Candiani
  • Michele Sozzi
  • Annamaria Cucinotta
  • Stefano Selleri
  • Rosanna Veneziano
  • Roberto Corradini
  • Rosangela Marchelli
  • Paul Childs
  • Stavros Pissadakis
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 162)

Abstract

The label-free detection of DNA strands based on Double Tilted Fiber Bragg Grating (DTFBG) has been demonstrated. The external fiber surface has been modified with peptide nucleic acid (PNA). The changes of the interference fringes visibility of the grating, due to the PNA-DNA binding, proved the occurred fiber hybridization. The re-use of the fiber for multiple measurements and the selectivity of the sensor have been also investigated

Keywords

Fiber Bragg Grating Interference Fringe Peptide Nucleic Acid Optical Fiber Sensor Fiber Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620:8–26CrossRefGoogle Scholar
  2. 2.
    Ruan Y, Schartner EP, Ebendorff-Heidepriem H, Hoffmann P, Monro TM (2007) Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers. Opt Express 15:17819–17826CrossRefGoogle Scholar
  3. 3.
    Afshar VS, Ruan Y, Warren-Smith SC, Monro TM (2008) Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes. Opt Lett 33:1473–1475CrossRefGoogle Scholar
  4. 4.
    Ryu G, Dagenais M, Hurley MT, DeShong P (2010) High specificity binding of lectins to carbohydrate-functionalized Fiber Bragg Gratings: a new model for biosensing applications. IEEE J Sel Top Quant 16:647–653CrossRefGoogle Scholar
  5. 5.
    Maguis S, Laffont G, Ferdinand P, Carbonnier B, Kham K, Mekhalif T, Millot M (2008) Biofunctionalized tilted Fiber Bragg Gratings for label-free immunosensing. Opt Express 16:19049–19062CrossRefGoogle Scholar
  6. 6.
    Chen X, Zhang L, Zhou K, Davies E, Sugden K, Bennion I, Hughes M, Hine A (2007) Real-time detection of DNA interactions with long-period fiber-grating-based biosensor. Opt Lett 32:2541–2543CrossRefGoogle Scholar
  7. 7.
    DeLisa MP, Zhang Z, Shiloach M, Pilevar S, Davis CC, Sirkis JS, Bentley WE (2000) Evanescent wave long-period Fiber Bragg Grating as an immobilized antibody biosensor. Anal Chem 72: 2895–2900CrossRefGoogle Scholar
  8. 8.
    Sozzi M, Cucinotta A, Corradini R, Marchelli R, Konstantaki M, Pissadakis S, Selleri S (2011) Modification of a long period grating-based fiber optic for DNA biosensing. Proc SPIE 7894. Optical Fibers, Sensors, and Devices for Biomedical Diagnostics and Treatment XI, 78940J, 22–23 January 2011, San Francisco, USA.Google Scholar
  9. 9.
    Coscelli E, Sozzi M, Poli F, Passaro D, Cucinotta A, Selleri S, Corradini R, Marchelli R (2010) Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers. IEEE J Sel Top Quant 16:967–972CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alessandro Candiani
    • 1
  • Michele Sozzi
    • 1
  • Annamaria Cucinotta
    • 1
  • Stefano Selleri
    • 1
  • Rosanna Veneziano
    • 2
  • Roberto Corradini
    • 2
  • Rosangela Marchelli
    • 2
  • Paul Childs
    • 3
  • Stavros Pissadakis
    • 3
  1. 1.Department of Information EngineeringUniversity of ParmaParmaItaly
  2. 2.Department of Organic and Industrial ChemistryUniversity of ParmaParmaItaly
  3. 3.Foundation for Research and Technology-Hellas (FORTH)Institute of Electronic Structure and Laser (IESL)HeraklionGreece

Personalised recommendations