Skip to main content

Abstract

The acquisition of the geometry description of a dynamic scene has always been a very challenging task which required state-of-the-art technology and instrumentation only affordable by research labs or major companies until not too long ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-Y. Bouguet, B. Curless, P. Debevec, M. Levoy, S. Nayar, and S. Seitz, “Overview of active vision techniques. siggraph 2000 course on 3d photography.” Workshop, 2000.

    Google Scholar 

  2. Bernardini F, Rushmeier H (2002) The 3d model acquisition pipeline. Comput Graph Forum 21(2):149–172

    Article  Google Scholar 

  3. “Leica.” http://hds.leica-geosystems.com.

    Google Scholar 

  4. “Riegl.” http://www.riegl.com/.

    Google Scholar 

  5. “Faro.” http://faro.com.

    Google Scholar 

  6. “Zoller and Frolich.” http://www.zf-laser.com/.

    Google Scholar 

  7. R. Lange, 3D Time-Of-Flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology. PhD thesis, University of Siegen, 2000.

    Google Scholar 

  8. G. Iddan and G. Yahav, “G.: 3d imaging in the studio (and elsewhere,” In: SPIE, pp. 48–55, 2001.

    Google Scholar 

  9. G. Yahav, G. Iddan, and D. Mandelboum, “3d imaging camera for gaming application,” in ICCE, 2007.

    Google Scholar 

  10. L. Pancheri, N. Massari, F. Borghetti, and D. Stoppa, “A 32x32 spad pixel array with nanosecond gating and analog readout,” in International Image Sensor Workshop (IISW), 2011.

    Google Scholar 

  11. “Mesa imaging.” http://www.mesa-imaging.ch.

    Google Scholar 

  12. “Pmd technologies.” http://www.pmdtec.com/.

    Google Scholar 

  13. “Softkinetic.” http://www.softkinetic.com/.

    Google Scholar 

  14. D. Stoppa and F. Remondino, eds., TOF Range-Imaging Cameras. Springer, 2012.

    Google Scholar 

  15. Szeliski R (2010) Computer Vision: Algorithms and Applications. Springer, New York

    Google Scholar 

  16. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press, 2004.

    Google Scholar 

  17. J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image correction,” in CVPR, 1997.

    Google Scholar 

  18. D. Claus and A. Fitzgibbon, “A rational function lens distortion model for general cameras,” in CVPR, 2005.

    Google Scholar 

  19. J.-Y. Bouguet, “Camera calibration toolbox for matlab.”

    Google Scholar 

  20. “OpenCV.” http://opencv.willowgarage.com/wiki/.

    Google Scholar 

  21. M. Trobina, “Error model of a coded-light range sensor,” tech. rep., Communication Technology Laboratory Image Science Group, ETH-Zentrum, Zurich, 1995.

    Google Scholar 

  22. B. Curless and M. Levoy, “A volumetric method for building complex models from range images,” in Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, SIGGRAPH ’96, (New York, NY, USA), pp. 303–312, ACM, 1996.

    Google Scholar 

  23. Zhang L, Curless B, Seitz S, “Spacetime stereo: shape recovery for dynamic scenes”, in Proceedings.(2003) IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2003:2003

    Google Scholar 

  24. L. Zhang, B. Curless, and S. Seitz, “Rapid shape acquisition using color structured light and multi-pass dynamic programming,” in In The 1st IEEE International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 24–36, 2002.

    Google Scholar 

  25. Salvi J, Pags J, Batlle J (2004) Pattern codification strategies in structured light systems. Pattern Recognition 37:827–849

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Mutto, C.D., Zanuttigh, P., Cortelazzo, G.M. (2012). Introduction. In: Time-of-Flight Cameras and Microsoft Kinect™. SpringerBriefs in Electrical and Computer Engineering(). Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3807-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3807-6_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3806-9

  • Online ISBN: 978-1-4614-3807-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics