Ex Situ Conservation of Plant Genetic Resources of Major Vegetables



Vegetables form a large and economically important commodity group comprising a wide range of genera and species. Depending on the crop, roots, stems, leaves, flowers and fruit are consumed raw, cooked, steamed, fried or pickled. World production of vegetables and melons comprising 27 distinct commodities reached over one billion tonnes in 2009. The ten major commodities contributing to this impressive output were: fresh vegetables, not elsewhere specified; tomatoes; watermelons; dry onion; cabbages and other brassicas; cucumbers and gherkins; eggplants; carrots and turnips; green chilies and peppers, and other melons, including cantaloupes. Asia is the largest vegetable producer worldwide with China alone producing close to 52 % of world output, followed by India with 9.2 % of global production. Considering a significant overlap of crops with multiple uses, as vegetables, grains, food legumes and fibers, about one million accessions of crops used at least partially as vegetables are conserved ex situ worldwide. In a narrow sense of exclusive use of crops as vegetables, about 500,000 accessions of vegetables representing 7 % of the globally held 7.4 million accessions of plant genetic resources are maintained ex situ. Tomatoes, capsicums, melons and cantaloupe, brassicas, cucurbits, alliums, okra, and eggplant are well represented in ex situ collections at the global level, with a range between 84,000 and 22,000 accessions per vegetable group. As genetic erosion continues in situ for various reasons, complementary collecting efforts should be made with a major focus on crop wild relatives and poorly represented cultivated forms of some vegetable groups such as those described for the genera Brassica and Capsicum in this chapter. AVRDC – The World Vegetable Center plays a major role in the conservation, breeding and distribution of vegetable germplasm worldwide. The Center maintains about 58,000 accessions of vegetable germplasm, representing 170 genera and 434 species. Major vegetable crop groups, including the genera Allium, Brassica, Raphanus, Capsicum, Solanum section Lycopersicon, as well as African and Asian eggplant of the genus Solanum are briefly described in this chapter.


Chinese Cabbage Leafy Vegetable Botanical Variety Cultivar Group Crop Wild Relative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahsan H (2006) 5 India (1). In: Rolle RS (ed) Postharvest management of fruit and vegetables in the Asia-Pacific region. Asian Productivity Organization/Food and Agriculture Organization, Tokyo/Rome, pp 131–142Google Scholar
  2. Alercia A, Mackay M (2010) Contribution of standards for developing networks, crop ontologies and a global portal to provide access to plant genetic resources. In: Scientific and technical information and rural development IAALD XIIIth world congress, Montpellier, 26–29 Apr 2010, 7 ppGoogle Scholar
  3. Al-Shebaz A, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  4. AVGRIS (2011) AVRDC vegetable genetic resources information system.; accessed in March 2011
  5. AVRDC (2011) New vegetable variety releases expand market options for African farmers.; accessed in March 2011
  6. Azizi A, Mozafari J, Shams-bakhsh M (2008) Phenotypic and molecular screening of tomato germplasm for resistance to Tomato yellow leaf curl virus. Iran J Biotechnol 6(4):199–206Google Scholar
  7. Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094PubMedCrossRefGoogle Scholar
  8. Bosland PW (1996) Capsicums: innovative uses of an ancient crop. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 479–487Google Scholar
  9. Bosland PW, Gonzalez MM (2000) The rediscovery of Capsicum lanceolatum (Solanaceae), and the importance of nature reserves in preserving cryptic biodiversity. Biodivers Conserv 9(10):1391–1397CrossRefGoogle Scholar
  10. Branca F, Cartea E (2011) Chapter 2 – Brassica. In: Kole C (ed) Wild crop relatives: genomic and breeding resources oilseeds. Springer, Berlin/Heidelberg, pp 17–36CrossRefGoogle Scholar
  11. Bukenya ZR, Carasco JF (1994) Biosystematic study of Solanum macrocarponS. dasphyllum complex in Uganda and relations with Solanum linnaeanum. East Afr Agric Forest J 59(3):187–204Google Scholar
  12. Channel News Asia (2011) Bean sprouts source of killer E. coli outbreak. Accessed 10 Jun 2011
  13. Chiarini FE, Moreno NC, Barboza GE, Bernardello G (2010) Karyotype characterization of Andean Solanoideae (Solanaceae). Caryologia 63(3):278–291Google Scholar
  14. Cox S (2000) I say tomayto, you say tomahto.; accessed in May 2011
  15. Davis DR, Epp MD, Riordan HD (2004) Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Am Coll Nutr 23(6):669–682PubMedGoogle Scholar
  16. De Candolle A (1886) Origin of cultivated plants. Hafner, New York (1959 reprint)CrossRefGoogle Scholar
  17. de la Peña RC, Ebert AW, Gniffke PA, Hanson P, Symonds RC (2011) Genetic adjustment to changing climates: vegetables. In: Yadav SS, Redden B, Hatfiled JS, Lotze-Campen H, Hall A (eds) Chapter 18: crop adaptation to climate change 2011. Wiley-Blackwell, Oxford, UK, pp 396–410CrossRefGoogle Scholar
  18. Dianese EC, Fonseca MEN, Inoue-Nagata AK, Resende RO, Boiteux LS (2011) Search in Solanum (section Lycopersicon) germplasm for sources of broad-spectrum resistance to four Tospovirus species. Euphytica pp 1–13. doi:10.1007/s10681-011-0355-8. Online First 28 Jan 2011Google Scholar
  19. Duke JA (1983) Brassica nigra (L.) Koch. In: Duke J (ed) Handbook of energy crops, unpublished.; accessed in May 2011
  20. Ebert AW, Astorga C, Ebert ICM, Mora A, Umaña C (2007) Securing our future: CATIE’s germplasm collections–Asegurando nuestro futuro: colecciones de germoplasma del CATIE. Technical series. Technical bulletin no. 26. Tropical Agricultural Research and Higher Education Center, CATIE. Litografía e Imprenta LIL SA, San José, 204 ppGoogle Scholar
  21. ECOCROP (2011) Allium chinense.; accessed in May 2011
  22. Encyclopaedia Britannica (2011) Vegetable.; accessed in April 2011
  23. Erickson RF (2011) Nikolaus Joseph, Freiherr von Jacquin 1727–1817. Rare books from the Missouri botanical garden library.,+Nikolaus+Joseph,+Freiherr+von&creatorID=80; accessed in April 2011
  24. Eshbaugh WH (1993) History and exploitation of a serendipitous new crop discovery. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 132–139Google Scholar
  25. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. FAO, RomeGoogle Scholar
  26. Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org Cult 76:101–119CrossRefGoogle Scholar
  27. GENESYS (2011); consulted on 18 May 2011
  28. Gomez-Campo C (1980) Studies on Cruciferae: VI. Geographical distribution and conservation status of Boleum Desv., Guiaroa Coss. and Euzomodendron Coss. Anal Inst Bot Cavanilles 35:165–176Google Scholar
  29. Gordillo LF, Stevens MR, Millard MA, Geary B (2008) Screening two Lycopersicon peruvianum collections for resistance to Tomato spotted wilt virus. Plant Dis 92:694–704CrossRefGoogle Scholar
  30. Gould WA (1983) Tomato production, processing and quality evaluation, 2nd edn. AVI, Westport, pp 3–50Google Scholar
  31. Grubben GJH, Denton OA (2004) Plant resources of tropical Africa 2. Vegetables. PROTA Foundation/Backhuys Publishers/CTA, Wageningen/Leiden/Wageningen, 668 ppGoogle Scholar
  32. Hanelt P (1990) Taxonomy, evolution, and history. In: Rabinowitch HD, Brewster JL (eds) Onions and allied crops, vol 1, Botany, physiology and genetics. CRC Press, Boca Raton, pp 1–26Google Scholar
  33. Hanson P, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18Google Scholar
  34. Jarvis A, Williams K, Williams D, Guarino L, Caballero PJ, Mottram G (2005) Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genet Resour Crop Evol 52(6):671–682CrossRefGoogle Scholar
  35. Katzer G (2011) Paprika (Capsicum annuum L.) Gernot Katzer’s spice pages.∼katzer/engl/Caps_ann.html; accessed in April 2011
  36. Klaas M, Friesen N (2002) Chapter 8 – molecular markers in Allium. In: Rabinowitch HD, Currah L (eds) Allium crop science: recent advances. CABI, Wallingford, pp 159–186CrossRefGoogle Scholar
  37. Knapp S (2002) Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. J Exp Bot 53:2001–2022PubMedCrossRefGoogle Scholar
