Skip to main content

The Calculus of Variations: A Historical Perspective

  • Chapter
  • First Online:
Book cover Geometric Optimal Control

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 38))

  • 3773 Accesses

Abstract

We begin with an introduction to the historical origin of optimal control theory, the calculus of variations. But it is not our intention to give a comprehensive treatment of this topic. Rather, we introduce the fundamental necessary and sufficient conditions for optimality by fully analyzing two of the cornerstone problems of the theory, the brachistochrone problem and the problem of determining surfaces of revolution with minimum surface area, so-called minimal surfaces. Our emphasis is on illustrating the methods and techniques required for getting complete solutions for these problems. More generally, we use the so-called fixed-endpoint problem, the problem of minimizing a functional over all differentiable curves that satisfy given boundary conditions, as a vehicle to introduce the classical results of the theory: (a) the Euler–Lagrange equation as the fundamental first-order necessary condition for optimality, (b) the Legendre and Jacobi conditions, both in the form of necessary and sufficient second-order conditions for local optimality, (c) the Weierstrass condition as additional necessary condition for optimality for so-called strong minima, and (d) its connection with field theory, the fundamental idea in any sufficiency theory. Throughout our presentation, we emphasize geometric constructions and a geometric interpretation of the conditions. For example, we present the connections between envelopes and conjugate points of a fold type and use these arguments to give a full solution for the minimum surfaces of revolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A precise definition of this term lies beyond the scope of this text, but the common calculus characterization as a connected set “without holes” suffices for our purposes.

References

  1. Differential Geometric Control Theory, R. Brockett, R. Millman, H. Sussmann, eds., Progress in Mathematics, Birkhäuser, Boston, 1983.

    Google Scholar 

  2. Differential Geometry and Control, Proc. Symposia in Pure Mathematics, Vol. 64, G. Ferreyra, R. Gardner, H. Hermes, H. Sussmann, eds., American Mathematical Society, 1999.

    Google Scholar 

  3. Fifty Years of Optimal Control, A. Ioffe. K. Malanowski, and F. Tröltzsch, eds., Control and Cybernetics, 38 (2009).

    Google Scholar 

  4. Geometry of Feedback and Optimal Control, B. Jakubczyk and W. Respondek, eds., Marcel Dekker, New York, 1998.

    Google Scholar 

  5. Modern Optimal Control, E.O. Roxin, ed., Marcel Dekker, New York, 1989.

    Google Scholar 

  6. Nonlinear Controllability and Optimal Control, H. Sussmann, ed., Marcel Dekker, New York, 1990.

    Google Scholar 

  7. Nonlinear Synthesis, C.I. Byrnes and A. Kurzhansky, eds., Birkhäuser, Boston, 1991.

    Google Scholar 

  8. Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, B.S. Mordukhovich and H. Sussmann, eds., The IMA Volumes in Mathematics and Its Applications, Springer-Verlag, New York, 1996.

    Google Scholar 

  9. Optimal Control of Differential Equations, N. Pavel, ed., Marcel Dekker, New York, 1994.

    Google Scholar 

  10. Optimal Control: Theory, Algorithms and Applications, W.W. Hager and P.M. Pardalos, Kluwer Academic Publishers, 1998.

    Google Scholar 

  11. A.A. Agrachev and R.V. Gamkrelidze, Exponential representation of flows and chronological calculus, Math. USSR Sbornik, 35 (1979), pp. 727–785.

    MATH  Google Scholar 

  12. A.A. Agrachev and R.V. Gamkrelidze, Chronological algebras and nonstationary vector fields, J. of Soviet Mathematics, 17 (1979), pp. 1650–1672.

    Google Scholar 

  13. A.A. Agrachev and R.V. Gamkrelidze, Symplectic geometry for optimal control, in: Nonlinear Controllability and Optimal Control (H. Sussmann, ed.), Marcel Dekker, (1990), pp. 263–277.

    Google Scholar 

  14. A.A. Agrachev and R.V. Gamkrelidze, Symplectic methods for optimization and control, in: Geometry of Feedback and Optimal Control, (B. Jakubczyk and W. Respondek, eds.), Marcel Dekker, (1998), pp. 19–77.

    Google Scholar 

  15. A.A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint, Springer-Verlag, 2004.

    Google Scholar 

  16. A.A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems, J. of Mathematical Systems, Estimation and Control, 5 (1995), pp. 127–130.

    Google Scholar 

  17. A.A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. Henri Poincaré, 13 (1996), pp. 635–690.

    MathSciNet  MATH  Google Scholar 

  18. A.A. Agrachev and M. Sigalotti, On the local structure of optimal trajectories in 3, SIAM J. on Control and Optimization, 42 (2003), pp. 513—-531.

    Google Scholar 

  19. A.A. Agrachev, G. Stefani, and P.L. Zezza, A Hamiltonian approach to strong minima in optimal control, in: Differential Geometry and Control, (G. Ferreyra, R. Gardner, H. Hermes, H. Sussmann, eds.), American Mathematical Society, 1999, pp. 11–22.

    Google Scholar 

  20. A.A. Agrachev, G. Stefani, and P.L. Zezza, Strong optimality for a bang-bang trajectory, SIAM J. Control and Optimization, 41 (2002), pp. 991–1014.

    MathSciNet  MATH  Google Scholar 

  21. V.M. Alekseev, V.M. Tikhomirov, and S.V. Fomin, Optimal Control, Contemporary Soviet Mathematics, 1987.

    Google Scholar 

  22. M.S. Aronna, J.F. Bonnans, A.V. Dmitruk and P.A. Lotito, Quadratic conditions for bang-singular extremals, Numerical Algebra, Control and Optimization, (2012), to appear.

    Google Scholar 

  23. A.V. Arutyunov, Higher-order conditions in anormal extremal problems with constraints of equality type, Soviet Math. Dokl., 42 (1991), pp. 799–804.

    MathSciNet  Google Scholar 

  24. A.V. Arutyunov, Second-order conditions in extremal problems. The abnormal points, Trans. of the American Mathematical Society, 350 (1998), pp. 4341–4365.

    Google Scholar 

  25. M. Athans and P. Falb, Optimal Control, McGraw Hill, 1966.

    Google Scholar 

  26. J.P. Aubin and H. Frankowska, Set–Valued Analysis, Birkhäuser, Boston, 1990.

    MATH  Google Scholar 

  27. E.R. Avakov, Extremum conditions for smooth problems with equality–type constraints, USSR Comput. Math. and Math. Phys., 25 (1985), pp. 24–32, [translated from Zh. Vychisl. Mat. Fiz., 25 (1985)].

