Skip to main content

Beneficial Effects of Propolis on Neurological Disorders

  • Chapter
  • First Online:
Phytochemicals, Signal Transduction, and Neurological Disorders

Abstract

Propolis (bee glue) is a resinous natural substance gathered by worker honeybees from certain parts (buds and barks) of plants, and thus chemical composition of propolis depends on the phytogeographic characteristics of the collection site. In different habitats, bees choose different plant species as propolis sources and consequently the chemical composition of this bee product is highly variable. In spite of different chemical composition, propolis always demonstrates similar biological activities (Banskota et al. 2001). In temperate zones, propolis originates from the bud exudates of Populus species, and therefore has relatively constant qualitative composition (Greenaway et al. 1990). In tropical regions, there are no poplars, and the bees are known to find other sources of their glue (Park et al. 2002). Honeybees use propolis for the construction and repair of their hive as well as for the defense purposes. It not only contains sticky compounds coming from various plants, but also waxes and other honeybee excretions (Castaldo and Capasso 2002). Humans use propolis as a natural remedy because of its numerous health benefits including antioxidant, anti-inflammatory, vasodilatory, and immunostimulating properties (Fig. 10.1) (Banskota et al. 2001; Kujumgiev et al. 1999; Sforcin 2007; Seidel et al. 2008). In addition, propolis is used as a popular remedy and is sold in the form of capsules, as an extract, as a mouthwash, in throat lozenges, creams, and in powder form for gargling. Propolis is also claimed to be useful in cosmetics and as a constituent of health foods. Oral administration of propolis extract also results in suppression of overall weight gain in mice, the accumulation of visceral adipose tissue weight, and the increase in serum and liver triglycerides that normally result from feeding a high-fat diet to C57BL/6N mice (Koya-Miyata et al. 2009). Real-time PCR studies indicate that the antiobesity effects of propolis extract can be attributed to reduction in the expression of fatty acid synthesis genes in the liver (Koya-Miyata et al. 2009). In addition, propolis extract also inhibits body weight gain, lower blood pressure, and liver triglycerides in obesity induced by a high-fat diet. Since it is well known that accumulation of visceral adipose tissue and hyperlipidemia associated with metabolic syndrome, these studies indicate that propolis extract may prevent and mitigate metabolic syndrome caused by excessive intake of a high-fat diet, and this may involve downregulation of lipid metabolism-related gene expression (Koya-Miyata et al. 2009). Recently, propolis is being widely used in food, beverage, and pharmaceutical industries as a health supplement (Banskota et al. 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasmundstad TA, Morland J, Paulsen RE (1995) Distribution of morphine 6-glucuronide and morphine across the blood-brain barrier in awake, freely moving rats investigated by in vivo microdialysis sampling. J Pharmacol Exp Ther 275:435–441

    PubMed  CAS  Google Scholar 

  • Ahn MR, Kunimasa K, Kumazawa S, Nakayama T, Kaji K, Uto Y, Hori H, Nagasawa H, Ohta T (2009) Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol Nutr Food Res 53:643–651

    Article  PubMed  CAS  Google Scholar 

  • Altuğ ME, Serarslan Y, Bal R, Kontaş T, Ekici F, Melek IM, Aslan H, Duman T (2008) Caffeic acid phenethyl ester protects rabbit brains against permanent focal ischemia by antioxidant action: a biochemical and planimetric study. Brain Res 1201:135–142

    Article  PubMed  Google Scholar 

  • Amić D, Davidovic-Amić D, Baselo D, Rastija V, Lucić B, Trinajstić N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14:827–845

    Article  PubMed  Google Scholar 

  • Ang ES, Pavlos NJ, Chai LY, Qi M, Cheng TS, Steer JH, Joyce DA, Zheng MH, Xu J (2009) Caffeic acid phenethyl ester, an active component of honeybee propolis attenuates osteoclastogenesis and bone resorption via the suppression of RANKLinduced NF-kappaB and NFAT activity. J Cell Physiol 221:642–649

    Article  PubMed  CAS  Google Scholar 

  • Bankova V (2005) Chemical diversity of propolis and the problem of standardization. J Ethnopharmacol 100:114–117

    Article  PubMed  CAS  Google Scholar 

  • Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571

    Article  PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641

    PubMed  CAS  Google Scholar 

  • Bojić M, Debeljak Z, Tomičić M, Medić-Šarić M, Tomić S (2011) Evaluation of antiaggregatory activity of flavonoid aglycone series. Nutr J 10:73

    Article  PubMed  Google Scholar 

  • Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    Article  PubMed  Google Scholar 

  • Bruck W, Stadelmann C (2003) Inflammation and degeneration in multiple sclerosis. Neurol Sci 24(Suppl 5):S265–S267

    Article  PubMed  Google Scholar 

  • Bunge RP, Puckett WR, Becerra JL, Marcillo A, Quencer RM (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59:75–89

    PubMed  CAS  Google Scholar 

  • Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F, Bates TE, Giuffrida Stella AM, Schapira T, Dinkova Kostova AT, Rizzarelli E (2008) Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 33:2444–2471

    Article  PubMed  CAS  Google Scholar 

  • Calabrese V, Cornelius C, Mancuso C, Barone E, Calafato S, Bates T, Rizzarelli E, Kostova AT (2009) Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci 14:376–397

    Article  PubMed  CAS  Google Scholar 

  • Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9:917–924

    Article  PubMed  CAS  Google Scholar 

  • Castaldo S, Capasso F (2002) Propolis, an old remedy used in modern medicine. Fitoterapia 73(Suppl 1):S1–S6

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Long Y, Han M, Wang T, Chen Q, Wang R (2008) Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice. Phamacol Biochem Behav 90:441–446

    Article  CAS  Google Scholar 

  • Chen W, Ostrowski RP, Obenaus A, Zhang JH (2009) Prodeath or prosurvival: two facets of hypoxia inducible factor-1 in perinatal brain injury. Exp Neurol 216:7–15

    Article  PubMed  CAS  Google Scholar 

  • Cortese BM, Phan KL (2005) The role of glutamate in anxiety and related disorders. CNS Spectr 10:820–830

    PubMed  Google Scholar 

  • Dell’Agli M, Maschi O, Galli GV, Fagnani R, Dal CE, Caruso D, Bosisio E (2008) Inhibition of platelet aggregation by olive oil phenols via cAMP-phosphodiesterase. Br J Nutr 99:945–951

    PubMed  Google Scholar 

  • Dick AD, Carter D, Robertson M, Broderick C, Hughes E, Forrester JV, Liversidge J (2003) Control of myeloid activity during retinal inflammation. J Leukoc Biol 74:161–166

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Heijnen CJ, van der Kooij MA, Groenendaal F, van Bel F (2009) The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury. Brain Res Rev 62:99–108

    Article  PubMed  CAS  Google Scholar 

  • Farooqui AA (2009) Hot topics in neural membrane lipidology. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Book  Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Book  Google Scholar 

  • Farooqui T, Farooqui AA (2010) Molecular mechanism underlying the therapeutic activities of propolis: a critical review. Curr Nutr Food Sci 6:186–199

    Article  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Fontanilla CV, Ma Z, Wei X, Klotsche J, Zhao L, Wisniowski P, Dodel RC, Farlow MR, Oertel WH, Du Y (2011) Caffeic acid phenethyl ester prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration. Neuroscience 188:135–141

    Article  PubMed  CAS  Google Scholar 

  • Franzen R, Schoenen J, Leprince P, Joosten E, Moonen G, Martin D (1998) Effects of macrophage transplantation in the injured adult rat spinal cord: a combined immunocytochemical and biochemical study. J Neurosci Res 51:316–327

    Article  PubMed  CAS  Google Scholar 

  • Greenaway W, Scaysbrook T, Whatly FR (1990) The composition and plant origins of propolis: a report of work at Oxford. Bee World 71:107–118

    Google Scholar 

  • Haleagrahara N, Siew CJ, Mitra NK, Kumari M (2011) Neuroprotective effect of bioflavonoid quercetin in 6-hydroxydopamine-induced oxidative stress biomarkers in the rat striatum. Neurosci Lett 500:139–143

    Article  PubMed  CAS  Google Scholar 

  • Hamby ME, Sofroniew MV (2010) Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7:494–506

    Article  PubMed  CAS  Google Scholar 

  • Hattori H, Okuda K, Murase T, Shigetsura Y, Narise K, Semenza GL, Nagasawa H (2011) Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis. Bioorg Med Chem 19:5392–5401

    Article  PubMed  CAS  Google Scholar 

  • Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9:1512–1519

    Article  PubMed  CAS  Google Scholar 

  • Hopkins PA, Sriskandan S (2005) Mammalian Toll-like receptors: to immunity and beyond. Clin Exp Immunol 140:395–407

    Article  PubMed  CAS  Google Scholar 

  • Ilhan A, Akyol O, Gurel A, Armutcu F, Iraz M, Oztas E (2004) Protective effects of caffeic acid phenethyl ester against experimental allergic encephalomyelitis-induced oxidative stress in rats. Free Radic Biol Med 37:386–394

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic SV, Steenken S, Tosic M, Marjanovic B, Simic MG (1994) Flavonoids as antioxidants. J Am Chem Soc 116:4846–4851

    Article  CAS  Google Scholar 

  • Jung BI, Kim MS, Kim HA, Yang J, Her S, Song YS (2010) Caffeic acid phenethyl ester, a component of beehive propolis, is a novel selective estrogen receptor modulator. Phytother Res 24:295–300

    PubMed  CAS  Google Scholar 

  • Kang SS, Lee JY, Choi YK, Kim GS, Han BH (2004) Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells. Bioorg Med Chem Lett 14:2261–2264

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Fukumitsu H, Soumiya H, Furukawa S (2011) Ethanol extract of chinese propolis facilitates functional recovery of locomotor activity after spinal cord injury. Evid Based Complement Alternat Med 2011:749627

    Article  PubMed  Google Scholar 

  • Kawai T, Akira S (2006) TLR signaling. Cell Death Differ 13:816–825

    Article  PubMed  CAS  Google Scholar 

  • Khan M, Elango C, Ansari MA, Singh I, Singh AK (2007) Caffeic acid phenethyl ester reduces neurovascular inflammation and protects rat brain following transient focal cerebral ischemia. J Neurochem 102:365–377

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer disease. J Neurochem 112:1415–1430

    Article  PubMed  CAS  Google Scholar 

  • Klussmann S, Martin-Villalba A (2005) Molecular targets in spinal cord injury. J Mol Med 83:657–671

    Article  PubMed  CAS  Google Scholar 

  • Koya-Miyata S, Arai N, Mizote A, Taniguchi Y, Ushio S, Iwaki K, Fukuda S (2009) Propolis prevents diet-induced hyperlipidemia and mitigates weight gain in diet-induced obesity in mice. Biol Pharm Bull 32:2022–2028

    Article  PubMed  CAS  Google Scholar 

  • Kujumgiev A, Tsvetkova I, Serkedjieva Yu, Bankova V, Christov R, Popov S (1999) Antibacterial, antifungal and antiviral activity of propolis from different geographic origin. J Ethnopharmacol 64:235–240

    Article  PubMed  CAS  Google Scholar 

  • Kumazawa S, Hamasaka T, Nakayama T (2004) Antioxidant activity of propolis of various geographic origins. Food Chem 84:329–339

    Article  CAS  Google Scholar 

  • Kumazawa S, Ahn MR, Fujimoto T, Kato M (2010) Radical-scavenging activity and phenolic constituents of propolis from different regions of Argentina. Nat Prod Res 24:804–812

    Article  PubMed  CAS  Google Scholar 

  • Kurosaki R, Muramatsu Y, Watanabe H, Michimata M, Matsubara M, Imai Y, Traki T (2003) Role of dopamine transporter against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Metab Brain Dis 18:139–146

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Shin D, Kim J-H, Hong S, Choi D, Kim Y-J, Kwak M-K, Jung Y (2010) Caffeic acid phenethyl ester-mediated Nrf2 activation and IκB kinase inhibition are involved in NFκB inhibitory effect: structural analysis for NFκB inhibition. Eur J Pharmacol 643:21–28

    Article  PubMed  CAS  Google Scholar 

  • Leuner K, Hauptmann S, Abdel-Kader R, Scherping I, Keil U, Strosznajder JB, Eckert A, Muller WE (2007) Mitochondrial dysfunction: the first domino in brain aging and Alzheimer disease? Antioxid Redox Signal 9:1659–1675

    Article  PubMed  CAS  Google Scholar 

  • Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S (2001) Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Levites Y, Amit T, Youdim MB, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574–30580

    Article  PubMed  CAS  Google Scholar 

  • Li YJ, Xuan HZ, Shou QY, Zhan ZG, Lu X, Hu FL (2011) Therapeutic effects of propolis essential oil on anxiety of restraint stress mice. Hum Exp Toxicol 31(2):157–165

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Yamazaki M (2003) Role of P-glycoprotein in pharmacokinetics: clinical implications. Clin Pharmacokinet 42:59–98

    Article  PubMed  CAS  Google Scholar 

  • Liu R, Gao M, Yang ZH, Du GH (2008) Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia-reperfusion both in vivo and in vitro. Brain Res 1216:104–115

    Article  PubMed  CAS  Google Scholar 

  • Lofty M (2006) Biological activity of bee propolis in health and diseases. Asian Pac J Cancer Prev 7:22–31

    Google Scholar 

  • Lotito SB, Frei B (2006) Dietary flavonoids attenuate tumor necrosis factor alpha-induced adhesion molecule expression in human aortic endothelial cells. Structure-function relationships and activity after first pass metabolism. J Biol Chem 281:37102–37110

    Article  PubMed  CAS  Google Scholar 

  • Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Modulation of cell survival genes, iron-dependent oxidative stress and PKC signaling pathway. Neurosignals 14:46–60

    Article  PubMed  CAS  Google Scholar 

  • Mannaa F, El Shamy KA, El-Shaikh KA, El-Kassaby M (2011) Efficacy of fish liver oil and propolis as neuroprotective agents in pilocarpine epileptic rats treated with valproate. Pathophysiology 18:287–294

    Article  PubMed  CAS  Google Scholar 

  • Maruta H, Ohta T (2008) Signal therapy: propolis and pepper extracts as cancer therapeutics. In: Watson RR (ed) Complementary and alternative therapies and the aging population. Elsevier, San Diego, pp 523–539

    Google Scholar 

  • Mattson MP, Son TG, Camandola S (2007) Viewpoint: mechanisms of action and therapeutic potential of neurohormetic phytochemicals. Dose Response 5:174–186

    Article  PubMed  CAS  Google Scholar 

  • Mohammadzadeh S, Sharriatpanahi M, Hamedi M, Ahmadkhaniha R, manzadeh Y, Ebrahimi SE, Samadi N, Ostad N (2007) Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem 103:1097–1103

    Article  CAS  Google Scholar 

  • Moreira TF (1986) Chemical composition of propolis: vitamins and amino acids. Rev Bras Farmacogn 1:12–9

    CAS  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer disease pathophysiology. Biochim Biophys Acta 1802:2–10

    Article  PubMed  CAS  Google Scholar 

  • Nangaku M, Kojima I, Tanaka T, Ohse T, Kato H, Fujita T (2006) Novel drugs and the response to hypoxia: HIF stabilizers and prolyl hydroxylase. Recent Pat Cardiovasc Drug Discov 1:129–139

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB (1996) Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci USA 93:9090–9095

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Noelker C, Bacher M, Goeke P, Wei X, Kloekgether T, Du Y, Dodel R (2005) The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity. Neurosci Lett 383:39–43

    Article  PubMed  CAS  Google Scholar 

  • Orsatti CL, Missima F, Pagliarone AC, Bachiega TF, Búfalo MC, Araújo JP Jr, Sforcin JM (2010) Propolis immunomodulatory action in vivo on Toll-like receptors 2 and 4 expression and on pro-inflammatory cytokines production in mice. Phytother Res 24:1141–1146

    PubMed  CAS  Google Scholar 

  • Pagliarone AC, Missima F, Orsatti CL, Bachiega TF, Sforcin JM (2009) Propolis effect on Th1/Th2 cytokines production by acutely stressed mice. J Ethnopharmacol 125:230–233

    Article  PubMed  CAS  Google Scholar 

  • Park YK, Alencar SM, Aguiar CL (2002) Botanical origin and chemical composition of Brazilian propolis. J Agric Food Chem 50:2502–2506

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    Article  PubMed  CAS  Google Scholar 

  • Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814

    Article  PubMed  CAS  Google Scholar 

  • Russo L, Vanella A (2002) Antioxidant activity of propolis: role of caffeic acid phenethylester and galangin. Fitoterapia 73(Suppl 1):S21–S29

    Article  PubMed  CAS  Google Scholar 

  • Salzman C, Miyawaki EK, le Bars P, Kerrihand TN (1993) Neurobiologic basis of anxiety and its treatment. Harv Rev Psychiatry 1:197–206

    Article  PubMed  CAS  Google Scholar 

  • Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61:554–561

    Article  PubMed  CAS  Google Scholar 

  • Seidel V, Peyfoon E, Watson DG, Fearnley J (2008) Comparative study of the antibacterial activity of propolis from different geographical and climatic zone. Phytother Res 22:1256–1263

    Article  PubMed  CAS  Google Scholar 

  • Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 26(24 Suppl):S2–S12

    Article  PubMed  CAS  Google Scholar 

  • Sforcin JM (2007) Propolis and the immune system: a review. J Ethnopharmacol 113:1–14

    Article  PubMed  CAS  Google Scholar 

  • Shimazawa M, Chikamatsu S, Morimoto N, Mishima S, Nagaiand H, Hara H (2005) Neuroprotection by Brazilian green propolis against in vitro and in vivo ischemic neuronal damage. eCAM 2:201–207

    Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 5:400–407

    Article  Google Scholar 

  • Spencer JP (2009) Flavonoids and brain health: multiple effects underpinned by common mechanisms. Genes Nutr 4:243–250

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Abd-el-Mohsen MM, Rice-Evans C (2004) Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch Biochem Biophys 423:148–161

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Vafeiadou K, Williams RT, Vauzour D (2012) Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 33:83–97

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov AI, Mamontova INS (1987) Production and study of a lyophilized phenolic polysaccharide preparation from propolis. Farmatsevtichnii Zhurnal 3:67–68

    Google Scholar 

  • Tong KI, Kobayashi A, Katsuoka F, Yamamoto M (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Tsai SK, Lin MJ, Liao PH, Yang CY, Lin SM, Liu SM, Lin RH, Chih CL, Huang SS (2006) Caffeic acid phenethyl ester ameliorates cerebral infarction in rats subjected to focal cerebral ischemia. Life Sci 78:2758–2762

    Article  PubMed  CAS  Google Scholar 

  • van Acker SA, van Den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJF, Bast A (1996) Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20:331–342

    Article  PubMed  Google Scholar 

  • Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA (2008) Functional properties of honey, propolis, and royal jelly. J Food Sci 73:R117–R124

    Google Scholar 

  • Watanabe Y, Himeda T, Araki T (2005) Mechanisms of MPTP toxicity and their implications for therapy of Parkinson disease. Med Sci Monit 11:RA17–RA23

    Google Scholar 

  • Wei X, Ma Z, Fontanilla CV, Zhao L, Xu ZC, Taggliabraci V, Johnstone BH, Dodel RC, Farlow MR, Du Y (2008) Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity. Neuroscience 155:1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Widenfalk J, Lundströmer K, Jubran M, Brené S, Olson L (2001) Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 21:3457–3475

    PubMed  CAS  Google Scholar 

  • Williams RJ, Spencer JPE, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  PubMed  CAS  Google Scholar 

  • Xu JW, Ikeda K, Kobayakawa A, Ikami T, Kayano Y, Mitani T, Yamori Y (2005) Down-regulation of Rac1 activation by caffeic acid in aortic smooth muscle cells. Life Sci 76:2861–2872

    Article  PubMed  CAS  Google Scholar 

  • Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C (2003) Interaction between flavonoids and the blood-brain barrier: in vitro studies. J Neurochem 85:180–192

    Article  PubMed  CAS  Google Scholar 

  • Youdim KA, Qaiser MZ, Begley DJ, Rice-Evans CA, Abbott NJ (2004) Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic Biol Med 36:1342–1348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farooqui, A.A. (2013). Beneficial Effects of Propolis on Neurological Disorders. In: Phytochemicals, Signal Transduction, and Neurological Disorders. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3804-5_10

Download citation

Publish with us

Policies and ethics