Skip to main content

Shape Adaptive Mean Shift Object Tracking Using Gaussian Mixture Models

  • Chapter
  • First Online:
Analysis, Retrieval and Delivery of Multimedia Content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 158))

Abstract

GMM-SAMT, a new object tracking algorithm based on a combination of the mean shift principal and Gaussian mixture models (GMMs) is presented. GMM-SAMT stands for Gaussian mixture model based shape adaptive mean shift tracking. Instead of a symmetrical kernel like in traditional mean shift tracking, GMM-SAMT uses an asymmetric shape adapted kernel which is retrieved from an object mask. During the mean shift iterations the kernel scale is altered according to the object scale, providing an initial adaptation of the object shape. The final shape of the kernel is then obtained by segmenting the area inside and around the adapted kernel into object and non-object segments using Gaussian mixture models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ftp://ftp.pets.rdg.ac.uk/pub/PETS2000/

References

  1. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE Press, New York, pp 142–149

    Google Scholar 

  2. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619

    Article  Google Scholar 

  3. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17:790–799

    Article  Google Scholar 

  4. Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2:12–21

    Google Scholar 

  5. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25:564–575

    Article  Google Scholar 

  6. Collins RT (2003) Mean-shift blob tracking through scale space. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 234–240

    Google Scholar 

  7. Qifeng Q, Zhang D, Peng Y (2007) An adaptive selection of the scale and orientation in kernel based tracking. In: Proceedings of the third international IEEE conference on signal-image technologies and internet-based system, IEEE Press, New York, pp 659–664

    Google Scholar 

  8. Vilaplana V, Marques F (2008) Region-based mean shift tracking: application to face tracking. In: Proceedings of 15th IEEE international conference on image processing, IEEE Press, New York, pp 2712–2715

    Google Scholar 

  9. Yilmaz A (2007) Object tracking by asymmetric kernel mean shift with automatic scale and orientation selection. In: Proceedings of IEEE conference on computer vision and pattern recognition, IEEE Press, New York, pp 1–6

    Google Scholar 

  10. Quast K, Kaup A (2009) Scale and shape adaptive mean shift object tracking in video sequences. In: Proceedings 17th European signal processing conference, pp 1513–1517

    Google Scholar 

  11. Nowak A, Hörchens L, Röder J, Erdmann M (2006) Colourbased video segmentation for tv studio applications. In: Proceedings of the 51st international scientific colloquium, 2006

    Google Scholar 

  12. Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. IEEE Trans Pattern Anal Mach Intell 22(8):747–757

    Article  Google Scholar 

  13. Quast K, Kaup A (2010) Real-time moving object detection in video sequences using spatio-temporal adaptive Gaussian mixture models. In: Proceedings of international conference on computer vision theory and applications (VISAPP ’10), Angers, France, 2010

    Google Scholar 

  14. Dempster AP, Laird NM, Rubin DB et al (1977) Maximum likelihood from incomplete data via the EM algorithm. J Royal Stat Soc. Series B (Methodological) 39(1):1–38

    Google Scholar 

  15. Ihlow A, Heuberger A (2009) Sky detection in fisheye images for photogrammetric analysis of the land mobile satellite channel. In: Proceedings of the 10th workshop digital broadcasting, pp 56–60

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the Gesellschaft fĂ¼r Informatik, Automatisierung und Datenverarbeitung (iAd) and the Bundesministerium fĂ¼r Wirtschaft und Technologie (BMWi), ID 20V0801I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Quast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quast, K., Kaup, A. (2013). Shape Adaptive Mean Shift Object Tracking Using Gaussian Mixture Models. In: Adami, N., Cavallaro, A., Leonardi, R., Migliorati, P. (eds) Analysis, Retrieval and Delivery of Multimedia Content. Lecture Notes in Electrical Engineering, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3831-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3831-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3830-4

  • Online ISBN: 978-1-4614-3831-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics