Skip to main content

Highly Composite Numbers

  • Chapter
Ramanujan's Lost Notebook

Abstract

In 1915, the London Mathematical Society published in its Proceedings a paper by Ramanujan entitled Highly Composite Numbers. A number N is said to be highly composite if for every integer M<N, it happens that d(M)<d(N), where d(n) is the number of divisors of n. In the notes of Ramanujan’s Collected Papers, the editors relate, “The paper, long as it is, is not complete.” Fortunately, the large remaining portion of the paper was not discarded. It was first set into print by Jean-Louis Nicolas and Guy Robin in the first volume of the Ramanujan Journal, for which they provided useful comments. This chapter contains that formerly unpublished completion of Ramanujan’s paper as well as updated annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since the first value of ρ(1−ρ) is about 200 we see that the geometric mean is a much closer approximation than either.

References

  1. L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448–469.

    MathSciNet  MATH  Google Scholar 

  2. A. Alaca, S. Alaca, M.F. Lemire, and K.S. Williams, Nineteen quatenary quadratic forms, Acta Arith. 130 (2007), 277–310.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Alaca, S. Alaca, and K.S. Williams, The simplest proof of Jacobi’s six squares theorem, Far East J. Math. Sci. 27 (2007), 187–192.

    MathSciNet  MATH  Google Scholar 

  4. G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer, New York, 2005.

    Google Scholar 

  5. P. Bachmann, Niedere Zahlentheorie, Chelsea, New York, 1968.

    MATH  Google Scholar 

  6. B.C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  7. B.C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  8. B.C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, Providence, RI, 2006.

    MATH  Google Scholar 

  9. B.C. Berndt and R.A. Rankin, Ramanujan: Letters and Commentary, American Mathematical Society, Providence, RI, 1995; London Mathematical Society, London, 1995.

    MATH  Google Scholar 

  10. B.C. Berndt and R.A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, Providence, 2001; London Mathematical Society, London, 2001.

    MATH  Google Scholar 

  11. B.J. Birch, A look back at Ramanujan’s notebooks, Proc. Cambridge Philos. Soc. 78 (1975), 73–79.

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Buttkewitz, C. Elsholtz, K. Ford, and J.-C. Schlage-Puchta, A problem of Ramanujan, Erdős and Kátai on the iterated divisor function, Internat. Math. Res. Notices (IMRN) (2012), doi:10.1093/imrn/rnr175.

  13. S.H. Chan, An elementary proof of Jacobi’s six squares theorem, Amer. Math. Monthly 111 (2004), 806–811.

    Article  MathSciNet  MATH  Google Scholar 

  14. S.H. Chan, On Cranks of Partitions, Generalized Lambert Series, and Basic Hypergeometric Series, Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, 2005.

    Google Scholar 

  15. J.I. Deutsch, A quaternionic proof of the representation formula of a quatenary quadratic form, J. Number Thy. 113 (2005), 149–179.

    Article  MathSciNet  MATH  Google Scholar 

  16. J.-L. Duras, J.-L. Nicolas, and G. Robin, Grandes valeurs de la fonction d k , in Number Theory in Progress, Vol. 2 (Zakopane, Poland), J. Urbanowicz, K. Győry, and H. Iwaniec, eds., Walter de Gruyter, Berlin, 1999, pp. 743–770.

    Google Scholar 

  17. P. Erdős and J.-L. Nicolas, Répartition des nombres superabondants, Bull. Soc. Math. France 103 (1975), 113–122.

    MathSciNet  Google Scholar 

  18. G.H. Hardy, Ramanujan, Cambridge University Press, Cambridge, 1940; reprinted by Chelsea, New York, 1960; reprinted by the American Mathematical Society, Providence, RI, 1999.

    Google Scholar 

  19. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979.

    MATH  Google Scholar 

  20. J. Liouville, Sur la forme x 2+y 2+2(z 2+t 2), J. Math. Pures Appl. 5 (1860), 269–272.

    Google Scholar 

  21. E. McAfee and K.S. Williams, Sums of six squares, Far East J. Math. Sci. 16 (2005), 17–41.

    MathSciNet  MATH  Google Scholar 

  22. M.B. Nathanson, Elementary Methods in Number Theory, Springer, New York, 2000.

    MATH  Google Scholar 

  23. J.-L. Nicolas, Répartition des nombres hautement composés de Ramanujan, Canad. J. Math. 23 (1971), 115–130.

    Article  MathSciNet  Google Scholar 

  24. J.-L. Nicolas, Grandes valeurs des fonctions arithmétiques, Séminaire D. P. P. Paris (16e année, 1974/75), n o G20, 5p.

    Google Scholar 

  25. J.-L. Nicolas, Répartition des nombres largement composés, Acta Arith. 34 (1980), 379–390.

    MathSciNet  Google Scholar 

  26. J.-L. Nicolas, Petites valeurs de la fonction d’Euler, J. Number Thy. 17 (1983), 375–388.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.-L. Nicolas, On highly composite numbers, in Ramanujan Revisited, G.E. Andrews, R.A. Askey, B.C. Berndt, K.G. Ramanathan, and R.A. Rankin, eds., Academic Press, Boston, 1988, pp. 216–244.

    Google Scholar 

  28. J.-L. Nicolas, On composite numbers, in Number Theory, Madras 1987, Lecture Notes in Math. No. 1395, K. Alladi, ed., Springer-Verlag, 1989, pp. 18–20.

    Google Scholar 

  29. K.K. Norton, Upper bounds for sums of powers of divisor functions, J. Number Thy. 40 (1992), 60–85.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Pepin, Étude sur quelques formules d’analyse utiles dans la théorie des nombres, Atti. Accad. Pont. Nuovi Lincei 38 (1884–85), 139–196.

    Google Scholar 

  31. T. Pepin, Sur quelques formes quadratiques quaternaires, J. Math. Pures Appl. 6 (1890), 5–67.

    Google Scholar 

  32. H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag, New York, 1973.

    Book  MATH  Google Scholar 

  33. S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. (2) 14 (1915), 347–409.

    MATH  Google Scholar 

  34. S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge 1927; reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI, 2000.

    MATH  Google Scholar 

  35. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

    MATH  Google Scholar 

  36. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

    MATH  Google Scholar 

  37. S. Ramanujan, Highly composite numbers, J.-L. Nicolas and G. Robin, eds., Ramanujan J. 1 (1997), 119–153.

    Article  MathSciNet  MATH  Google Scholar 

  38. R.A. Rankin, Ramanujan’s manuscripts and notebooks II, Bull. London Math. Soc. 21 (1989), 351–365; reprinted in [69, pp. 129–142].

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Robin, Sur l’ordre maximum de la fonction somme des diviseurs, Séminaire Delange-Pisot-Poitou. Paris, 1981–1982, Birkhäuser, Boston, 1983, pp. 223–244.

    Google Scholar 

  40. G. Robin, Grandes valeurs de fonctions arithmétiques et problèmes d’optimisation en nombres entiers, Thèse d’Etat, Université de Limoges, France, 1983.

    Google Scholar 

  41. G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. 63 (1984), 187–213.

    MathSciNet  MATH  Google Scholar 

  42. G. Robin, Sur la différence Li(θ(x))−π(x), Ann. Fac. Sc. Toulouse 6 (1984), 257–268.

    Article  MathSciNet  Google Scholar 

  43. G. Robin, Sur des travaux non publiés de S. Ramanujan sur les nombres hautement composés, Publications du département de Mathématiques de l’Université de Limoges, France, 1991, pp. 1–60.

    Google Scholar 

  44. B.K. Spearman and K.S. Williams, The simplest arithmetic proof of Jacobi’s four squares theorem, Far East J. Math. Sci. 2 (2000), 433–439.

    MathSciNet  MATH  Google Scholar 

  45. B.K. Spearman and K.S. Williams, An arithmetic proof of Jacobi’s eight squares theorem, Far East J. Math. Sci. 3 (2001), 1001–1005.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Andrews .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrews, G.E., Berndt, B.C. (2012). Highly Composite Numbers. In: Ramanujan's Lost Notebook. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3810-6_10

Download citation

Publish with us

Policies and ethics