Skip to main content

A Cognitive Source Coding Scheme for Multiple Description 3DTV Transmission

  • Chapter
  • First Online:
Analysis, Retrieval and Delivery of Multimedia Content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 158))

  • 972 Accesses

Abstract

Multiple Description Coding has recently proved to be an effective solution for the robust transmission of 3D video sequences over unreliable channels. However, adapting the characteristics of the source coding strategy (Cognitive Source Coding) permits improving the quality of 3D visualization experienced by the end-user. This strategy has been successfully employed for standard video signals, but it can be applied to Multiple Description video coding for an effective transmission of 3D signals. The chapter presents a novel Cognitive Source Coding scheme that improves the performance of traditional Multiple Description Coding approaches by adaptively combining traditional predictive and Wyner-Ziv coders according to the characteristics of the video sequence and to the channel conditions. The approach is employed for video+depth 3D transmissions improving the average PSNR value up to 2.5 dB with respect to traditional MDC schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The basic coding engine was derived from a standard H.264/AVC codec.

References

  1. Shi S, Jeon W, Nahrsted K, Campbell R (2009) M-TEEVE: Real-time 3D video interaction and broadcasting framework for mobile devices. In: Proceedings of the 2nd international conference on immersive telecommunications (IMMERSCOM ’09), Berkeley, 2009

    Google Scholar 

  2. Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the h.264/avc standard. IEEE Trans Circuits Syst Video Technol 17:1103–1120

    Article  Google Scholar 

  3. Katsaggelos AK, Eisenberg Y, Zhai F, Berry R, Pappas TN (2005) Advances in efficient resource allocation for packet-based real-time video transmission. Proc IEEE 93:135–147

    Article  Google Scholar 

  4. Milani S, Calvagno G, Bernardini R, Zontone, P (2008) Cross-layer joint optimization of FEC channel codes and multiple description coding for video delivery over IEEE 802.11e Links. In: Proceedings of the IEEE FMN (2008) Cardiff, Wales, September 2008. pp 472–478

    Google Scholar 

  5. Karim HA, Hewage CTER, Worral S, Kondoz AM (2008) Scalable multiple description video coding for stereoscopic 3D. IEEE Trans Consumer Electron 54:745–752

    Article  Google Scholar 

  6. Crave O, Guillemot C, Pesquet-Popescu B, Tillier C (2007) Robust video transmission based on distributed multiple description coding. In: Proceedings of the EUSIPCO, Poznan, 2007. pp 1432–1436

    Google Scholar 

  7. Mitola J, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Personal Commun Mag 6:13–18

    Article  Google Scholar 

  8. Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23:201–220 (Invited)

    Google Scholar 

  9. Fehn C (2004) 3D-TV using depth-image-based rendering (DIBR). In: Proceedings of the PCS, San Francisco, December 2004

    Google Scholar 

  10. Aksay A, Bilen C, Kurutepe E, Ozcelebi T, Akar GB, Civanlar R, Tekalp M (2006) Temporal and spatial scaling for stereoscopic video compression. In: Proceedings of the 14th european signal processing conference (EUSIPCO 2006), Florence, September 2006

    Google Scholar 

  11. Karim HA, Hewage CTER, Yu AC, Worral S, Dogan S, Kondoz AM (2007) Scalable multiple description 3D video coding based on even and odd frame. In: Proceedings of the picture coding symposium, Lisbon, November 2007

    Google Scholar 

  12. Alregib G, Altunbasak Y, Rossignac J (2005) Error-resilient transmission of 3D models. ACM Trans Graph 24:182–208

    Article  Google Scholar 

  13. Balter R, Gioia P, Morin L (2006) Scalable and efficient coding using 3D modeling. IEEE Trans Multimedia 8:1147–1155

    Article  Google Scholar 

  14. Norkin A, Aksay A, Bilen C, Akar GB, Gotchev A, Astola J (2006) Schemes for multiple escription coding of stereoscopic 3D. Lecture notes in computer science, vol 4105. Springer, Heildelberg, pp 730–737

    Google Scholar 

  15. Yeo C, Ramchandran K (2007) Robust distributed multiview video compression for wireless camera networks. In: Proceedings of VCIP, San Jose, 2007. vol 6508, pp 65080P-1–65080P-9

    Google Scholar 

  16. Puri R, Ramchandran K (2002) PRISM: A new robust video coding architecture based on distributed compression principles. In: Proceedings of the 40th Allerton conference on communication, control and computing, Allerton, October 2002. pp 402–408