  38. León J (2000) Botánica de los cultivos tropicales, 3rd edn. IICA, San José, revisada y aum, 522 ppGoogle Scholar
  39. Lester RN (1986) Taxonomy of scarlet eggplants, Solanum aethiopicum L. Acta Hortic 182:125–132Google Scholar
  40. Lü N, Yamane K, Ohnishi O (2008) Genetic diversity of cultivated and wild radish and phylogenetic relationships among Raphanus and Brassica species revealed by the analysis of trnK/matK sequence. Breed Sci 58:15–22CrossRefGoogle Scholar
  41. Luckwill LC (1943) The genus Lycopersicon: an historical, biological and taxonomical survey of the wild and cultivated tomatoes. Aberdeen Univ Stud 120:1–44Google Scholar
  42. Maas HI, Klaas M (1995) Infraspecific differentiation of garlic (Allium sativum L) by isozyme and RAPD markers. Theor Appl Genet 91:89–97CrossRefGoogle Scholar
  43. Mandell T (2011) Program to focus on making better use of vegetables.; accessed in June 2011
  44. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  45. Moscone EA, Scaldaferro MA, Grabiele M, Cecchini NM, García YS, Jarret R et al (2007) The evolution of chili peppers (Capsicum – Solanaceae): a cytogenetic perspective. Acta Hortic 745:137–170Google Scholar
  46. Nishi S (1980) Differentiation of Brassica crops in Asia and the breeding of ‘hakuran’, a newly synthesized leafy vegetable. In: Tsunoda S, Hinata BK, Gómez-Ocampo C (eds) Brassica crops and wild allies. Japan Scientific Societies Press, Tokyo, pp 133–150Google Scholar
  47. Online Etyomology Dictionary (2011) Paprika.; accessed in April 2011
  48. Opeña RT, Kuo CG, Yoon JY (1988) Breeding and seed production of Chinese cabbage in the tropics and subtropics. Technical bulletin no 17. AVRDC, Shanhua, 92 ppGoogle Scholar
  49. Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from northern Peru. Syst Bot 30:424–434CrossRefGoogle Scholar
  50. Peralta IE, Knapp S, Spooner DM (2006) Nomenclature for wild and cultivated tomatoes. Tomato Genet Coop Rep 56:6–12Google Scholar
  51. Pereira-Carvalho RC, Boiteux LS, Fonseca MEN, Díaz-Pendón JA, Moriones E, Fernández-Muñoz R, Charchar JM, Resende RO (2010) Multiple resistance to Meloidogyne spp. and to bipartite and monopartite Begomovirus spp. in wild Solanum (Lycopersicon) acessions. Plant Dis 94:179–185CrossRefGoogle Scholar
  52. Porcher MH (2010) Know your eggplants – part 1.; accessed in April 2011
  53. Prior P, Grimault V, Schmit J (1994) Resistance to bacterial wilt (Pseudomonas solanacearum) in tomato: present status and prospects. In: Hayward AC, Hartman GL (eds) Bacterial wilt: the disease and its causative agent Pseudomonas solanacearum. CAB International, Wallingford, pp 209–223Google Scholar
  54. Rakow G (2004) I.1 Species origin and economic importance of Brassica. In: Pua EC, Douglas CJ (eds) Biotechnology in agriculture and forestry, vol 54, Brassica. Springer, Berlin/Heidelberg, 344 ppGoogle Scholar
  55. Redden R, Vardy M, Edwards D, Raman H, Batley J (2009) Genetic and morphological diversity in the Brassicas and wild relatives. In: Proceedings of the 16th Australian research assembly on Brassicas. Ballarat Victoria, 5 ppGoogle Scholar
  56. Ribeiro CS da C, Carvalho SIC de, Henz GP, Reifschneider FJB (2008) Pimentas Capsicum. Embrapa Hortaliças, Brasília, Athalaia Gráfica e Editora Ltda, 200 ppGoogle Scholar
  57. Rich TCG (1991) Crucifers of Great Britain and Ireland. Botanical Society of the British Isles, London, p 336 ppGoogle Scholar
  58. Rick CM (1976) Tomato (family Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, UK, pp 268–273Google Scholar
  59. Rick CM (1988) Tomato-like nightshades: affinities, autoecology, and breeders’ opportunities. Econ Bot 42:145–154CrossRefGoogle Scholar
  60. Rick CM (1995) Tomato. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Wiley, New York, pp 452–457Google Scholar
  61. Robertson LD, Labate JA (2006) Genetic resources of tomato (Lycopersicon esculentum Mill.) and wild relatives. In: Razdan MK, Mattoo AK (eds.) Genetic improvement of Solanaceous crops, Vol. 2: Tomato. Science Publishers Inc., Enfield, pp 25–75Google Scholar
  62. Schneider E (2001) Vegetables from Amaranth to Zucchini: the essential reference. