Skip to main content

Beneficial Effects of Extra Virgin Olive Oil (n-9 Fatty Acids) on Neurological Disorders

  • Chapter
  • First Online:
Phytochemicals, Signal Transduction, and Neurological Disorders
  • 947 Accesses

Abstract

Olive oil is used by humans for food since prehistoric times. Olive oil not only contains oleic acid (18:1n-9), but also small amounts of other fatty acids, such as palmitic, palmitoleic, stearic, linoleic, and α-linolenic acids and squalene (Fig. 2.1). In addition to fatty acids, olive oil also contains phenolic compounds. Oleic acid, a monounsaturated nonessential fatty acid, belongs to n-9 family of fatty acids. It is found in animals and plants and represents a large proportion of human dietary intake with low uptake by liver and brain. Beef and poultry contain 30–45 % oleic acid, while oils such as palm, peanut, soybean, grape seed oil, and sunflower contain 25–49 % oleic acid (Waterman and Lockwood 2007). Other sources of oleic acid include avocado fruit (50 %), Macadamia nuts (45 %), apricot seeds (35 %), almonds (33 %), and olive oil (55–80 %). Among various cooking oils, olive oil is unique because it has high oleic acid content. In contrast, majority of other cooking oils (palm, peanut, soybean, and sunflower) are composed primarily of n-6 polyunsaturated fatty acids. The presence of one double bond makes oleic acid not only less susceptible to oxidation, but also contributes to the high stability and long shelf life of olive oil (Owen et al. 2000a, b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón de la Lastra C, Barranco MD, Motilva V, Herrerías JM (2001) Mediterranean diet and health: biological importance of olive oil. Curr Pharm Des 7:933–950

    PubMed  Google Scholar 

  • Alemany R, Navarro MA, Vögler O, Perona JS, Osada J, Ruiz-Gutiérrez V (2010) Olive oils modulate fatty acid content and signaling protein expression in apolipoprotein E knockout mice brain. Lipids 45:53–61

    PubMed  CAS  Google Scholar 

  • Amtul Z, Westaway D, Cechetto DF, Rozmahel RF (2010) Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer’s disease. Brain Pathol 21:321–329

    PubMed  Google Scholar 

  • Andersson DA, Gentry C, Moss S, Bevan S (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494

    PubMed  CAS  Google Scholar 

  • Baker PR, Lin Y, Schopfer FJ, Woodcock SR, Groeger AL, Batthyany C, Sweeney S, Long MH, Iles KE, Baker LM, Branchaud BP, Chen YE, Freeman BA (2005) Fatty acid transduction of nitric oxide signaling: multiple nitrated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. J Biol Chem 280:42464–42475

    PubMed  CAS  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    PubMed  CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 24:1269–1282

    Google Scholar 

  • Beauchamp GK, Keast RS, Morel D, Lin J, Pika J, Han O, Lee CH, Smith AB, Breslin PA (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46

    PubMed  CAS  Google Scholar 

  • Bendini A, Cerretani L, Carras-Pancorbo A, Gomez-Caravaca AM, Segura-Carretero A, Fernandez-Gitierrez A, Lercker G (2007) Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 12:1679–1719

    PubMed  CAS  Google Scholar 

  • Bogani P, Galli C, Villa M, Visioli F (2007) Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 190:181–186

    PubMed  CAS  Google Scholar 

  • Brunelleschi S, Bardelli C, Amoruso A, Gunella G, Leri F, Romani A, Malorni W, Franconi F (2007) Minor polar compounds extra-virgin olive oil extract (MPC-OOE) inhibits NF-kappa B translocation in human monocyte/macrophages. Pharmacol Res 56:542–549

    PubMed  CAS  Google Scholar 

  • Bu Y, Rho S, Kim J, Kim MY, Lee DH, Kim SY, Choi H, Kim H (2007) Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neurosci Lett 414:218–221

    PubMed  CAS  Google Scholar 

  • Carluccio MA, Massaro M, Scoditti E, De Caterina R (2007) Vasculoprotective potential of olive oil components. Mol Nutr Food Res 51:1225–1234

    PubMed  CAS  Google Scholar 

  • Carver JD, Benford VJ, Han B, Cantor AB (2001) The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res Bull 56:79–85

    PubMed  CAS  Google Scholar 

  • Cho K-H, Hong J-H, Lee K-T (2010) Monoacylglycerol (MAG)-Oleic Acid has stronger antioxidant, anti-atherosclerotic, and protein glycation inhibitory activities than MAG-palmitic acid. J Med Food 13:99–107

    PubMed  CAS  Google Scholar 

  • Coles B, Bloodsworth A, Clark SR, Lewis MJ, Cross AR, Freeman BA, O’Donnell VB (2002) Nitrolinoleate inhibits superoxide generation, degranulation, and integrin expression by human neutrophils: novel antiinflammatory properties of nitric oxide-derived reactive species in vascular cells. Circ Res 91:375–381

    PubMed  CAS  Google Scholar 

  • Cornwell DG, Ma J (2008) Nutritional benefit of olive oil: the biological effects of hydroxytyrosol and its arylating quinone adducts. J Agric Food Chem 56:8774–8786

    PubMed  CAS  Google Scholar 

  • Correa JA, López-Villodres JA, Asensi R, Espartero JL, Rodríguez-Gutiérez G, De La Cruz JP (2009) Virgin olive oil polyphenol hydroxytyrosol acetate inhibits in vitro platelet aggregation in human whole blood: comparison with hydroxytyrosol and acetylsalicylic acid. Br J Nutr 101:1157–1164

    PubMed  CAS  Google Scholar 

  • Covas MI, Fitó M, Lamuela-Raventós RM, Sebastiá N, de la Torre MC, Marrugat J (2000) Virgin olive oil phenolic compounds: binding to human LDL and effect on LDL oxidation. Int J Clin Pharmacol Res 20:49–54

    PubMed  CAS  Google Scholar 

  • Covas MI, de la Torre K, Farre-Albaladejo M, Kaikkonen J, Fito M, Lopez-Sabater C, Pujadas-Bastardes MA, de la Torre R (2006) Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radic Biol Med 40:608–816

    PubMed  CAS  Google Scholar 

  • Cui T, Schopfer FJ, Zhang J, Chen K, Ichikawa T, Baker PR, Batthyany C, Chacko BK, Feng X, Patel RP, Agarwal A, Freeman BA, Chen YE (2006) Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J Biol Chem 281:35686–35698

    PubMed  CAS  Google Scholar 

  • De Petrocellis L, Vellani V, Schiano-Moriello A, Marini P, Magherini PC, Orlando P, Di Marzo V (2008) Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. J Pharmacol Exp Ther 325:1007–1015

    PubMed  Google Scholar 

  • De Vries MG, Arseneau LM, Lawson ME, Beverly JL (2003) Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes 52:2767–2773

    PubMed  Google Scholar 

  • Edgecombe S, Stretch GL, Hayball PJ (2000) Oleuropein, an antioxidant polyphenol from olive oil, is poorly absorbed from isolated perfused rat intestine. J Nutr 130:2996–3002

    PubMed  CAS  Google Scholar 

  • El-Yassimi A, Hichami A, Besnard P, Khan NA (2008) Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem 283:12949–12959

    PubMed  CAS  Google Scholar 

  • Escribá PV, Ozaita A, Ribas C, Miralles A, Fodor E, Farkas T, García-Sevilla JA (1997) Role of lipid polymorphism in G protein-membrane interactions: nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proc Natl Acad Sci USA 94:11375–11380

    PubMed  Google Scholar 

  • Escribá PV, Sánchez-Dominguez JM, Alemany R, Perona JS, Ruiz-Gutiérrez V (2003) Alteration of lipids, G proteins, and PKC in cell membranes of elderly hypertensives. Hypertension 41:176–182

    PubMed  Google Scholar 

  • Escudero A, Montilla JC, García JM, Sánchez-Quevedo MC, Periago JL, Hortelano P, Suárez MD (1998) Effect of dietary (n-9), (n-6) and (n-3) fatty acids on membrane lipid composition and morphology of rat erythrocytes. Biochim Biophys Acta 1394:65–73

    PubMed  CAS  Google Scholar 

  • Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New York

    Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T (2000) Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14:123–135

    PubMed  CAS  Google Scholar 

  • Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d’Ischia M (2008) Nitro-fatty acid formation and signaling. J Biol Chem 283:15515–15519

    PubMed  CAS  Google Scholar 

  • Fuentez F, Lopez-Miranda J, Perez-Martinez P, Jimenez Y, Marin C, Gomez P, Fernandez JM, Caballero J, Delgado-Lista J, Perez-Jimenez F (2008) Chronic effects of a high-fat diet enriched with virgin olive oil and a low-fat diet enriched with α-linolenic acid on postprandial endothelial function in healthy men. Br J Nutr 14:1–7

    Google Scholar 

  • Funari SS, Barceló F, Escribá PV (2003) Effects of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine membranes. J Lipid Res 44:567–575

    PubMed  CAS  Google Scholar 

  • González-Correa JA, Muñoz-Marín J, Arrebola MM, Guerrero A, Narbona F, López-Villodres JA, De La Cruz JP (2007) Dietary virgin olive oil reduces oxidative stress and cellular damage in rat brain slices subjected to hypoxia-reoxygenation. Lipids 42:921–929

    PubMed  Google Scholar 

  • González-Correa JA, Navas MD, Lopez-Villodres JA, Trujillo M, Espartero JL, De La Cruz JP (2008) Neuroprotective effect of hydroxytyrosol and hydroxytyrosol acetate in rat brain slices subjected to hypoxia-reoxygenation. Neurosci Lett 446:143–146

    PubMed  Google Scholar 

  • Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC (2010) Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 68:191–206

    PubMed  Google Scholar 

  • Hamilton JA, Brunaldi K (2007) A model for fatty acid transport into the brain. J Mol Neurosci 33:12–27

    PubMed  CAS  Google Scholar 

  • Harris CM, Massey V (1997) The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism. J Biol Chem 272:8370–8379

    PubMed  CAS  Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    PubMed  CAS  Google Scholar 

  • Jain K, Siddam A, Marathi A, Roy U, Falck JR, Balazy M (2008) The mechanism of oleic acid nitration by *NO2. Free Radic Biol Med 45:269–283

    PubMed  CAS  Google Scholar 

  • Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116:1111–1162

    PubMed  CAS  Google Scholar 

  • Jo Y-H, Gutierrez R, Chua S Jr (2009) Oleic acid directly regulates POMC neuron excitability in the hypothalamus. J Neurophysiol 101:2305–2316

    PubMed  CAS  Google Scholar 

  • Karantonis HC, Antonopoulou S, Perrea DN, Sokolis DP, Theocharis SE, Kavantzas N, Iliopoulos DG, Demopoulos CA (2006) In vivo antiatherogenic properties of olive oil and its constituent lipid classes in hyperlipidemic rabbits. Nutr Metab Cardiovasc Dis 16:174–185

    PubMed  CAS  Google Scholar 

  • Khan WA, Blobe GC, Hannun YA (1992) Activation of protein kinase C by oleic acid. Determination and analysis of inhibition by detergent micelles and physiologic membranes: requirement for free oleate. J Biol Chem 267:3605–3612

    PubMed  CAS  Google Scholar 

  • Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115:3177–3184

    PubMed  CAS  Google Scholar 

  • Le Foll C, Irani BG, Magnan C, Dunn-Meynell A, Levin BE (2009) Effects of maternal genotype and diet on offspring glucose and fatty acid-sensing ventromedial hypothalamic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 297:R1351–R1357

    PubMed  Google Scholar 

  • Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    PubMed  CAS  Google Scholar 

  • Li Y, Jaiswal AK (1992) Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem 267:15097–15104

    PubMed  CAS  Google Scholar 

  • Li W, Sperry JB, Crowe A, Trojanowski JQ, Smith AB 3rd, Lee VM (2009) Inhibition of tau fibrillization by oleocanthal via reaction with the amino groups of tau. J Neurochem 110:1339–1351

    PubMed  CAS  Google Scholar 

  • Lima ES, Bonini MG, Augusto O, Barbeiro HV, Souza HP, Abdalla DS (2005) Nitrated lipids decompose to nitric oxide and lipid radicals and cause vasorelaxation. Free Radic Biol Med 39:532–539

    PubMed  CAS  Google Scholar 

  • Lopez-Miranda J, Delgado-Lista J, Perez-Martinez P, Jimenez-Gomez Y, Fuentes F, Ruano J, Marin C (2007) Olive oil and the haemostatic system. Mol Nutr Food Res 51:1249–1259

    PubMed  CAS  Google Scholar 

  • Manna C, Galletti P, Maisto G, Cucciolla V, D’Angelo S, Zappia V (2000) Transport mechanism and metabolsi of olive oil hydroxytyrosol in Caco-2 cells. FEBS Lett 470:341–344

    PubMed  CAS  Google Scholar 

  • Martin R, Carvalho-Tavares J, Ibeas E, Hernandez M, Ruiz-Gutierrez V, Nieto ML (2007) Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation. Cancer Res 67:3741–3751

    PubMed  CAS  Google Scholar 

  • Martín R, Ibeas E, Carvalho-Tavares J, Hernández M, Ruiz-Gutierrez V, Nieto ML (2009) Natural triterpenic diols promote apoptosis in astrocytoma cells through ROS-mediated mitochondrial depolarization and JNK activation. PLoS One 4:e5975

    PubMed  Google Scholar 

  • Martín MA, Ramos S, Granado-Serrano AB, Rodríguez-Ramiro I, Trujillo M, Bravo L, Goya L (2010) Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol Nutr Food Res 54:956–966

    PubMed  Google Scholar 

  • Martinez-Dominguez E, De la Puerta R, Ruiz-Gutierrez V (2001) Protective effects upon experimental inflammation models of a polyphenol-supplemented virgin olive oil diet. Inflamm Res 50:102–106

    PubMed  CAS  Google Scholar 

  • Mata P, Varela O, Alonso R, Lahoz C, de Oya M, Badimon L (1997) Monounsaturated and polyunsaturated n-6 fatty acid-enriched diets modify LDL oxidation and decrease human coronary smooth muscle DNA synthesis. Arterioscler Thromb Vasc Biol 17:2088–2095

    PubMed  CAS  Google Scholar 

  • Migrenne S, Cruciani-Guglielmacci C, Kang L, Wang R, Rouch C, Lefevre AL, Ktorza A, Routh VH, Levin BE, Magnan C (2006) Fatty acid signaling in the hypothalamus and the neural control of insulin secretion. Diabetes 55:139–144

    Google Scholar 

  • Mitchell RW, Edmundson CL, Miller DW, Hatch GM (2009) On the mechanism of oleate transport across human brain microvessel endothelial cells. J Neurochem 110:1049–1057

    PubMed  CAS  Google Scholar 

  • Mohagheghi F, Bigdeli MR, Rasoulian B, Zeinanloo AA, Khoshbaten A (2010) Dietary virgin olive oil reduces blood brain barrier permeability, brain edema, and brain injury in rats subjected to ischemia-reperfusion. ScientificWorldJournal 10:1180–1191

    PubMed  CAS  Google Scholar 

  • Moncada S, Bolanos JP (2006) Nitric oxide, cell bioenergetics and neurodegeneration. J Neurochem 97:1676–1689

    PubMed  CAS  Google Scholar 

  • Moreno JJ (2003) Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Rad Biol Med 35:1073–1081

    PubMed  CAS  Google Scholar 

  • Mountjoy KG, Wong J (1997) Obesity, diabetes and functions for proopiomelanocortin-derived peptides. Mol Cell Endocrinol 128:171–177

    PubMed  CAS  Google Scholar 

  • Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260

    PubMed  CAS  Google Scholar 

  • Ntambi JM, Bené H (2001) Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci 16:273–278

    PubMed  CAS  Google Scholar 

  • Ntambi JM, Miyazaki M (2004) Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104

    PubMed  CAS  Google Scholar 

  • Oh YT, Lee JY, Lee J, Kim H, Yoon KS, Choe W, Kang I (2009) Oleic acid reduces lipopolysaccharide-induced expression of iNOS and COX-2 in BV2 murine microglial cells: possible involvement of reactive oxygen species, p38 MAPK, and IKK/NF-kappaB signaling pathways. Neurosci Lett 464:93–97

    PubMed  CAS  Google Scholar 

  • Oh YT, Lee JY, Lee J, Kim H, Kang I (2010) Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells. Neurosci Lett 474:148–153

    PubMed  CAS  Google Scholar 

  • Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H (2000a) Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignans and squalene. Food Chem Toxicol 38:647–659

    PubMed  CAS  Google Scholar 

  • Owen RW, Giacosa A, Hull WE, Haubner R, Würtele G, Spiegelhalder B, Bartsch H (2000b) Oliveoil consumption and health: the possible role of antioxidants. Lancet Oncol 1:107–112

    PubMed  CAS  Google Scholar 

  • Perez-Jemenez F, Lista JD, Perez-Martinez P, Lopez-Segura F, Fuentes F, Cortes B, Lazano A, Lopez-Miranda J (2006) Olive oil and haemostasis: a review on its healthy effects. Public Health Nutr 9:1083–1088

    Google Scholar 

  • Perez-Jimenez F, Alvarez de Cienfuegos G, Badimon L, Barja G, Battino M, Blanco A, Bonanome A, Colomer R, Corella-Piquer D, Covas I, Chamorro-Quiros J, Escrich E, Gaforio JJ, Garcia Luna PP, Hidalgo L, Kafatos A, Kris-Etherton PM, Lairon D, Lamuela-Raventos R, Lopez-Miranda J, Lopez-Segura F, Martinez-Gonzalez MA, Mata P, Mataix J, Ordovas J, Osada J, Pacheco-Reyes R, Perucho M, Pineda-Priego M, Quiles JL, Ramirez-Tortosa MC, Ruiz-Gutierrez V, Sanchez-Rovira P, Solfrizzi V, Soriguer-Escofet F, de la Torre-Fornell R, Trichopoulos A, Villalba-Montoro JM, Villar-Ortiz JR, Visioli F (2005) International conference on the healthy effect of virgin olive oil. Eur J Clin Invest 35:421–424

    PubMed  CAS  Google Scholar 

  • Pérez-Jiménez F, Ruano J, Perez-Martinez P, Lopez-Segura F, Lopez-Miranda J (2007) The influence of olive oil on human health: not a question of fat alone. Mol Nutr Food Res 51:1199–1208

    PubMed  Google Scholar 

  • Perona JS, Cabello-Moruno R, Ruiz-Gutierrez V (2006) The role of virgin olive oil components in the modulation of endothelial function. J Nutr Biochem 17:429–445

    PubMed  CAS  Google Scholar 

  • Pitt J, Roth W, Lacor P, Blankenship M, Velasco P, De Felice F, Breslin PA, Klein WL (2009) Alzheimer’s-associated A-beta oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal. Toxicol Appl Pharmacol 240:189–197

    PubMed  CAS  Google Scholar 

  • Polo-Hernandez E, Decastro F, Garcia-Garcia AG, Tabernero A, Medina JM (2010) Oleic acid synthesized in the periventricular zone promotes axonogenesis in the striatum during brain development. J Neurochem 114:1756–1766

    PubMed  CAS  Google Scholar 

  • Prades J, Funari SS, Escribá PV, Barceló F (2003) Effects of unsaturated fatty acids and triacylglycerols on phosphatidylethanolamine membrane structure. J Lipid Res 44(9):1720–1727

    PubMed  CAS  Google Scholar 

  • Prestera T, Talalay P (1995) Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 92:8965–8969

    PubMed  CAS  Google Scholar 

  • Prestera T, Talalay P, Alam J, Ahn YI, Lee PJ, Choi AM (1995) Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med 1:827–837

    PubMed  CAS  Google Scholar 

  • Reaven P, Parthasarathy S, Grasse BJ, Miller E, Almazan F, Mattson FH, Khoo JC, Steinberg D, Witztum JL (1991) Feasibility of using an oleate-rich diet to reduce the susceptibility of lowdensity lipoprotein to oxidative modification in humans. Am J Clin Nutr 54:701–706

    PubMed  CAS  Google Scholar 

  • Rodríguez-Rodríguez RA, Tabernero A, Velasco A, Lavado EM, Medina JM (2004) The neurotrophic effect of oleic acid includes dendritic differentiation and the expression of the neuronal basic helix-loop-helix transcription factor NeuroD2. J Neurochem 88:1041–1051

    PubMed  Google Scholar 

  • Ruano J, Lopez-Maranda J, Fuentes F, Moreno JA, Bellido C, Perez-Martinez P, Lazano A, Gomez P, Jimenez Y, Perez-Jimenez F (2005) Phenolic content of virgin olive oil improves ischemic reactive hyperemia in hypercholesterolemic patients. J Am Coll Cardiol 46:1864–1868

    PubMed  CAS  Google Scholar 

  • Ruano J, Lopez-Miranda J, Delgado-Lista J, Fernandez J, Caballero J, Covas MI, Jimenez Y, Perez-Martinez P, Marin C, Fuentes F, Perez-Jemenez F (2007) Intake of phenol-rich virgin olive oil improves the postprandial prothrombotic profile in hypercholesterolemic patients. Am J Clin Nutr 86:341–346

    PubMed  CAS  Google Scholar 

  • Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, Barnes S, Kirk M, Freeman BA (1994) Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation: formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 269:26066–26075

    PubMed  CAS  Google Scholar 

  • Schaffer S, Podstawa M, Visioli F, Bogani P, Müller WE, Eckert GP (2007) Hydroxytyrosol-rich olive mill wastewater extract protects brain cells in vitro and ex vivo. J Agric Food Chem 55:5043–5049

    PubMed  CAS  Google Scholar 

  • Schaffer S, Müller WE, Eckert GP (2010) Cytoprotective effects of olive mill wastewater extract and its main constituent hydroxytyrosol in PC12 cells. Pharmacol Res 62:322–327

    PubMed  CAS  Google Scholar 

  • Schopfer FJ, Baker PR, Giles G, Chumley P, Batthyany C, Crawford J, Patel RP, Hogg N, Branchaud BP, Lancaster JR Jr, Freeman BA (2005a) Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J Biol Chem 280:19289–19297

    PubMed  CAS  Google Scholar 

  • Schopfer FJ, Lin Y, Baker PR, Cui T, Garcia-Barrio M, Zhang J, Chen K, Chen YE, Freeman BA (2005b) Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci USA 102:2340–2345

    PubMed  CAS  Google Scholar 

  • Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  • Silver IA, Erecinska M (1994) Extracellular glucose concentrations in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J Neurosci 14:5068–5076

    PubMed  CAS  Google Scholar 

  • Smith AB 3rd, Sperry JB, Han O (2007) Syntheses of (-)-oleocanthal, a natural NSAID found in extra virgin olive oil, the (-)-deacetoxy-oleuropein aglycone, and related analogues. J Org Chem 72:6891–6900

    PubMed  CAS  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew O, Sakaruda O, Shinohara M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 23:897–916

    Google Scholar 

  • Sola R, La Ville AE, Richard JL, Motta C, Bargallo MT, Girona J, Masana L, Jacotot B (1997) Oleic acid rich diet protects against the oxidative modification of high density lipoprotein. Free Radic Biol Med 22:1037–1045

    PubMed  CAS  Google Scholar 

  • Soria-Gómez E, Guzmán K, Pech-Rueda O, Montes-Rodríguez CJ, Cisneros M, Prospéro-García O (2010) Oleoylethanolamide affects food intake and sleep-waking cycle through a hypothalamic modulation. Pharmacol Res 61:379–384

    PubMed  Google Scholar 

  • Tabernero A, Lavado EM, Granda B, Velasco A, Medina JM (2001) Neuronal differentiation is triggered by oleic acid synthesized and released by astrocytes. J Neurochem 79:606–616

    PubMed  CAS  Google Scholar 

  • Tabernero A, Velasco A, Granda B, Lavado EM, Medina JM (2002) Transcytosis of albumin in astrocytes activates the sterol regulatory element-binding protein-1, which promotes the synthesis of the neurotrophic factor oleic acid. J Biol Chem 277:4240–4246

    PubMed  CAS  Google Scholar 

  • Taylor-Clark TE, Ghatta S, Bettner W, Undem BJ (2009) Nitrooleic acid, an endogenous product of nitrative stress, activates nociceptive sensory nerves via the direct activation of TRPA1. Mol Pharmacol 75:820–829

    PubMed  CAS  Google Scholar 

  • Tomas M, Senti M, Elosua R, Vila J, Sala J, Masia R, Marrugat J (2001) Interaction between the Gln-Arg 192 variants of the paraoxonase gene and oleic acid intake as a determinant of high-density lipoprotein cholesterol and paraoxonase activity. Eur J Pharmacol 432:121–128

    PubMed  CAS  Google Scholar 

  • Trostchansky A, Rubbo H (2008) Nitrated fatty acids: mechanisms of formation, chemical characterization, and biological properties. Free Radic Biol Med 44:1887–1896

    PubMed  CAS  Google Scholar 

  • Tsimikas S, Philis-Tsimikas A, Alexopoulos S, Sigari F, Lee C, Reaven PD (1999) LDL isolated from Greek subjects on a typical diet or from American subjects on an oleate-supplemented diet induces less monocyte chemotaxis and adhesion when exposed to oxidative stress. Arterioscler Thromb Vasc Biol 19:122–130

    PubMed  CAS  Google Scholar 

  • Tuck KL, Freeman MP, Hayball PJ, Stretch GL, Stupans I (2001) The in vivo fate of hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and oral dosing of labeled compounds to rats. J Nutr 131:1993–1996

    PubMed  CAS  Google Scholar 

  • Vicario IM, Malkova D, Lund EK, Johnson IT (1998) Olive oil supplementation in healthy adults: effects in cell membrane fatty acid composition and platelet function. Ann Nutr Metab 42:160–169

    PubMed  CAS  Google Scholar 

  • Villacorta L, Zhang J, Garcia-Barrio MT, Chen XL, Freeman BA, Chen YE, Cui T (2007) Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway. Am J Physiol Heart Circ Physiol 293:H770–H776

    PubMed  CAS  Google Scholar 

  • Visioli F, Caruso D, Galli C, Viappiani S, Galli G, Sala A (2000) Olive oils rich in natural catecholic phenols decrease isoprostane excrection in humans. Biochem Biophys Res Commun 278:797–799

    PubMed  CAS  Google Scholar 

  • Visioli F, Caruso D, Plasmati E, Patelli R, Mulinacci N, Romani A, Galli G, Galli C (2001) Hydroxytyrosol, as a component of olive mill waste water, is dose- dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radic Res 34:301–305

    PubMed  CAS  Google Scholar 

  • Visioli F, Poli A, Galli C (2002) Antioxidant and other biological activities of phenols from olives and olive oil. Med Res Rev 22:65–75

    PubMed  CAS  Google Scholar 

  • Visioli F, Galli C, Grande S, Colonnelli K, Patelli C, Galli G, Caruso D (2003) Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. J Nutr 133:2612–2615

    PubMed  CAS  Google Scholar 

  • Vissers MN, Zock PL, Roodenburg AJ, Leenen R, Katan MB (2002) Olive oil phenols are absorbed in humans. J Nutr 2002(132):409–417

    Google Scholar 

  • Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang M-I, Kobayashi A, Yamamoto M, Kensler TW, Talalay P (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101:2040–2045

    PubMed  CAS  Google Scholar 

  • Waterman E, Lockwood B (2007) Active components and clinical applications of olive oil. Altern Med Rev 12:331–342

    PubMed  Google Scholar 

  • Wright MM, Schopfer FJ, Baker PR, Vidyasagar V, Powell P, Chumley P, Iles KE, Freeman BA, Agarwal A (2006) Fatty acid transduction of nitric oxide signaling: nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression. Proc Natl Acad Sci USA 103:4299–4304

    PubMed  CAS  Google Scholar 

  • Wu YT, Lin LC, Tsai TH (2009) Measurement of free hydroxytyrosol in microdialysates from blood and brain of anesthetized rats by liquid chromatography with fluorescence detection. J Chromatogr A 1216:3501–3507

    PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Beneficial Effects of Extra Virgin Olive Oil (n-9 Fatty Acids) on Neurological Disorders. In: Phytochemicals, Signal Transduction, and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3804-5_2

Download citation

Publish with us

Policies and ethics