    Google Scholar 

  17. Adikari ABB, Fernando WAC, Weerakkody WARJ, Kondoz A, Martínez JL, Cuenca P (2008) DVC based stereoscopic video transmission in a mobile communication system. In: Proceedings of the (2008) IEEE international conference on future multimedia networks (FMN 2008) (co-located with NGMAST2008), Cardiff, Wales, 2008. pp 439–443

    Google Scholar 

  18. Jagmohan A, Ahuja N (2003) Wyner-Ziv encoded predictive multiple descriptions. In: Proceedings of the data compression conference (DCC 2003) Snowbird, 2003. pp 213–222

    Google Scholar 

  19. Wu M, Vetro A, Chen CW (2004) Multiple description image coding with distributed source coding and side information. In: Proceedings of SPIE multimedia systems and applications VII, Philadelphia, October 2004. vol 5600, pp 120–127

    Google Scholar 

  20. Wang J, Wu X, Yu S, Sun, J (2006) Multiple descriptions in the Wyner-Ziv setting. In: Proceedings of the IEEE international symposium on information theory (ISIT 2006), Seattle, July 2006. pp 1584–1588

    Google Scholar 

  21. Fan Y, Wang J, Sun J, Wang P, Yu S (2003) A novel multiple description video codec based on Slepian-Wolf coding. In: Proceedings of the data compression conference (DCC 2008), Snowbird, 2003. p 515

    Google Scholar 

  22. Wang A, Zhao Y, Bai H (2009) Robust multiple description distributed video coding using optimized zero-padding. Sci China Ser F Inf Sci 52:206–214

    Article  MATH  Google Scholar 

  23. Crave O, Guillemot C, Pesquet-Popescu B, Tillier C (2008) Multiple description source coding with side information. In: Proceedings of the 16th european signal processing conference (EUSIPCO 2008), Lausanne, 2008.

    Google Scholar 

  24. Aaron A, Zhang R, Girod, B.: Wyner-Ziv coding for motion video. In: Proceedings of asilomar conference on signals, systems and computers, Pacific Grove, 2002. vol 1, pp 240–244

    Google Scholar 

  25. Artigas X, Ascenso J, Dalai M, Klomp S, Kubasov D, Ouaret M (2007) The DISCOVER codec: architecture, techniques and evaluation. In: Proceedings of the 26th picture coding symposium (PCS 2007), Lisbon, 2007

    Google Scholar 

  26. Milani S, Calvagno G (2009) A distributed video coding approach for multiple description video transmission over lossy channels. In: 17th european signal processing conference 2009, Glasgow, Scotland, 2009

    Google Scholar 

  27. Milani S, Calvagno G (2010) Multiple description distributed video coding using redundant Slices and Lossy syndromes. IEEE Signal Process Lett 17:51–54

    Article  Google Scholar 

  28. Milani S, Calvagno G (2009) A distributed video coding approach for multiple escription video coding of stereo sequences. In: Proceedings of the 2009 GTTI annual meeting, Parma, 2009

    Google Scholar 

  29. Milani S, Calvagno G (2010) A cognitive source coding scheme for multiple description 3DTV transmission. In: Proceedings of the 11th international workshop on image analysis for multimedia interactive services (WIAMIS 2010), Desenzano del Garda, Brescia, 2010

    Google Scholar 

  30. Milani S, Calvagno G (2010) A cognitive approach for effective coding and transmission of 3D video. In: Proceedings ACM multimedia 2010, Florence, 2010

    Google Scholar 

  31. Wiegand T (2004) Version 3 of H.264/AVC. In: Joint Video Team (JVT) of ISO/IEC MPEG& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), \(12^{th}\) Meeting, Redmond, 2004

    Google Scholar 

  32. Sheng F, Li-Wei Z, Ling H (2007) An adaptive nested scalar quantization scheme for distributed video coding. In: Proceedings of the IEEE workshop on signal processing systems (SiPS 2007), Shanghai, 2007. pp 351–356

    Google Scholar 

  33. Puri R, Majumdar A, Ramchandran K (2007) PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans Image Process 16:2436–2448

    Article  MathSciNet  Google Scholar 

  34. Kang SB (MSR 3D Video download) http://research.microsoft.com/en-us/um/people/sbkang/3dvideodownload

  35. Mobite3DTV Project: (Repository of Mobile3DTV project: 3D Video database) http://sp.cs.tut.fi/mobile3dtv/stereo-video/

  36. Smolic A (Repository FhG-HHI on 3DTV Network of Excellence Web Page) https://www.3dtv-research.org/3dav/3DAV_Demos/FHG_HHI/

Download references

Acknowledgments

This work was partially supported by the PRIN 2008 project prot. 2008C59JNA founded by the Italian Ministry of University and Research (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Milani .

Editor information

Editors and Affiliations

Appendix

Appendix

Given the original pixel \(x_m(i,j)=s_m(i,j)+k \ 2^{n_{\max ,m}}\) (\(k \in \mathbb Z \)) and its reconstructed value \(x_{r,m}(i,j)=s_m(i,j)+e_m(i,j)+k \ 2^{n_{\max ,m}}\) after the quantization of the transformed syndromes, a wrongly-decoded pixel \(x^\prime _{r,m}(i,j)\) can be written as

$$\begin{aligned} \begin{array}{ll} x^\prime _{r,m}(i,j)&=s_m(i,j)+e_m(i,j)+k^\prime 2^{n_{\max ,m}} \\&=x_m(i,j)+e_m(i,j)+d_k \ 2^{n_{\max ,m}}, \end{array} \end{aligned}$$
(13.8)

with \(k^\prime \in \mathbb Z \), \(k^\prime \ne k\), and \(d_k=k^\prime - k\). In the following, we will omit pixel position indexes \((i,j)\) and description index \(m\) for the sake of conciseness.

The probability of a wrong decoding is

$$\begin{aligned} P_W=P\left[x^\prime _r \ne x_r\right]=P\left[ |x_p - x^\prime _r | < |x_p - x_r| \right], \end{aligned}$$
(13.9)

which can be written as

$$\begin{aligned} P_W=P\left[ |-d-e-d_k 2^{n_{\max }} | < |-d -e | \right], \end{aligned}$$
(13.10)

where \(d\) is the difference between the current pixel and its predictor. Given \(d\) and \(d_k\), the probability \(P_W\) becomes

$$\begin{aligned} P_W=\left\{ \begin{array}{ll} P[e \le -d - d_k \ 2^{n_{\max }-1}]&\quad \text{ if} \quad d_k>0, \\ P[e > -d - d_k \ 2^{n_{\max }-1}]&\quad \text{ if} \quad d_k \le 0. \\ \end{array} \right. \end{aligned}$$
(13.11)

The error \(e\) is modelled with a normal distribution \(\mathcal N (0,\sigma _{e,q})\) with mean \(0\) and variance \(\sigma ^2_{e,q} \simeq A^2 \varDelta ^2/12\) (where \(A\) is a scaling factor related to the adopted inverse transform since quantization is perform on the coefficients \(\varvec{S}\)). The choice of a normal distribution is motivated by the fact that \(e\) is a linear combination of independent quantization errors generated in the transform domain and inversely-transformed. From Eq. (13.1) it is possible to infer that \(2^{n_{\max }-2} \le |d| < 2^{n_{\max }-1}\), and therefore, the probability of a wrong decoding becomes

$$\begin{aligned} P_W=\displaystyle Q\left( \frac{|d+d_k \ 2^{n_{\max }-1} |}{\sigma _{e,q}}\right). \end{aligned}$$
(13.12)

From Eq. (13.12) it is possible to write the inequalities

$$\begin{aligned} \begin{array}{ll} P_W&\displaystyle \le Q\left( \frac{2^{n_{\max }-2}+|d_k| \ 2^{n_{\max }-1}}{\sigma _{e,q}}\right) \\&\displaystyle \le Q\left( \frac{1.5 \ 2^{n_{\max }-1} }{\sigma _{e,q}}\right) = Q\left( \frac{2.6 \ 2^{n_{\max }} }{A \ \varDelta }\right). \end{array} \end{aligned}$$
(13.13)

As a matter of fact,

$$\begin{aligned} \displaystyle Q\left( \frac{2.6 \ 2^{n_{\max }} }{A \ \varDelta }\right) \le 0.017 \qquad \Rightarrow \qquad \displaystyle \varDelta < \frac{1.24 \cdot 2^{n_{\max }}}{A}=5.6 \cdot 2^{n_{\max }} \end{aligned}$$
(13.14)

where \(A\) is assumed to be approximately equal to \(1/4\) for the inverse \(4 \times 4\) transform defined in the standard H.264/AVC (considering both transform amplification and rescalings).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milani, S., Calvagno, G. (2013). A Cognitive Source Coding Scheme for Multiple Description 3DTV Transmission. In: Adami, N., Cavallaro, A., Leonardi, R., Migliorati, P. (eds) Analysis, Retrieval and Delivery of Multimedia Content. Lecture Notes in Electrical Engineering, vol 158. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3831-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3831-1_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3830-4

  • Online ISBN: 978-1-4614-3831-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics