Fourier Transform Infrared Spectroscopic Methods for Microbial Ecology

  • Avelino Alvarez-Ordóñez
  • Miguel Prieto
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)


Fourier transform (FT-IR) spectroscopy can be utilized to detect differences in microbial community structures, including binary mixed cultures of two microorganisms, where it is used to distinguish and quantify microbial populations.


Attenuate Total Reflectance Yersinia Enterocolitica Mince Beef Rhodococcus Ruber Mince Pork 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Qadiri, H.M., Lin, M., Cavinato, A.G., Rasco, B.A., 2006. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli O157:H7 and Alicyclobacillus strains in apple juice. Int. J. Food Microbiol. 111, 73-80.CrossRefGoogle Scholar
  2. Ammor, M.S., Argyri, A., Nychas, G.J., 2008. Rapid monitoring of the spoilage of minced beef stored under conventionally and active packaging conditions using Fourier transform infrared spectroscopy in tandem with chemometrics. Meat Sci.Google Scholar
  3. Becker, K., Laham, N.A., Fegeler, W., Proctor, R.A., Peters, G., von, E.C., 2006. Fourier-transform infrared spectroscopic analysis is a powerful tool for studying the dynamic changes in Staphylococcus aureus small-colony variants. J. Clin. Microbiol. 44, 3274-3278.CrossRefGoogle Scholar
  4. Castro, F.D., Sedman, J., Ismail, A.A., Asadishad, B., Tufenkji, N., 2010. Effect of dissolved oxygen on two bacterial pathogens examined using ATR-FTIR spectroscopy, microelectrophoresis, and potentiometric titration. Environ. Sci. Technol. 44, 4136-4141.CrossRefGoogle Scholar
  5. Choo-Smith, L.P., Maquelin, K., van, V.T., Bruining, H.A., Puppels, G.J., Ngo Thi, N.A., Kirschner, C., Naumann, D., Ami, D., Villa, A.M., Orsini, F., Doglia, S.M., Lamfarraj, H., Sockalingum, G.D., Manfait, M., Allouch, P., Endtz, H.P., 2001. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 67, 1461-1469.CrossRefGoogle Scholar
  6. Comeau, J.W., Pink, J., Bezanson, E., Douglas, C.D., Pink, D., Smith-Palmer, T., 2009. A comparison of Pseudomonas aeruginosa biofilm development on ZnSe and TiO2 using attenuated total reflection Fourier transform infrared spectroscopy. Appl. Spectrosc. 63, 1000-1007.CrossRefGoogle Scholar
  7. Ede, S.M., Hafner, L.M., Fredericks, P.M., 2004. Structural changes in the cells of some bacteria during population growth: a Fourier transform infrared-attenuated total reflectance study. Appl. Spectrosc. 58, 317-322.CrossRefGoogle Scholar
  8. Ellis, D.I., Broadhurst, D., Kell, D.B., Rowland, J.J., Goodacre, R., 2002. Rapid and quantitative detection of the microbial spoilage of meat by Fourier transform infrared spectroscopy and machine learning. Appl. Environ. Microbiol. 68, 2822-2828.CrossRefGoogle Scholar
  9. Filip, Z., Herrmann, S., Kubat, J., 2004. FT-IR spectroscopic characteristics of differently cultivated Bacillus subtilis. Microbiol. Res. 159, 257-262.CrossRefGoogle Scholar
  10. Holman, H.Y., Miles, R., Hao, Z., Wozei, E., Anderson, L.M., Yang, H., 2009. Real-time chemical imaging of bacterial activity in biofilms using open-channel microfluidics and synchrotron FTIR spectromicroscopy. Anal. Chem. 81, 8564-8570.CrossRefGoogle Scholar
  11. Ngo Thi, N.A., Naumann, D., 2007. Investigating the heterogeneity of cell growth in microbial colonies by FTIR microspectroscopy. Anal. Bioanal. Chem. 387, 1769-1777.CrossRefGoogle Scholar
  12. Nicolaou, N., Goodacre, R., 2008. Rapid and quantitative detection of the microbial spoilage in milk using Fourier transform infrared spectroscopy and chemometrics. Analyst 133, 1424-1431.CrossRefGoogle Scholar
  13. Nicolaou, N., Xu, Y., Goodacre, R., 2011. Fourier Transform infrared and Raman spectroscopies for the rapid detection, enumeration, and growth interaction of the bacteria Staphylococcus aureus and Lactococcus lactis ssp. cremoris in milk. Anal. Chem. 83, 5681-5687.CrossRefGoogle Scholar
  14. Oberreuter, H., Mertens, F., Seiler, H., Scherer, S., 2000. Quantification of micro-organisms in binary mixed populations by Fourier transform infrared (FT-IR) spectroscopy. Lett. Appl. Microbiol. 30, 85-89.CrossRefGoogle Scholar
  15. Papadopoulou, O., Panagou, E.Z., Tassou, C.C., Nychas, G.J., 2011. Contribution of Fourier transform infrared (FTIR) spectroscopy data on the quantitative determination of minced pork meat spoilage. Food Res, Int. 44, 3264-3271.CrossRefGoogle Scholar
  16. Rellini, P., Roscini, L., Fatichenti, F., Morini, P., Cardinali, G., 2009. Direct spectroscopic (FTIR) detection of intraspecific binary contaminations in yeast cultures. FEMS Yeast Res. 9, 460-467.CrossRefGoogle Scholar
  17. Schawe, R., Fetzer, I., Tonniges, A., Hartig, C., Geyer, W., Harms, H., Chatzinotas, A., 2011. Evaluation of FT-IR spectroscopy as a tool to quantify bacteria in binary mixed cultures. J. Microbiol. Methods 86, 182-187.CrossRefGoogle Scholar
  18. Tessema, G.T., Moretro, T., Kohler, A., Axelsson, L., Naterstad, K., 2009. Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the class IIa bacteriocin sakacin P. Appl. Environ. Microbiol. 75, 6973-6980.CrossRefGoogle Scholar
  19. Wenning, M., Theilmann, V., Scherer, S., 2006. Rapid analysis of two food-borne microbial communities at the species level by Fourier-transform infrared microspectroscopy. Environ. Microbiol. 8, 848-857.CrossRefGoogle Scholar

Copyright information

© Avelino Alvarez-Ordóñez and Miguel Prieto 2012

Authors and Affiliations

  • Avelino Alvarez-Ordóñez
    • 1
  • Miguel Prieto
    • 2
  1. 1.Department of MicrobiologyUniversity College CorkCorkIreland
  2. 2.Department of Food Hygiene and TechnologyUniversity of LeónLeónSpain

Personalised recommendations