    Google Scholar 

  28. E.R. Avakov, Necessary conditions for a minimum for nonregular problems in Banach spaces. Maximum principle for abnormal problems of optimal control, Trudy Mat. Inst. AN. SSSR, 185 (1988), pp. 3–29 [in Russian].

    Google Scholar 

  29. E.R. Avakov, Necessary extremum conditions for smooth abnormal problems with equality and inequality-type constraints, Math. Zametki, 45 (1989), pp. 3–11.

    MathSciNet  Google Scholar 

  30. M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Modern Birkhäuser Classics, Birkhäuser, 2008.

    MATH  Google Scholar 

  31. D.J. Bell and D.H. Jacobson, Singular Optimal Control Problems, Academic Press, New York, 1975.

    MATH  Google Scholar 

  32. R. Bellman, Dynamic Programming, Princeton University Press, 1961.

    Google Scholar 

  33. L.D. Berkovitz, Optimal Control Theory, Springer-Verlag, 1974.

    Google Scholar 

  34. L.D. Berkovitz and H. Pollard, A non-classical variational problem arising from an optimal filter problem, Arch. Rational Mech. Anal., 26 (1967), pp. 281–304.

    MathSciNet  Google Scholar 

  35. L.D. Berkovitz and H. Pollard, A non-classical variational problem arising from an optimal filter problem II, Arch. Rational Mech. Anal., 38 (1971), pp. 161–172.

    MathSciNet  Google Scholar 

  36. R.M. Bianchini, Good needle-like variations, Proceedings of Symposia in Pure Mathematics, Vol. 64, American Mathematical Society, (1999), pp. 91–101.

    Google Scholar 

  37. R.M. Bianchini and M. Kawski, Needle variations that cannot be summed, SIAM J. Control and Optimization, 42 (2003), pp. 218–238.

    MathSciNet  MATH  Google Scholar 

  38. R.L. Bishop and S.I. Goldberg, Tensor Analysis on Manifolds, Dover, (1980).

    Google Scholar 

  39. G. Bliss, Calculus of Variations, The Mathematical Association of America, 1925.

    Google Scholar 

  40. G. Bliss, Lectures on the Calculus of Variations, The University of Chicago Press, Chicago and London, 1946.

    MATH  Google Scholar 

  41. V.G. Boltyansky, Sufficient conditions for optimality and the justification of the dynamic programming method, SIAM J. on Control, 4 (1966), pp. 326–361.

    Google Scholar 

  42. V.G. Boltyansky, Mathematical Methods of Optimal Control, Holt, Rinehart and Winston, Inc., (1971).

    Google Scholar 

  43. B. Bonnard, On singular extremals in the time minimal control problem in 3, SIAM J. Control and Optimization, 23 (1985), pp. 794–802.

    MathSciNet  MATH  Google Scholar 

  44. B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Mathématiques & Applications, Vol. 40, Springer-Verlag, Paris, 2003.

    Google Scholar 

  45. B. Bonnard, L. Faubourg, G. Launay, and E. Trélat, Optimal control with state space constraints and the space shuttle re–entry problem, J. of Dynamical and Control Systems, 9 (2003), pp. 155–199.

    MATH  Google Scholar 

  46. B. Bonnard, J.P. Gauthier, and J. de Morant, Geometric time-optimal control for batch reactors, Part I, in: Analysis of Controlled Dynamical Systems, (B. Bonnard, B. Bride, J.P. Gauthier and I. Kupka, eds.), Birkhäuser, (1991); Part II, in: Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, United Kingdom, (1991).

    Google Scholar 

  47. B. Bonnard and J. de Morant, Toward a geometric theory in the time-minimal control of chemical batch reactors, SIAM J. Control and Optimization, 33 (1995), pp. 1279–1311.

    MathSciNet  MATH  Google Scholar 

  48. B. Bonnard and I.A.K. Kupka, Théorie des singularités de l’application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Matematicum, 5 (1993), pp. 111–159.

    MathSciNet  MATH  Google Scholar 

  49. B. Bonnard and I.A.K. Kupka, Generic properties of singular trajectories, A. Inst. H. Poincaré, Anal. Non Linéaire, 14 (1997), pp. 167–186.

    Google Scholar 

  50. W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.

    MATH  Google Scholar 

  51. U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Mathématiques & Applications, Vol. 43, Springer-Verlag, Paris, 2004.

    Google Scholar 

  52. N. Bourbaki, Elements of Mathematics: Lie Groups and Lie Algebras, Chapters 1–3, Springer-Verlag, 1989.

    Google Scholar 

  53. J.V. Breakwell, J.L. Speyer, and A.E. Bryson, Optimization and control of nonlinear systems using the second variation, SIAM J. on Control, 1 (1963), pp. 193–223

    MATH  Google Scholar 

  54. A. Bressan, The generic local time-optimal stabilizing controls in dimension 3, SIAM J. Control Optim., 24 (1986), pp. 177–190.

    MathSciNet  MATH  Google Scholar 

  55. A. Bressan and B. Piccoli, A generic classification of time-optimal planar stabilizing feedbacks, SIAM J. Control Optim., 36 (1998), pp. 12–32.

    MathSciNet  MATH  Google Scholar 

  56. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, American Institute of Mathematical Sciences (AIMS), 2007.

    Google Scholar 

  57. R.W. Brockett, Finite Dimensional Linear Systems, John Wiley and Sons, New York, 1970.

    MATH  Google Scholar 

  58. R.W. Brockett, System theory on group manifolds and coset spaces, SIAM J. Control Optim., 10 (1972), pp. 265–284.

    MathSciNet  MATH  Google Scholar 

  59. A.B. Bruckner, J.B. Bruckner and B.S. Thomson, Real Analysis, Prentice Hall, 1997.

    Google Scholar 

  60. P. Brunovsky, Every normal linear system has a regular time–optimal synthesis, Math. Slovaca, 28 (1979), pp. 81–100.

    MathSciNet  Google Scholar 

  61. P. Brunovsky, Regular synthesis for the linear-quadratic optimal control problem with linear control constraints, J. of Differential Equations, 38 (1980), pp. 344–360.

    MathSciNet  MATH  Google Scholar 

  62. P. Brunovsky, Existence of a regular synthesis for general control problems, J. of Differential Equations, 38 (1980), pp. 81–100.

    Google Scholar 

  63. J. Burdick, On the inverse kinematics of redundant manipulators: characterization of the self-motion manifolds, in: Proc. of the 1989 IEEE International Conference on Robotics and Automation, Vol. 1, (1989), pp. 264–270.

    Google Scholar 

  64. A.E. Bryson, Jr. and Y.C. Ho, Applied Optimal Control, Revised Printing, Hemisphere Publishing Company, New York, 1975.

    Google Scholar 

  65. C.I. Byrnes and H. Frankowska, Unicité des solutions optimales et absence de chocs pour les équations d’Hamilton–Jacobi–Bellman et de Riccati, C.R. Acad. Sci. Paris, 315, Série I (1992), pp. 427–431.

    Google Scholar 

  66. C.I. Byrnes and A. Jhemi, Shock waves for Riccati Partial Differential Equations Arising in Nonlinear Optimal Control, in: Systems, Models and Feedback: Theory and Applications, (A. Isidori and T.J. Tarn, eds.), Birkhäuser, (1992), pp. 211–225.

    Google Scholar 

  67. C. Carathéodory, Variationsrechnung und Partielle Differential Gleichungen erster Ordnung, Teubner Verlag, Leipzig, 1936; translated as Calculus of Variations and Partial Differential Equations of First Order, American Mathematical Society, 3rd edition, 1999.

    Google Scholar 

  68. N. Caroff and H. Frankowska, Conjugate points and shocks in nonlinear optimal control, Trans. of the American Mathematical Society, 348 (1996), pp. 3133–3153.

    MathSciNet  MATH  Google Scholar 

  69. A. Cernea and H. Frankowska, The connection between the maximum principle and the value function for optimal control problems under state constraints, Proc. of the 43rd IEEE Conference on Decision and Control, Nassau, The Bahamas, (2004), pp. 893–898.

    Google Scholar 

  70. L. Cesari, Optimization - Theory and Applications, Springer-Verlag, 1983.

    Google Scholar 

  71. Y. Chitour, F. Jean, E. Trélat, Propriétés génériques des trajectoires singulères, C.R. Math. Acad. Sci. Paris, 337 (2003), pp. 49–52.

    Google Scholar 

  72. Y. Chitour, F. Jean, E. Trélat, Genericity results for singular curves, J. Differential Geom., 73 (2006), pp. 45–73.

    MathSciNet  MATH  Google Scholar 

  73. Y. Chitour, F. Jean, E. Trélat, Singular trajectories of control-affine systems, SIAM J. Control and Optimization, 47 (2008), pp. 1078–1095.

    MathSciNet  MATH  Google Scholar 

  74. M. Chyba and T. Haberkorn, Autonomous underwater vehicles: singular extremals and chattering, in: Systems, Control, Modeling and Optimization, (F. Cergioli et al., eds.), Springer-Verlag, (2003), pp. 103–113.

    Google Scholar 

  75. M. Chyba, H. Sussmann, H. Maurer, and G. Vossen, Underwater vehicles: The minimum time problem, Proc. of the 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, (2004), pp. 1370–1375.

    Google Scholar 

  76. F.H. Clarke, The maximum principle under minimal hypothesis, SIAM J. Control Optim., 14 (1976), pp. 1078–1091.

    MATH  Google Scholar 

  77. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley–Interscience, 1983.

    Google Scholar 

  78. F.H. Clarke and M.D.R. de Pinho, The nonsmooth maximum principle, Contol and Cybernetics, 38 (2009), pp. 1151–1168.

    MATH  Google Scholar 

  79. F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 2000.

    Google Scholar 

  80. M.G. Crandall and P.L. Lions, Viscosity Solutions of Hamilton–Jacobi Equations, Trans. of the American Mathematical Society, 277 (1983), pp. 1–42.

    MathSciNet  MATH  Google Scholar 

  81. F.H. Croom, Principles of Topology, Saunders Publishing, 1983.

    Google Scholar 

  82. M.d.R. de Pinho and M.M.A. Ferreira, Optimal Control Problems with Constraints, Seria Matematica Aplicata Si Industriala, Editura Universitii Din Pitesti, Romania, 2002.

    Google Scholar 

  83. M.d.R. de Pinho and R.B. Vinter, Necessary conditions for optimal control problems involving nonlinear differential algebraic equations, J. Math. Anal. Appl., 212 (1997), pp. 493–516.

    Google Scholar 

  84. A. Dmitruk, Quadratic conditions for a weak minimum for singular regimes in optimal control problems, Soviet Math. Doklady, 18 (1977).

    Google Scholar 

  85. A. Dmitruk, Quadratic conditions for a Pontryagin minimum in an optimal control problem, linear in the control, Mathematics of the USSR, Izvestija, 28 (1987), pp. 275–303.

    Google Scholar 

  86. A. Dmitruk, Jacobi type conditions for singular extremals, Control and Cybernetics, 37 (2008), pp. 285–306.

    MathSciNet  MATH  Google Scholar 

  87. A. d’Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Math. Biosciences, 191 (2004), pp. 159–184.

    Google Scholar 

  88. T. Duncan, B. Pasik–Duncan, and L. Stettner, Parameter continuity of the ergodic cost for a growth optimal portfolio with proportional transaction costs, Proc. of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, (2008), pp. 4275–4279.

    Google Scholar 

  89. U. Felgenhauer, On stability of bang-bang type controls, SIAM J. Control Optim., 41 (2003), pp. 1843–1867.

    MathSciNet  MATH  Google Scholar 

  90. U. Felgenhauer, Lipschitz stability of broken extremals in bang-bang control problems, in: Large-Scale Scientific Computing (Sozopol 2007), (I. Lirkov et al., eds.), Lecture Notes in Computer Science, vol. 4818, Springer-Verlag (2008), pp. 317–325.

    Google Scholar 

  91. U. Felgenhauer, L. Poggiolini, and G. Stefani, Optimality and stability result for bang-bang optimal controls with simple and double switch behaviour. in: 50 Years of Optimal Control, (A. Ioffe, K. Malanowski, F. Tröltzsch, eds.), Control and Cybernetics, vol. 38(4B) (2009), pp. 1305–1325.

    Google Scholar 

  92. M.M. Ferreira, U. Ledzewicz, M. do Rosario de Pinho, and H. Schättler, A model for cancer chemotherapy with state space constraints, Nonlinear Analysis, 63 (2005), pp. 2591–2602.

    Google Scholar 

  93. M.E. Fisher, W.J. Grantham, and K.L. Teo, Neighbouring extremals for nonlinear systems with control constraints, Dynamics and Control, 5 (1995), pp. 225–240.

    MathSciNet  MATH  Google Scholar 

  94. A.T. Fuller, Study of an optimum non–linear system, J. Electronics Control, 15 (1963), pp. 63–71.

    MathSciNet  Google Scholar 

  95. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975.

    Google Scholar 

  96. W.H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  97. H. Frankowska, An open mapping principle for set-valued maps, J. Math. Analysis and Applications, 127 (1987), pp. 172–180.

    MathSciNet  MATH  Google Scholar 

  98. H. Frankowska, Contingent cones to reachable sets of control systems, SIAM J. Control Optim., 27 (1989), pp. 170–198.

    MathSciNet  MATH  Google Scholar 

  99. H. Frankowska and R. Vinter, Existence of neighbouring feasible trajectories: applications to dynamic programming for state constrained optimal control problems, J. Optimization Theory and Applications, 104 (2000), pp. 21–40.

    MathSciNet  MATH  Google Scholar 

  100. P. Freeman, Minimum jerk trajectory planning for trajectory constrained redundant robots, D. Sc. thesis, Washington University, 2012

    Google Scholar 

  101. R. Gabasov and F.M. Kirillova, High order necessary conditions for optimality, SIAM J. Control, 10 (1972), pp. 127–168.

    MathSciNet  MATH  Google Scholar 

  102. S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, Springer-Verlag, 2nd edition, 1990.

    Google Scholar 

  103. R.V. Gamkrelidze, Hamiltonian form of the Maximum Principle, Control and Cybernetics, 38 (2009), pp. 959–972.

    MathSciNet  MATH  Google Scholar 

  104. H. Gardner-Moyer, Sufficient conditions for a strong minimum in singular control problems, SIAM J. Control, 11 (1973), pp. 620–636.

    MathSciNet  Google Scholar 

  105. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice Hall, Englewood Cliffs, 1963.

    Google Scholar 

  106. I.V. Girsanov, Lectures on Mathematical Theory of Extremum Problems, Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, Heidelberg, 1972.

    Google Scholar 

  107. B.S. Goh, Necessary conditions for singular extremals involving multiple control variables, SIAM J. Control, 5 (1966), pp. 716–731.

    MathSciNet  Google Scholar 

  108. M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer-Verlag, New York, 1973.

    MATH  Google Scholar 

  109. M. Golubitsky and D.G. Schaefer, Singularities and Groups in Bifurcation Theory, Vol. I, Applied Mathematical Sciences, vol. 51, Springer-Verlag, New York, 1985.

    Google Scholar 

  110. M. Golubitsky, I.N. Stewart, and D.G. Schaefer, Singularities and Groups in Bifurcation Theory, Vol. II, Applied Mathematical Sciences, vol. 69, Springer-Verlag, New York, 1988.

    Google Scholar 

  111. K. Grasse, Reachability of interior states by piecewise constant controls, Forum Matematicum, 7 (1995), pp. 607–628.

    MathSciNet  MATH  Google Scholar 

  112. K. Grasse and H. Sussmann, Global controllability by nice controls, in: Nonlinear Controllability and Optimal Control, (H. Sussmann, ed.), Marcel Dekker, New York, (1990), pp. 33–79.

    Google Scholar 

  113. W. Greub, Linear Algebra, Graduate Texts in Mathematics, Vol. 23, Springer-Verlag, New York, 1975.

    Google Scholar 

  114. P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 59 (1999), pp. 4770–4775.

    Google Scholar 

  115. H. Hermes, Feedback synthesis and positive local solutions to Hamilton–Jacobi–Bellman equations, Proc. of the 1987 Conference on Mathematical Theory of Networks and Systems, (MTNS), Phoenix, AZ, (1987), pp. 155–164

    Google Scholar 

  116. H. Hermes, Nilpotent approximations of control systems, in: Modern Optimal Control, (E.O. Roxin, ed.), Marcel Dekker, New York, 1989, pp. 157–172.

    Google Scholar 

  117. H. Hermes and J.P. Lasalle, Functional Analysis and Time Optimal Control, Academic Press, New York, 1969.

    MATH  Google Scholar 

  118. M.R. Hestenes, Calculus of Variations and Optimal Control Theory, Krieger Publishing Co., Huntington, New York, 1980.

    MATH  Google Scholar 

  119. A.D. Ioffe and V.M. Tikhomirov, Theory of Extremal Problems, North-Holland, Amsterdam, 1979.

    MATH  Google Scholar 

  120. A. Isidori, Nonlinear Contol Systems, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  121. D.H. Jacobson, A new necessary condition for optimality of singular control problems, SIAM J. Control, 7 (1969), pp. 578–595.

    MathSciNet  MATH  Google Scholar 

  122. D.H. Jacobson and J.L. Speyer, Necessary and sufficient conditions for optimality for singular control problems: a limit approach, J. Mathematical Analysis and Applications, 34 (1971), pp. 239–266.

    MathSciNet  Google Scholar 

  123. N. Jacobson, Lie Algebras, Dover, (1979).

    Google Scholar 

  124. F. John, Partial Differential Equations, Springer-Verlag, 1982.

    Google Scholar 

  125. F. Jones, Lebesgue Integration on Euclidean Space, Jones and Bartlett Publishers, Boston, 1993.

    MATH  Google Scholar 

  126. V. Jurdjevic, Geometric Control Theory, Cambridge Studies in Advanced Mathematics, Vol. 51, Cambridge University Press, 1977.

    Google Scholar 

  127. T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  128. M. Kawski, Control variations with an increasing number of switchings, Bul. of the American Mathematical Society, 18 (1988), pp. 149–152.

    MathSciNet  MATH  Google Scholar 

  129. M. Kawski, High-order small-time local controllability, in: Nonlinear Controllability and Optimal Control, (H. Sussmann, ed.), Marcel Dekker, New York, (1990), pp. 431–467.

    Google Scholar 

  130. M. Kawski and H. Sussmann, Noncommutative power series and formal Lie-algebraic techniques in nonlinear control theory, in: Operators, Systems and Linear Algebra: Three Decades of Algebraic Systems Theory, (U. Helmke, D. Praetzel-Wolters, and E. Zerz, eds.), B.G. Teubner, Stuttgart, (1997), pp. 111–129.

    Google Scholar 

  131. H.J. Kelley, A second variation test for singular extremals, AIAA (American Institute of Aeronautics and Astronautics) J., 2 (1964), pp. 1380–1382.

    Google Scholar 

  132. H.J. Kelley, R. Kopp, and H.G. Moyer, Singular extremals, in: Topics in Optimization (G. Leitmann, ed.), Academic Press, 1967.

    Google Scholar 

  133. H.K. Khalil, Nonlinear Systems, 3rd. ed., Prentice Hall, 2002.

    Google Scholar 

  134. M. Kiefer, On Singularities in Solutions to the Hamilton–Jacobi–Bellman Equation and Their Implications for the Optimal Control Problem, D.Sc. Thesis, Washington University, 1997.

    Google Scholar 

  135. M. Kiefer and H. Schättler, Parametrized families of extremals and singularities in solutions to the Hamilton–Jacobi–Bellman equation, SIAM J. on Control and Optimization, 37 (1999), pp. 1346–1371.

    MATH  Google Scholar 

  136. A. Kneser, Lehrbuch der Variationsrechnung, Braunschweig, 1925.

    Google Scholar 

  137. H.W. Knobloch, Higher Order Necessary Conditions in Optimal Control Theory, Lecture Notes in Control and Information Sciences, Vol. 34, Springer-Verlag, Berlin, 1981.

    Google Scholar 

  138. H.W. Knobloch and H. Kwakernaak, Lineare Kontrolltheorie, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  139. G. Knowles, An Introduction to Applied Optimal Control, Academic Press, 1981.

    Google Scholar 

  140. A.J. Krener, The high order maximum principle and its application to singular extremals, SIAM J. Control Optim., 15 (1977), pp. 256–293.

    MathSciNet  MATH  Google Scholar 

  141. A.J. Krener and H. Schättler, The structure of small time reachable sets in low dimension, SIAM J. Control Optim., 27 (1989), pp. 120–147.

    MathSciNet  MATH  Google Scholar 

  142. I.A.K. Kupka, Geometric theory of extremals in optimal control problems I: The fold and Maxwell cases, Trans. of the American Mathematical Society, 299 (1987), pp. 225–243.

    MathSciNet  MATH  Google Scholar 

  143. I.A.K. Kupka, The ubiquity of Fuller’s phenomenon, in: Nonlinear Controllability and Optimal Control (H. Sussmann, ed.), Marcel Dekker, (1990), pp. 313–350.

    Google Scholar 

  144. H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley–Interscience, (1972).

    Google Scholar 

  145. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. I: Abstract Parabolic Systems, Cambridge University Press, 2000.

    Google Scholar 

  146. I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories,Vol. II: Abstract Hyperbolic-Like Systems over a Finite Time-Horizon, Cambridge University Press, 2000.

    Google Scholar 

  147. E.B. Lee and L. Marcus, Foundations of Optimal Control Theory, Wiley, New York, 1967.

    MATH  Google Scholar 

  148. U. Ledzewicz, A. Nowakowski, and H. Schättler, Stratifiable families of extremals and sufficient conditions for optimality in optimal control problems, J. of Optimization Theory and Applications (JOTA), 122 (2004), pp. 105–130.

    Google Scholar 

  149. U. Ledzewicz and H. Schättler, Second order conditions for extremum problems with nonregular equality constraints, J. of Optimization Theory and Applications (JOTA), 86 (1995), pp. 113–144.

    MATH  Google Scholar 

  150. U. Ledzewicz and H. Schättler, An extended maximum principle, Nonlinear Analysis, 29 (1997), pp. 159–183.

    MathSciNet  MATH  Google Scholar 

  151. U. Ledzewicz and H. Schättler, High order extended maximum principles for optimal control problems with non-regular constraints, in: Optimal Control: Theory, Algorithms and Applications, (W.W. Hager and P.M. Pardalos, eds.), Kluwer Academic Publishers, (1998), pp. 298–325.

    Google Scholar 

  152. U. Ledzewicz and H. Schättler, A high-order generalization of the Lyusternik theorem, Nonlinear Analysis, 34 (1998), pp. 793–815.

    MathSciNet  MATH  Google Scholar 

  153. U. Ledzewicz and H. Schättler, High-order approximations and generalized necessary conditions for optimality, SIAM J. Contr. Optim., 37 (1999), pp. 33–53.

    MATH  Google Scholar 

  154. U. Ledzewicz and H. Schättler, A high-order generalized local Maximum Principle, SIAM J. on Control and Optimization, 38 (2000), pp. 823–854.

    MATH  Google Scholar 

  155. U. Ledzewicz and H. Schättler, Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy, J. of Optimization Theory and Applications - JOTA, 114 (2002), pp. 609–637.

    MATH  Google Scholar 

  156. U. Ledzewicz and H. Schättler, Analysis of a cell-cycle specific model for cancer chemotherapy, J. of Biological Systems, 10 (2002), pp. 183–206.

    MATH  Google Scholar 

  157. U. Ledzewicz and H. Schättler, A synthesis of optimal controls for a model of tumor growth under angiogenic inhibitors, Proc. of the 44th IEEE Conference on Decision and Control, Sevilla, Spain, (2005), pp. 934–939.

    Google Scholar 

  158. U. Ledzewicz and H. Schättler, Drug resistance in cancer chemotherapy as an optimal control problem, Discrete and Continuous Dynamical Systems, Series B, 6 (2006), pp. 129–150.

    Google Scholar 

  159. U. Ledzewicz and H. Schättler, Application of optimal control to a system describing tumor anti–angiogenesis, Proc. of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japan, (2006), pp. 478–484.

    Google Scholar 

  160. U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), pp. 1052–1079.

    MATH  Google Scholar 

  161. U. Ledzewicz and H. Schättler, Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemotherapy, Mathematical Biosciences, 206 (2007), pp. 320–342.

    MathSciNet  MATH  Google Scholar 

  162. U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical models of tumor anti–angiogenesis, J. of Theoretical Biology, 252 (2008), pp. 295–312.

    Google Scholar 

  163. U. Ledzewicz and H. Schättler, Analysis of a mathematical model for tumor anti-angiogenesis, Optimal Control, Applications and Methods, 29 (2008), pp. 41–57.

    Google Scholar 

  164. U. Ledzewicz and H. Schättler, On the optimality of singular controls for a class of mathematical models for tumor anti-angiogenesis, Discrete and Continuous Dynamical Systems, Series B, 11 (2009), pp. 691–715.

    Google Scholar 

  165. U. Ledzewicz and H. Schaettler, Singular controls and chattering arcs in optimal control problems arising in biomedicine, Control and Cybernetics, 38 (2009), pp. 1501–1523.

    MathSciNet  MATH  Google Scholar 

  166. U. Ledzewicz and H. Schaettler, Applications of Geometric Optimal Control to Biomedical Problems, Springer Verlag, to appear.

    Google Scholar 

  167. S. Lenhart and J.T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC, Mathematical & Computational Biology, 2007.

    Google Scholar 

  168. E.S. Levitin, A.A. Milyutin, and N.P. Osmolovskii, Higher order conditions for local minima in problems with constraints, Uspekhi Mat. Nauk, translated as: Russian Mathematical Surveys, 33 (1978) pp. 97–165.

    Google Scholar 

  169. R.M. Lewis, Definitions of order and junction conditions in singular optimal control problems, SIAM J. Control and Optimization, 18 (1980), pp. 21–32.

    MathSciNet  MATH  Google Scholar 

  170. C. Lobry, Contrôlabilité des Systèmes nonlinéaires, SIAM J. Control, 8 (1970), pp. 573–605.

    MathSciNet  MATH  Google Scholar 

  171. R. Martin and K.L. Teo, Optimal Control of Drug Administration in Cancer Chemotherapy, World Scientific, Singapore, 1994.

    MATH  Google Scholar 

  172. C. Marchal, Chattering arcs and chattering controls, J. of Optimization Theory and Applications (JOTA), 11, (1973), pp. 441–468.

    MathSciNet  MATH  Google Scholar 

  173. J.P. McDanell and W.J. Powers, Necessary conditions for joining optimal singular and nonsingular subarcs, SIAM J. Control, 9 (1971), pp. 161–173.

    MathSciNet  MATH  Google Scholar 

  174. J. McDonald and N. Weiss, A Course in Real Analysis, Academic Press, 1999.

    Google Scholar 

  175. E.J. McShane, Integration, Princeton University Press, 1944.

    Google Scholar 

  176. H. Nijmeier and A. van der Schaft, Nonlinear Dynamical Control Systems, Springer Verlag, 1990.

    Google Scholar 

  177. J.E. Marsden and M.J. Hoffman, Elementary Classical Analysis, W.H. Freeman, New York, second edition, 1993.

    MATH  Google Scholar 

  178. H. Maurer, An example of a continuous junction for a singular control problem of even order, SIAM J. Control, 13 (1975), pp. 899–903.

    MathSciNet  MATH  Google Scholar 

  179. H. Maurer, On optimal control problems with bounded state variables and control appearing linearly, SIAM J. on Control and Optimization, 15 (1977), pp. 345–362.

    MATH  Google Scholar 

  180. H. Maurer, C. Büskens, J.H. Kim, and Y. Kaja, Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls, Optimal Control, Applications and Methods, 26 (2005), pp. 129–156.

    Google Scholar 

  181. H. Maurer and H.J. Oberle, Second order sufficient conditions for optimal control problems with free final time: the Riccati approach SIAM J. Control and Optimization, 41 (2002), pp. 380–403.

    Google Scholar 

  182. H. Maurer and N. Osmolovskii, Second order optimality conditions for bang-bang control problems, Control and Cybernetics, 32 (2003), pp. 555–584.

    MATH  Google Scholar 

  183. H. Maurer and N. Osmolovskii, Second order sufficient conditions for time-optimal bang-bang control problems, SIAM J. Control and Optimization, 42 (2003), pp. 2239–2263.

    MathSciNet  Google Scholar 

  184. J.W. Milnor, Topology from the Differentiable Viewpoint, The University Press of Virginia, Charlottesville, VA, 1965.

    MATH  Google Scholar 

  185. A.A. Milyutin and N.P. Osmolovskii, Calculus of Variations and Optimal Control, American Mathematical Society, 1998.

    Google Scholar 

  186. B. Mordukhovich, Variational Analysis and Generalized Differentiation, I: Basic Theory; Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 330, Springer-Verlag, 2006.

    Google Scholar 

  187. B. Mordukhovich, Variational Analysis and Generalized Differentiation, II: Applications, Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vol. 331, Springer-Verlag, 2006.

    Google Scholar 

  188. H. Nijmeijer and A. van der Schaft, Controlled Invariance for nonlinear systems: two worked examples, IEEE Transactions on Automatic Control, 29 (1984), pp. 361–364.

    MATH  Google Scholar 

  189. J. Noble and H. Schättler, Sufficient conditions for relative minima of broken extremals, J. of Mathematical Analysis and Applications, 269 (2002), pp. 98–128.

    MATH  Google Scholar 

  190. A. Nowakowski, Field theories in the modern calculus of variations, Transactions of the Americam Mathematical Society, 309 (1988), pp. 725–752.

    MathSciNet  MATH  Google Scholar 

  191. P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993.

    Google Scholar 

  192. N.P. Osmolovskii, Quadratic extremality conditions for broken extremals in the general problem of the calculus of variations, J. of Mathematical Sciences, 123 (2004), pp. 3987–4122.

    MathSciNet  Google Scholar 

  193. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The Mathematical Theory of Optimal Processes, Macmillan, New York, 1964.

    MATH  Google Scholar 

  194. H.J. Pesch and M. Plail, The maximum principle of optimal control: a history of ingenious ideas and missed opportunities, Control and Cybernetics, 38 (2009), pp. 973–996.

    MathSciNet  MATH  Google Scholar 

  195. B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis, SIAM J. Control and Optimization, 34 (1996), pp. 1914–1946.

    MathSciNet  MATH  Google Scholar 

  196. B. Piccoli and H. Sussmann, Regular synthesis and sufficient conditions for optimality, SIAM J. on Control and Optimization, 39 (2000), pp. 359–410.

    MathSciNet  MATH  Google Scholar 

  197. L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem, SIAM J. Control and Optimization, 49 (2011), pp. 140–161.

    MathSciNet  MATH  Google Scholar 

  198. L. Poggiolini and G. Stefani, Sufficient optimality conditions for a bang-bang trajectory, in: Proc. 45th IEEE Conference on Decision and Control, (2006).

    Google Scholar 

  199. L. Poggiolini and G. Stefani, Sufficient optimality conditions for a bangsingular extremal in the minimum time problem, Control and Cybernetics, 37 (2008), pp. 469–490.

