Skip to main content

Beneficial Effects of Flaxseed Oil (n-3 Fatty Acids) on Neurological Disorders

  • Chapter
  • First Online:
Phytochemicals, Signal Transduction, and Neurological Disorders

Abstract

Flaxseeds are not only the richest plant source of α-linolenic acid (ALA, 18:3n-3) and the phytohormone lignans, but also an essential source of high-quality protein and dietary fiber. Whole flaxseed contains 41 % oil by weight, of which 70 % is polyunsaturated; more than half of the total fatty acid is ALA (Fig. 3.1) (Bhatty 1995). ALA is also found in soybeans, rapeseed, walnuts, and dark green leafy vegetables (kale, spinach, broccoli, and Brussels sprouts). Potential health benefits of flaxseeds for cardiovascular disease, neurological disorders, and cancer are related to high ALA contents, vegetable protein, soluble fiber, and flavonoids and related compounds, which may not only possess cholesterol-lowering, hyperlipidemic, and antioxidant properties, but may also produce sex hormone agonistic and antagonistic activities (de Lorgeril et al. 1994; Jenkins et al. 1999). Flaxseed lignans also promote the reduction of serum total cholesterol and low-density lipoprotein cholesterol and elevates serum high-density lipoprotein cholesterol. ALA in flaxseed oil does not have antioxidant activity except it suppresses oxygen radical production by white blood cells. In cardiovascular system, flaxseeds and flaxseed oil have variable effects on inflammatory mediators/markers (interleukin, IL-1β, IL-2, IL-4, IL-6, IL-10, tumor necrosis factor-α (TNF-α), interferon-γ, C-reactive protein, and serum amyloid protein). Although doses of ALA less than 14 g/d do not affect inflammatory mediators/markers, 14 g/d or greater reduce inflammatory mediators/markers. ALA in flaxseed oil decreases soluble vascular cell adhesion molecule-1 but has no effect on soluble intracellular adhesion molecule-1, soluble E-selectin, and monocyte colony-stimulating factor. ALA in flaxseeds has a very small hypotensive effect, but it does not lower blood pressure. However, secoisolariciresinol diglucoside (SDG), a component of flaxseed oil, is a very potent hypotensive agent. Flaxseed oil also decreases platelet aggregation and increases platelet activating inhibitor-1 and bleeding time. A meta-analysis of observational studies indicates that increased consumption of ALA may reduce coronary heart disease mortality by 21 % (Brouwer et al. 2004). In the Lyon Diet Heart Study, a randomized controlled trial in coronary patients, consumption of a Mediterranean-type diet that included an additional daily intake of roughly 1 g of ALA significantly reduces the risk of cardiac death and nonfatal myocardial infarction by more than 60 % (Lorgeril et al. 1994). This study, however, was not specifically designed to assess the effect of ALA supplementation, and many dietary factors were included, which differed between the experimental and control group. Collective evidence suggests that ALA status has been inversely associated with cardiovascular disease events, although data are less consistent than for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The biologic mechanisms of ALA action may include platelet function, inflammation, endothelial cell function, arterial compliance, and arrhythmia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abumrad NA, El Maghrabi MR, Amri EZ, Lopez E, Grimaldi PA (1993) Cloning of rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that induced during pre-adipocyte differentiation. J Biol Chem 268:17665–17668

    PubMed  CAS  Google Scholar 

  • Ahmad A, Moriguchi T, Salem N Jr (2002) Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr Neurol 26:210–218

    PubMed  Google Scholar 

  • Aid S, Vancassel S, Linard A, Lavialle M, Guesnet P (2005) Dietary docosahexaenoic acid [22:6(n-3)] as a phospholipid or a triglyceride enhances the potassium chloride-evoked release of acetylcholine in rat hippocampus. J Nutr 135:1008–1013

    PubMed  CAS  Google Scholar 

  • Ander BP, Weber AR, Rampersad PP, Gilchrist JS, Pierce GN, Lukas A (2004) Dietary flaxseed protects against ventricular fibrillation induced by ischemia-reperfusion in normal and hypercholesterolemic Rabbits. J Nutr 134:3250–3256

    PubMed  CAS  Google Scholar 

  • Arita M, Bianchini F, Aliberti J, Sher A, Chiang N, Hong S, Yang R, Petasis NA, Serhan CN (2005) Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 201:713–722

    PubMed  CAS  Google Scholar 

  • Arita M, Oh SF, Chonan T, Hong S, Elangovan S, Sun YP, Uddin J, Petasis NA, Serhan CN (2006) Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J Biol Chem 281:22847–22854

    PubMed  CAS  Google Scholar 

  • Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 178:3912–3917

    PubMed  CAS  Google Scholar 

  • Arterburn LM, Hall EB, Oken H (2006) Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 83:1467S–1476S

    PubMed  CAS  Google Scholar 

  • Astarita G, Jung KM, Berchtold NC, Nguyen VQ, Gillen DL, Head E, Cotman CW, Piomelli D (2010) Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS One 5:e12538

    PubMed  Google Scholar 

  • Balk EM, Horsley TA, Newberry SJ, Lichtenstein AH, Yetley EA, Schachter HM, Moher D, MacLean CH, Lau J (2007) A collaborative effort to apply the evidence-based review process to the field of nutrition: challenges, benefits, and lessons learned. Am J Clin Nutr 85:1448–1456

    PubMed  CAS  Google Scholar 

  • Barden AE, Croft KD, Durand T, Guy A, Mueller MJ, Mori TA (2009) Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men. J Nutr 139:1890–1895

    PubMed  CAS  Google Scholar 

  • Bays HE (2007) Safety considerations with omega-3 fatty acid therapy. Am J Cardiol 99:35C–43C

    PubMed  CAS  Google Scholar 

  • Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50(Suppl):S400–S405

    PubMed  Google Scholar 

  • Bhatty RS (1995) Nutrient composition of whole flaxseed and flaxseed meal. In: Cunnane SC, Thompson LU (eds) Flaxseed in human nutrition. AOCS Press, Champaign, IL, pp 22–42

    Google Scholar 

  • Birch EE, Hoffman DR, Uauy R, Birch DG, Prestidge C (1998) Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr Res 44:201–209

    PubMed  CAS  Google Scholar 

  • Blondeau N, Pétrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184

    PubMed  CAS  Google Scholar 

  • Blondeau N, Nguemeni C, Debruyne DN, Piens M, Wu X, Pan H, Hu X, Gandin C, Lipsky RH, Plumier JC, Marini AM, Heurteaux C (2009) Subchronic alpha-linolenic acid treatment enhances brain plasticity and exerts an antidepressant effect: a versatile potential therapy for stroke. Neuropsychopharmacology 34:2548–2559

    PubMed  CAS  Google Scholar 

  • Bowen RA, Clandinin MT (2005) Maternal dietary 22:6n-3 is more effective than 18:3n-3 in increasing the 22:6n-3 content in phospholipids of glial cells from neonatal rat brain. Br J Nutr 93:601–611

    PubMed  CAS  Google Scholar 

  • Brand A, Crawford MA, Yavin E (2010) Retailoring docosahexaenoic acid-containing phospholipid species during impaired neurogenesis following omega-3 alpha-linolenic acid deprivation. J Neurochem 114:1393–1404

    PubMed  CAS  Google Scholar 

  • Brouwer IA, Katan MB, Zock PL (2004) Dietary alpha-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis. J Nutr 134:919–922

    PubMed  CAS  Google Scholar 

  • Burdge GC, Wootton SA (2002) Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br J Nutr 88:411–420

    PubMed  CAS  Google Scholar 

  • Burdge GC, Jones AE, Wootton SA (2002) Eicosapentaenoic and docosapentaenoic acids are the principal products of a-linolenic acid metabolism in young men. Br J Nutr 88:355–363

    PubMed  CAS  Google Scholar 

  • Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90:979–988

    PubMed  CAS  Google Scholar 

  • Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N Jr, Ashe KH, Frautschy SA, Cole GM (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645

    PubMed  CAS  Google Scholar 

  • Cansev M, Marzloff G, Sakamoto T, Ulus IH, Wurtman RJ (2009) Giving uridine and/or docosahexaenoic acid orally to rat dams during gestation and nursing increases synaptic elements in brains of weanling pups. Dev Neurosci 31:181–192

    PubMed  CAS  Google Scholar 

  • Carey MC, Hernell O (1992) Digestion and absorption of fat. Semin Gastrointest Dis 3:189–208

    Google Scholar 

  • Catalan J, Moriguchi T, Slotnick B, Murthy M, Greiner RS, Salem N Jr (2002) Cognitive deficits in docosahexaenoic aciddeficient rats. Behav Neurosci 116:1022–1031

    PubMed  CAS  Google Scholar 

  • Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, Wang M, Liu Y, Guo ZQ (2005) Th1/Th2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol 25:246–253

    PubMed  CAS  Google Scholar 

  • Cupp D, Kampf JA, Kleinfield AM (2004) Linolenic acid transport in hamster intestinal cells is carrier-mediated. Biochemistry 43:4473–4481

    PubMed  CAS  Google Scholar 

  • Dangi B, Obeng M, Nauroth JM, Chung G, Bailey-Hall E, Hallenbeck T, Arterburn LM (2010) Metabolism and biological production of resolvins derived from docosapentaenoic acid (DPAn-6). Biochem Pharmacol 79:251–260

    PubMed  CAS  Google Scholar 

  • de Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, Guidollet J, Touboul P, Delaye J (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459

    PubMed  Google Scholar 

  • De Stéfani E, Deneo-Pellegrini H, Boffetta P, Ronco A, Mendilaharsu M (2000) Alpha-linolenic acid and risk of prostate cancer: a case-control study in Uruguay. Cancer Epidemiol Biomarkers Prev 9:335–338

    PubMed  Google Scholar 

  • de Urquiza AM, Liu S, Sjoberg M, Zetterstrom RH, Griffiths W, Sjovall J, Perlmann T (2000) Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144

    PubMed  Google Scholar 

  • Delion S, Chalon S, Guillotaeu D, Besnard J-C, Durand G (1996) alpha-Linolenic acid deficiency alters age-related changes of dopaminergic and serotonergic neurotransmission in the rat frontal cortex. J Neurochem 66:1582–1591

    PubMed  CAS  Google Scholar 

  • Eckert GP, Franke C, Nöldner M, Rau O, Wurglics M, Schubert-Zsilavecz M, Müller WE (2010) Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol Res 61:234–241

    PubMed  CAS  Google Scholar 

  • Farooqui AA (2009) Beneficial effects of fish oil on human brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2010) Neurochemical Aspects of Neurological Disorders. Springer, New York

    Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA (2003) Plasmalogens, docosahexaenoic acid and neurological disorders. Adv Exp Med Biol 544:335–354

    PubMed  CAS  Google Scholar 

  • Fratiglioni L, Qiu C (2009) Prevention of common neurodegenerative disorders in the elderly. Exp Gerontol 44:46–50

    PubMed  Google Scholar 

  • Gao L, Wang J, Sekhar KR, Yin H, Yared NF, Schneider SN, Sasi S, Dalton TP, Anderson ME, Chan JY, Morrow JD, Freeman ML (2007) Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem 282:2529–2537

    PubMed  CAS  Google Scholar 

  • Gawrisch K, Eldho NV, Holte LL (2003) The structure of DHA in phospholipid membranes. Lipids 38:445–452

    PubMed  CAS  Google Scholar 

  • Gerster H (1998) Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int J Nutr Res 68:159–173

    CAS  Google Scholar 

  • Goré J, Hoinard C (1993) Linolenic acid transport in hamster intestinal cells is carrier-mediated. J Nutr 123:66–73

    PubMed  Google Scholar 

  • Green P, Glozman S, Kamensky B, Yavin E (1999) Developmental changes in rat brain membrane lipids and fatty acids – preferential accumulation of docosahexaenoic acid. J Lipid Res 40:960–966

    PubMed  CAS  Google Scholar 

  • Guizy M, David M, Arias C, Zhang L, Cofan M, Ruiz-Gutierrez V, Ros E, Lillo MP, Martens JR, Valenzuela C (2008) Modulation of the atrial specific Kv1.5 channel by the n_3 polyunsaturated fatty acid, alpha-linolenic acid. J Mol Cell Cardiol 44:323–335

    PubMed  CAS  Google Scholar 

  • Gutermuth J, Bewersdorff M, Traidl-Hoffman C, Ring J, Mueller MJ, Behrendt H (2007) Immunomodulatory effects of aqueous birch pollen extracts and phytoprostanes on primary immune responses in vivo. J Allergy Clin Immunol 120:293–299

    PubMed  CAS  Google Scholar 

  • Hamilton JA, Brunaldi K (2007) A model for fatty acid transport into the brain. J Mol Neurosci 33:12–17

    PubMed  CAS  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    PubMed  CAS  Google Scholar 

  • He C, Qu X, Cui L, Wang J, Kang JX (2009) Improved spatial learning performance of fat-1 mice is associated with enhanced neurogenesis and neuritogenesis by docosahexaenoic acid. Proc Natl Acad Sci USA 106:11370–11375

    PubMed  CAS  Google Scholar 

  • Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695

    PubMed  CAS  Google Scholar 

  • Hibbeln JR (1998) Fish consumption and major depression. Lancet 351:1213

    PubMed  CAS  Google Scholar 

  • Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    PubMed  CAS  Google Scholar 

  • Horrocks LA, Farooqui AA (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70:361–372

    PubMed  CAS  Google Scholar 

  • Igarashi M, DeMar JC Jr, Ma K, Chang L, Bell JM, Rapoport SI (2007) Upregulated liver conversion of alpha-linolenic acid to docosahexaenoic acid in rats on a 15 week n-3 PUFA-deficient diet. J Lipid Res 48:152–164

    PubMed  CAS  Google Scholar 

  • Innis SM (1991) Essential fatty acids in growth and development. Prog Lipid Res 30:39–103

    PubMed  CAS  Google Scholar 

  • Jenkins DJ, Kendall CW, Vidgen E, Agarwal S, Rao AV, Rosenberg RS, Diamandis EP, Novokmet R, Mehling CC, Perera T, Griffin LC, Cunnane SC (1999) Health aspects of partially defatted flaxseed, including effects on serum lipids, oxidative measures, and ex vivo androgen and progestin activity: a controlled crossover trial. Am J Clin Nutr 69:395–402

    PubMed  CAS  Google Scholar 

  • Karg K, Dirsch V, Vollmar AM, Crackowski JL, Laporte F, Mueller MJ (2007) Biologically active oxidized lipids (phytoprostanes) in the plant diet and parental lipid nutrition. Free Radic Res 41:25–37

    PubMed  CAS  Google Scholar 

  • Kempermann G, Neumann H (2003) Neuroscience. Microglia: the enemy within? Science 302:1689–1690

    PubMed  CAS  Google Scholar 

  • Kim HY, Akbar M, Lau A, Edsall L (2000) Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem 275:35215–35223

    PubMed  CAS  Google Scholar 

  • Kim M, Nam JH, Oh DH, Park Y (2010) Erythrocyte α-linolenic acid is associated with the risk for mild dementia in Korean elderly. Nutr Res 30:756–761

    PubMed  CAS  Google Scholar 

  • King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT (2006) Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci 26:4672–4680

    PubMed  CAS  Google Scholar 

  • Knapp HR (1997) Dietary fatty acids in human thrombosis and hemostasis. Am J Clin Nutr 65(5 Suppl):1687S–1698S

    PubMed  CAS  Google Scholar 

  • Kodas E, Vancassel S, Lejeune B, Guilloteau D, Chalon S (2002) Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: critical role of developmental stage. J Lipid Res 43:1209–1219

    PubMed  CAS  Google Scholar 

  • Kuperstein F, Yakubov E, Dinerman P, Gil S, Eylam R, Salem N Jr, Yavin E (2005) Overexpression of dopamine receptor genes and their products in the postnatal rat brain following maternal n-3 fatty acid dietary deficiency. J Neurochem 95:1550–1562

    PubMed  CAS  Google Scholar 

  • Kuperstein F, Eilam R, Yavin E (2008) Alterations in dopaminergic key regulatory proteins following perinatal n-3 fatty acid dietary deficiency. J Neurochem 106:662–671

    PubMed  CAS  Google Scholar 

  • Kurvinen JP, Kuksis A, Sinclair AJ, Abedin L, Kallio H (2000) The effect of low alpha-linolenic acid diet on glycerophospholipid molecular species in guinea pig brain. Lipids 35:1001–1009

    PubMed  CAS  Google Scholar 

  • Lafourcade M, Larrieu T, Mato S, Duffaud A, Sepers M, Matias I, De Smedt-Peyrusse V, Labrousse VF, Bretillon L, Matute C, Rodríguez-Puertas R, Layé S, Manzoni OJ (2011) Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 14:345–350

    PubMed  CAS  Google Scholar 

  • Lemaire V, Koehl M, Le Moal M, Abrous DN (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc Natl Acad Sci USA 97:11032–11037

    PubMed  CAS  Google Scholar 

  • Li Z, Kaplan ML, Hatchey DL (2000) Hepatic microsomal and peroxisomal docosahexaenoate biosynthesis during piglet development. Lipids 35:1325–1333

    PubMed  CAS  Google Scholar 

  • Lim GP, Calon F, Morihara T (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25:3032–3040

    PubMed  CAS  Google Scholar 

  • Lorgeril M, Renaud S, Mamelle N, Salen P, Martin JL, Monjaud I, Guidollet J, Touboul P, Delaye J (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343:1454–1459

    PubMed  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    PubMed  CAS  Google Scholar 

  • Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    PubMed  CAS  Google Scholar 

  • Marcheselli VL, Mukherjee PK, Arita M, Hong S, Antony R, Sheets K, Winkler JW, Petasis NA, Serhan CN, Bazan NG (2010) Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. Prostaglandins Leukot Essent Fatty Acids 82:27–34

    PubMed  CAS  Google Scholar 

  • Mariani V, Gilles S, Jakob T, Thiel M, Mueller MJ, Ring J, Behrendt H, Traidl-Hoffmann C (2007) Immunomodulatory mediators from pollen enhance the migratory capacity of dendritic cells and license them for Th2 attraction. J Immunol 178:7623–7631

    PubMed  CAS  Google Scholar 

  • Matsumura K (2007) Effects of eicosapentaenoic acid on visceral fat and heart rate variability: assessment by power spectral analysis. J Cardiol 50:243–251

    PubMed  Google Scholar 

  • McLennan PL, Dallimore JA (1995) Dietary canola oil modifies myocardial fatty acids and inhibits cardiac arrhythmias in rats. J Nutr 125:1003–1009

    PubMed  CAS  Google Scholar 

  • Michael-Titus AT (2007) Omega-3 fatty acids and neurological injury. Prostaglandins Leukot Essent Fatty Acids 77:295–300

    PubMed  CAS  Google Scholar 

  • Morgane PJ, Austin-Lafrance R, Bronzino J, Tonkiss J, Diaz-Cintra S, Cintra L, Kemper T, Galler JR (1993) Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 17:91–128

    PubMed  CAS  Google Scholar 

  • Mori TA, Beilin LJ (2004) Omega-3 fatty acids and inflammation. Curr Atheroscler Rep 6:461–467

    PubMed  Google Scholar 

  • Moriguchi T, Greiner RS, Salem N Jr (2000) Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem 75:2563–2573

    PubMed  CAS  Google Scholar 

  • Nestel PJ, Pomeroy SE, Sasahara T, Yamashita T, Liang YL, Dart AM, Jennings GL, Abbey M, Cameron JD (1997) Arterial compliance in obese subjects is improved with dietary plant n-3 fatty acid from flaxseed oil despite increased LDL oxidizability. Arterioscler Thromb Vasc Biol 1997(17):1163–1170

    Google Scholar 

  • Neuringer M (2000) Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications. Am J Clin Nutr 71:256S–267S

    PubMed  CAS  Google Scholar 

  • Nguemeni C, Delplanque B, Rovère C, Simon-Rousseau N, Gandin C, Agnani G, Nahon JL, Heurteaux C, Blondeau N (2010) Dietary supplementation of alpha-linolenic acid in an enriched rapeseed oil diet protects from stroke. Pharmacol Res 61:226–233

    PubMed  CAS  Google Scholar 

  • Pang D, lman-Farinelli MA, Wong T, Barnes R, Kingham KM (1998) Replacement of linoleic acid with alpha-linolenic acid does not alter blood lipids in normolipidaemic men. Br J Nutr 80:163–167

    PubMed  CAS  Google Scholar 

  • Peet M (2003) Eicosapentaenoic acid in the treatment of schizophrenia and depression: rationale and preliminary double-blind clinical trial results. Prostaglandins Leukot Essent Fatty Acids 69:477–485

    PubMed  CAS  Google Scholar 

  • Peet M, Strokes C (2005) Omega-3 fatty acids in the treatment of psychiatric disorders. Drug 65:1051–1059

    CAS  Google Scholar 

  • Peet M, Murphy B, Shay J, Horrobin D (1998) Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol Psychiatry 43:315–319

    PubMed  CAS  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    PubMed  CAS  Google Scholar 

  • Portolesi R, Powell BC, Gibson RA (2007) Competition between 24:5n-3 and ALA for Delta 6 desaturase may limit the accumulation of DHA in HepG2 cell membranes. J Lipid Res 48:1592–1598

    PubMed  CAS  Google Scholar 

  • Poumes-Ballihaut C, Langelier B, Houlier F, Alessandri JM, Durand G, Latge C (2001) Comparative bioavailability of dietary alpha-linolenic and docosahexaenoic acids in the growing rat. Lipids 36:793–800

    PubMed  CAS  Google Scholar 

  • Racagni G, Popoli M (2008) Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 10:385–400

    PubMed  Google Scholar 

  • Radominska-Pandya A, Chen G (2002) Photoaffinity labeling of human retinoid X receptor beta (RXRbeta) with 9-cis-retinoic acid: identification of phytanic acid, docosahexaenoic acid, and lithocholic acid as ligands for RXRbeta. Biochemistry 41:4883–4890

    PubMed  CAS  Google Scholar 

  • Rajamoorthi K, Petrache HI, McIntosh TJ, Brown MF (2005) Packing and viscoelasticity of polyunsaturated omega-3 and omega-6 lipid bilayers as seen by [2]H NMR and X-ray diffraction. J Am Chem Soc 127:1576–1588

    PubMed  CAS  Google Scholar 

  • Rallidis LS, Paschos G, Liakos GK, Velissaridou AH, Anastasiadis G, Zampelas A (2003) Dietary alpha-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis 167:237–242

    PubMed  CAS  Google Scholar 

  • Rosenberger TA, Oki J, Purdon AD, Rapoport SI, Murphy EJ (2002) Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. J Lipid Res 43:59–68

    PubMed  CAS  Google Scholar 

  • Salem N Jr, Litman B, Kim HY, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959

    PubMed  CAS  Google Scholar 

  • Serhan CN, Chiang N (2008) Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus. Br J Pharmacol 153(Suppl 1):S200–S215

    PubMed  CAS  Google Scholar 

  • Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    PubMed  CAS  Google Scholar 

  • Simopoulos AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood) 233:674–688

    CAS  Google Scholar 

  • Sinclair AJ, Attar-Bashi NM, Li D (2002) What is the role of alpha-linolenic acid for mammals? Lipids 37:1113–1123

    PubMed  CAS  Google Scholar 

  • Song C, Zhaq S (2007) Omega-3 fatty acid eicosapentaenoic acid.A new treatment for psychiatric and neurodegenerative diseases: a review of clinical investigations. Expert Opin Investig Drugs 16:1627–1638

    PubMed  CAS  Google Scholar 

  • Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    PubMed  CAS  Google Scholar 

  • Stremmel W (1988) Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 8(2):2001–2010

    Google Scholar 

  • Su HM, Bernardo L, Mirmiran M, Ma XH, Corso TN, Nathanielsz PW, Brenna JT (1999a) Bioequivalence of dietary alpha-linolenic and docosahexaenoic acids as sources of docosahexaenoate accretion in brain and associated organs of neonatal baboons. Pediatr Res 45:87–93

    PubMed  CAS  Google Scholar 

  • Su HM, Bernardo L, Mirmiran M, Ma XH, Nathanielsz PW, Brenna JT (1999b) Dietary 18:3n-3 and 22:6n-3 as sources of 22:6n-3 accretion in neonatal baboon brain and associated organs. Lipids 34(Suppl):S347–S350

    PubMed  CAS  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–353

    PubMed  CAS  Google Scholar 

  • Talahalli RR, Vallikannan B, Sambaiah K, Lokesh BR (2010) Lower efficacy in the utilization of dietary ALA as compared to preformed EPA  +  DHA on long chain n-3 PUFA levels in rats. Lipids 45:799–808

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    PubMed  CAS  Google Scholar 

  • Thies F, Miles EA, Nebe-von-Caron G, Powell JR, Hurst TL, Newsholme EA, Calder PC (2001) Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 36:1183–1193

    PubMed  CAS  Google Scholar 

  • Urano S, Sato Y, Otonari T et al (1998) Aging and oxidative stress in neurodegeneration. Biofactors 7:103–112

    PubMed  CAS  Google Scholar 

  • Utsunomiya A, Owada Y, Yoshimoto T, Kondo H (1997) Localization of mRNA for fatty acid transport protein in developing and mature brain of rats. Brain Res Mol Brain Res 46:217–222

    PubMed  CAS  Google Scholar 

  • Venna VR, Deplanque D, Allet C, Belarbi K, Hamdane M, Bordet R (2009) PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology 34:199–211

    PubMed  CAS  Google Scholar 

  • Williams CM, Burdge G (2006) Long-chain n-3 PUFA: plant v. marine sources. Proc Nutr Soc 65:42–50

    PubMed  CAS  Google Scholar 

  • Zhang DD (2006) Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev 38:769–789

    PubMed  CAS  Google Scholar 

  • Zimmer L, Delion-Vancassel S, Durand G, Guilloteau D, Bodard S, Besnard JC, Chalon S (2000) Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J Lipid Res 41:32–40

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Beneficial Effects of Flaxseed Oil (n-3 Fatty Acids) on Neurological Disorders. In: Phytochemicals, Signal Transduction, and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3804-5_3

Download citation

Publish with us

Policies and ethics