Advertisement

Statics

  • Jan Awrejcewicz
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 28)

Abstract

If the velocity and acceleration of every particle in a material system are equal to zero, such a system is at rest. On the other hand, as we recall, from Newton’s first law it follows that a particle having mass to which no force is applied or the applied forces are balanced is either at rest or in uniform motion along a straight line.

Keywords

Rigid Body Friction Force Force Vector Rolling Resistance Force System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Banach, Mechanics (PWN, Warsaw, 1956), in PolishGoogle Scholar
  2. 2.
    F. Janik, General Mechanics (PWN, Warsaw, 1970), in PolishGoogle Scholar
  3. 3.
    J.L. Synge, B.A. Griffith, Principles of Mechanics (McGraw-Hill, Tokyo, 1970)Google Scholar
  4. 4.
    R. Gutkowski, Analytical Mechanics (PWN, Warsaw, 1971), in PolishGoogle Scholar
  5. 5.
    G.R. Fowles, Analytical Mechanics, 3rd edn. (Holt, Rinehart and Winston, New York, 1977)Google Scholar
  6. 6.
    A.D. Markeev, Theoretical Mechanics (Science, Moscow, 1990), in RussianGoogle Scholar
  7. 7.
    N.V. Butenin, N.A. Fufayev, Introduction to Analytical Mechanics (Nauka, Moscow, 1991), in RussianGoogle Scholar
  8. 8.
    V. Barger, M. Olsson, Classical Mechanics: A Modern Perspective (McGraw-Hill, Tokyo, 1994)Google Scholar
  9. 9.
    Z. Osinski, General Mechanics (PWN, Warsaw, 1994), in PolishGoogle Scholar
  10. 10.
    S.T. Thornton, J.B. Marion, Classical Dynamics of Particles and Systems (Saunders College Publishers, New York, 1995)Google Scholar
  11. 11.
    J. Leyko, General Mechanics (PWN, Warsaw, 1996), in PolishGoogle Scholar
  12. 12.
    A.P. Arya, Introduction to Classical Mechanics 2nd edn. (Prentice Hall, Upper Saddle River, 1998)Google Scholar
  13. 13.
    L.N. Hand, J.D. Finch, Analytical Mechanics (Cambridge University Press, Cambridge, 1998)CrossRefGoogle Scholar
  14. 14.
    B. Skalmierski, Mechanics (BNI, Warsaw, 1998), in PolishGoogle Scholar
  15. 15.
    H. Goldstein, C.P. Poole, J.L. Safko, Classical Mechanics (Addison-Wesley, Reading, 2001)Google Scholar
  16. 16.
    J. Niziol, Methods of Solving Mechanical Tasks (WNT, Warsaw, 2002), in PolishGoogle Scholar
  17. 17.
    J. Awrejcewicz, V.A. Krysko, Yu.V. Chebotyrevskiy, Role of Mathematics and Mechanics in the Development of Civilization (WNT, Warsaw, 2003), in PolishGoogle Scholar
  18. 18.
    T.W. Kibble, F.H. Berkshire, Classical Mechanics, 5th edn. (Imperial College Press, Danvers, 2004)zbMATHGoogle Scholar
  19. 19.
    J. Mrozowski, J. Awrejcewicz, Introduction to Biomechanics (The Lodz Technological University Press, Lodz, 2004), in PolishGoogle Scholar
  20. 20.
    W. Kurnik, Lectures on General Mechanics (The Warsaw Technological University Press, Warsaw, 2005), in PolishGoogle Scholar
  21. 21.
    J.R. Taylor, Classical Mechanics (University Science Books, Colorado, 2005)zbMATHGoogle Scholar
  22. 22.
    F.P. Beer, E.R. Jonston, Vector Mechanics for Engineers: Static and Dynamics, 8th edn. (McGraw-Hill, Singapore, 2007)Google Scholar
  23. 23.
    E.D. Cooper, Mathematical Mechanics: From Particle to Muscle (World Scientific, Singapore, 2010)Google Scholar
  24. 24.
    P.W. Johnson, Classical Mechanics with Applications (World Scientific, Singapore, 2010)zbMATHCrossRefGoogle Scholar
  25. 25.
    R.D. Gregory, Classical Mechanics (Cambridge University Press, Cambridge, 2011)Google Scholar
  26. 26.
    Z. Brzoska, Strength of Materials (PWN, Warsaw, 1983), in PolishGoogle Scholar
  27. 27.
    A.D. Markeev, Theoretical Mechanics (Nauka, Moscow, 1990), in RussianGoogle Scholar
  28. 28.
    E. Wittbrodt, S. Sawiak, General Mechanics – Theory and Examples (Gdansk Technical University Press, Gdansk, 2005), in PolishGoogle Scholar
  29. 29.
    R. Buczkowski, A. Banaszek, General Mechanics Treated in Vector and Tensor Forms (WNT, Warsaw, 2006), in PolishGoogle Scholar
  30. 30.
    J. Awrejcewicz, Bifurcation and Chaos in Coupled Oscillators (World Scientific, Singapore, 1991)zbMATHGoogle Scholar
  31. 31.
    J. Awrejcewicz, Oscillations of Lumped Deterministic Systems (WNT, Warsaw, 1996), in PolishGoogle Scholar
  32. 32.
    J. Awrejcewicz, C.-H. Lamarque, Bifurcation and Chaos in Nonsmooth Mechanical Systems (World Scientific, Singapore, 2003)zbMATHGoogle Scholar
  33. 33.
    R. Andrzejewski, J. Awrejcewicz, Nonlinear Dynamics of a Wheeled Vehicle (Springer, Berlin, 2005)zbMATHGoogle Scholar
  34. 34.
    J. Awrejcewicz, M. Holicke, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods (World Scientific, Singapore, 2007)zbMATHGoogle Scholar
  35. 35.
    J. Awrejcewicz, Yu. Pyryev, Nonsmooth Dynamics of Contacting Thermoelastic Bodies (Springer, Berlin, 2008)Google Scholar
  36. 36.
    J.G. Panovko, Introduction in Theory of Mechanical Vibration (Nauka, Moscow, 1980), in RussianGoogle Scholar
  37. 37.
    A.G. Loytsinskiy, A.L. Lurie, Course in Theoretical Mechanics, vol. I (Nauka, Moscow, 1982), in RussianGoogle Scholar
  38. 38.
    J.A.C. Martins, J.T. Oden, F.M.F. Simoes, A study of static and kinetic friction. Intl. J. Eng. Sci. 28(1), 29–92 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    G. Capone, V. D’Agostino, S. Dell Valle, D. Guida, Influence of the variation between static and kinetic friction on stick-slip instability. Wear 161, 121–126 (1993)CrossRefGoogle Scholar
  40. 40.
    F. Van De Velde, P. de Beats, A new approach stick-slip based on quasi-harmonic tangential oscillation. Wear 216, 15–26 (1998)CrossRefGoogle Scholar
  41. 41.
    I.V. Kragelsky, M.N. Dobychin, V.S. Kombalov, Friction and Wear: Calculation Methods (Pergamon Press, Oxford, 1982)Google Scholar
  42. 42.
    A.V. Chichinadze, Analysis and Investigation of External Friction During Braking Process (Nauka, Moscow, 1967), in RussianGoogle Scholar
  43. 43.
    I.V. Kragelsky, N.V. Gitis, Frictional Self-Oscillations (Mashinostrojenije, Moscow, 1987), in RussianGoogle Scholar
  44. 44.
    P. Contensou, Couplage entre frottement de glissement et frottement de pivotement dans la theorie de la toupie. Kreisproblem Gyrodynamics: IUTAM Symposium, Calerina, 1962 (Springer, Berlin, 1963), pp. 201–216, in FrenchGoogle Scholar
  45. 45.
    V.Ph. Zhuravlev, The model of dry friction in the problem of rolling of rigid bodies. Appl. Math. Mech. 62(5), 762–767 (1998)MathSciNetGoogle Scholar
  46. 46.
    V.Ph. Zhuravlev, Friction laws in the case of combination of slip and spin. Mech. Solid 38(4), 52–58 (2004)MathSciNetGoogle Scholar
  47. 47.
    L.A. Galin, Contact Problems of Elasticity and Viscoelasticity (Nauka, Moscow, 1980), in RussianGoogle Scholar
  48. 48.
    A.Yu. Ishlinskii, B.N. Sokolov, F.L. Chernousko, On the motion of plane bodies in the presence of dry friction. Izvestia AN SSSR Mech. Solids 4, 17–28 (1981), in RussianGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jan Awrejcewicz
    • 1
  1. 1.Department of Automation and BiomechanicsŁódź University of TechnologyŁódźPoland

Personalised recommendations