    MathSciNet  MATH  Google Scholar 

  200. V. Ramakrishna and H. Schättler, Controlled invariant distributions and group invariance, J. of Mathematical Systems and Control, 1 (1991), pp. 209–240.

    Google Scholar 

  201. D. Rebhuhn, On the stability of the existence of singular controls under perturbation of the control system, SIAM J. Control and Optimization, 18 (1978), pp. 463–472.

    MathSciNet  Google Scholar 

  202. R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

    Google Scholar 

  203. E.O. Roxin, Reachable zones in autonomous differential systems, Bol. Soc. Mat. Mexicana, (1960), pp. 125–135.

    Google Scholar 

  204. E.O. Roxin, Reachable sets, limit sets and holding sets in control systems, in: Nonlinear Analysis and Applications, (V. Lakshmikantham, ed.,) Marcel Dekker, (1987), pp. 401–407.

    Google Scholar 

  205. E.O. Roxin, Control Theory and Its Applications, Gordon and Breach Scientific Publishers, 1997.

    Google Scholar 

  206. A. Sarychev, The index of second variation of a control system, Math. USSR Sbornik, 41 (1982), pp. 383–401.

    Google Scholar 

  207. A. Sarychev, Morse index and sufficient optimality conditions for bang-bang Pontryagin extremals, in: System Modeling and Optimization, Lecture Notes in Control and Information Sciences, Vol. 180, (1992), pp. 440–448.

    MathSciNet  Google Scholar 

  208. A. Sarychev, First and second order sufficient optimality conditions for bang-bang controls, SIAM J. on Control and Optimization, 35, (1997), pp. 315–340.

    MathSciNet  MATH  Google Scholar 

  209. H. Schättler, On the local structure of time-optimal trajectories for a single-input control-linear system in dimension 3, Ph.D. thesis, Rutgers, The State University of New Jersey, 1986.

    Google Scholar 

  210. H. Schättler, On the local structure of time-optimal bang-bang trajectories in 3, SIAM J. on Control and Optimization, 26 1988, pp. 186–204.

    MATH  Google Scholar 

  211. H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions, SIAM J. Control Optim., 26 (1988), pp. 899–918.

    MathSciNet  MATH  Google Scholar 

  212. H. Schättler, Conjugate points and intersections of bang-bang trajectories, Proc. of the 28th IEEE Conference on Decision and Control, Tampa, Florida, (1989), pp. 1121–1126.

    Google Scholar 

  213. H. Schättler, Regularity properties of optimal trajectories: recently developed techniques, in: Nonlinear Controllability and Optimal Control (H. Sussmann, ed.), Marcel Dekker, (1990), pp. 351–381.

    Google Scholar 

  214. H. Schättler, Extremal trajectories, small-time reachable sets and local feedback synthesis: a synopsis of the three-dimensional case, in: Nonlinear Synthesis, (C.I. Byrnes and A. Kurzhansky, eds.), Birkhäuser, Boston, September 1991, pp. 258–269.

    Google Scholar 

  215. H. Schättler, A local feedback-synthesis of time-optimal stabilizing controls in dimension three, Mathematics of Control, Signals and Systems, 4 (1991), pp. 293–313.

    Google Scholar 

  216. H. Schättler, A geometric approach to optimal control, in: WCNA-92, Proceedings of the First World Congress of Nonlinear Analysts, Vol. II, (V. Lakhshmikantham, ed.), Walter de Gruyter Publishers, (1996), pp. 1579–1590.

    Google Scholar 

  217. H. Schättler, Small-time reachable sets and time-optimal feedback control for nonlinear systems, in: Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, (B. Mordukhovich and H.J. Sussmann, eds.), IMA Volumes in Mathematics and its Applications, Vol. 78, Springer-Verlag, 1996, pp. 203–225.

    Google Scholar 

  218. H. Schättler, Time-optimal feedback control for nonlinear systems, in: Geometry of Feedback and Optimal Control, (B. Jakubczyk and W. Respondek, eds.), Marcel Dekker, New York, (1998), pp. 383–421.

    Google Scholar 

  219. H. Schättler, On classical envelopes in optimal control theory, Proc. of the 49th IEEE Conference on Decision and Control, Atlanta, USA, (2010), pp. 1879–1884.

    Google Scholar 

  220. H. Schättler, A local field of extremals for optimal control problems with state constraints of relative degree 1, J. of Dynamical and Control Systems, 12 (2006), pp. 563–599.

    MATH  Google Scholar 

  221. H. Schättler and M. Jankovic, A synthesis of time-optimal controls in the presence of saturated singular arcs, Forum Matematicum, 5 (1993), pp. 203–241.

    MATH  Google Scholar 

  222. Ch.E. Shin, On the structure of time-optimal stabilizing controls in 4, Bollettino U.M.I., 7 (1995), pp. 299–320.

    Google Scholar 

  223. Ch.E. Shin, Time-optimal bang-bang trajectories using bifurcation results, J. Korean Math.Soc., 34 (1997), pp. 553–567.

    MathSciNet  MATH  Google Scholar 

  224. M. Sigalotti, Regularity properties of optimal trajectories of single-input control systems in dimension three, J. of Math. Sci., 126 (2005), pp. 1561–1573.

    MathSciNet  MATH  Google Scholar 

  225. E.D. Sontag, Mathematical Control Theory, second edition, Springer-Verlag, (1998).

    Google Scholar 

  226. G. Stefani, Higher order variations: how can they be defined in order to have good properties? in: Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, IMA Volumes in Mathematics and Its Applications, Vol. 78, Springer-Verlag, New York, (1996), pp. 227–237.

    Google Scholar 

  227. G. Stefani and P.L. Zezza, Optimality conditions for a constrained control problem, SIAM J. Control and Optimization, 34 (1996), pp. 635–659.

    MathSciNet  MATH  Google Scholar 

  228. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1990.

    Google Scholar 

  229. H.J. Sussmann, Lie brackets, real analyticity and geometric control, in: Differential Geometric Control Theory, (R. Brockett, R. Millman, H. Sussmann, eds.), Progress in Mathematics, Birkhäuser, Boston, (1983), pp. 1–116.

    Google Scholar 

  230. H.J. Sussmann, Time-optimal control in the plane, in: Feedback Control of Linear and Nonlinear Systems, Lecture Notes in Control and Information Sciences, Vol. 39, Springer-Verlag, Berlin, (1982), pp. 244–260.

    Google Scholar 

  231. H.J. Sussmann, Lie brackets and real analyticity in control theory, in: Mathematical Control Theory, Banach Center Publications, Vol. 14, Polish Scientific Publishers, Warsaw, Poland, (1985), pp. 515–542.

    Google Scholar 

  232. H.J. Sussmann, A bang-bang theorem with bounds on the number of switchings, SIAM J. Control Optim., 17 (1979), pp. 629–651.

    MathSciNet  MATH  Google Scholar 

  233. H.J. Sussmann, Subanalytic sets and feedback control, J. of Differential Equations, 31 (1979), pp. 31–52.

    MathSciNet  MATH  Google Scholar 

  234. H.J. Sussmann, A product expansion for the Chen series, in: Theory and Applications of Nonlinear Control Systems, (C. Byrnes and A. Lindquist, eds.), North-Holland, Amsterdam, (1986), pp. 323–335.

    Google Scholar 

  235. H.J. Sussmann, A general theorem on local controllability, SIAM J. Control Optim., 25 (1987), pp. 158–194.

    MathSciNet  MATH  Google Scholar 

  236. H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: the C nonsingular case, SIAM J. Control Optim., 25 (1987), pp. 433–465.

    MathSciNet  Google Scholar 

  237. H.J. Sussmann, The structure of time–optimal trajectories for single-input systems in the plane: the general real analytic case, SIAM J. Control Optim., 25 (1987), pp. 868–904.

    MathSciNet  MATH  Google Scholar 

  238. H.J. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. Control Optim., 25 (1987), pp. 1145–1162.

    MathSciNet  MATH  Google Scholar 

  239. H.J. Sussmann, Recent developments in the regularity theory of optimal trajectories, Rend. Sem. Mat. Univ. Politec. Torino, Fasc. Spec. Control Theory, (1987), pp. 149–182.

    Google Scholar 

  240. H.J. Sussmann, Envelopes, conjugate points, and optimal bang-bang extremals, Proc. of the 1985 Paris Conference on Nonlinear Systems (M. Fliess, M. Hazewinkel, eds.), Reidel Publ., The Netherlands, (1987).

    Google Scholar 

  241. H.J. Sussmann, Thirty years of optimal control: was the path unique? Modern Optimal Control, (E.O. Roxin, ed.), Marcel Dekker, New York, 1989, pp. 359–375.

    Google Scholar 

  242. H.J. Sussmann, Envelopes, high-order optimality conditions and Lie brackets, Proc. of the 28th IEEE Conference on Decision and Control, Tampa, Florida, December 1989, pp. 1107–1112.

    Google Scholar 

  243. H.J. Sussmann, Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, in: Nonlinear Controllability and Optimal Control, (H. Sussmann, ed.), Marcel Dekker, (1990), pp. 1–19.

    Google Scholar 

  244. H.J. Sussmann, A strong version of the Lojasiewicz Maximum Principle, in: Optimal Control of Differential Equations, (N. Pavel, ed.), Marcel Dekker, New York, 1994, pp. 293–310.

    Google Scholar 

  245. H.J. Sussmann and J.C. Willems, 300 years of optimal control: from the Brachistochrone to the maximum principle, IEEE Control Systems, (1997), pp. 32–44.

    Google Scholar 

  246. H.J. Sussmann, Uniqueness results for the value function via direct trajectory-construction methods, in: Proc. of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, (2003), pp. 3293–3298.

    Google Scholar 

  247. H.J. Sussmann, Multidifferential calculus: chain rule, open mapping and transversal intersection theorems, in: Optimal Control: Theory, Algorithms and Applications, (W.W. Hager and P.M. Pardalos, eds.), Kluwer Academic Publishers, (1998), pp. 436–487.

    Google Scholar 

  248. H.J. Sussmann, Set separation, transversality and the Lipschitz maximum principle, J. of Differential Equations, 243 (2007), pp. 446–488.

    MathSciNet  Google Scholar 

  249. H.J. Sussmann and G. Tang, Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, Report SYCON 91–10, 1991.

    Google Scholar 

  250. R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, 6 (1955–56), pp. 43–87.

    Google Scholar 

  251. O.A. Brezhneva and A.A. Tret’yakov, Optimality Conditions for Degenerate Extremum Problems with Equality Constraints, SIAM J. Control Optim., 42 (2003), pp. 729–743.

    Google Scholar 

  252. G.W. Swan, Role of optimal control in cancer chemotherapy, Math. Biosci., 101 (1990), pp. 237–284.

    MATH  Google Scholar 

  253. A. Swierniak, A. Polanski, and M. Kimmel, Optimal control problems arising in cell-cycle-specific cancer chemotherapy, Cell prolif., 29 (1996), pp. 117–139.

    Google Scholar 

  254. R.B. Vinter, Optimal Control Theory, Birkhäuser, Boston, 2000.

    Google Scholar 

  255. S. Walczak, On some properties of cones in normed spaces and their application to investigating extremal problems, J. of Optimization Theory and Applications, 42 (1984), pp. 559–582.

    MathSciNet  Google Scholar 

  256. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer Verlag, 1983.

    Google Scholar 

  257. R.L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.

    MATH  Google Scholar 

  258. H. Whitney, Elementary structure of real algebraic varieties, Ann. Math., 66 (1957), pp. 545–556.

    MathSciNet  MATH  Google Scholar 

  259. W.M. Wonham, Note on a problem in optimal nonlinear control, J. Electronics Control, 15 (1963), pp. 59–62.

    MathSciNet  Google Scholar 

  260. L.C. Young, Lectures on the Calculus of Variations and Optimal Control Theory, W.B. Saunders, Philadelphia, 1969.

    MATH  Google Scholar 

  261. M.I. Zelikin and V.F. Borisov, Optimal synthesis containing chattering arcs and singular arcs of the second order, in: Nonlinear Synthesis, (C.I. Byrnes and A. Kurzhansky, eds.), Birkhäuser, Boston, (1991), pp. 283–296.

    Google Scholar 

  262. M.I. Zelikin and V.F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics and Engineering, Birkhäuser, 1994.

    Google Scholar 

  263. M.I. Zelikin and L.F. Zelikina, The structure of optimal synthesis in a neighborhood of singular manifolds for problems that are affine in control, Sbornik: Mathematics, 189 (1998), pp. 1467–1484.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schättler, H., Ledzewicz, U. (2012). The Calculus of Variations: A Historical Perspective. In: Geometric Optimal Control. Interdisciplinary Applied Mathematics, vol 38. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3834-2_1

Download citation

Publish with us

Policies and ethics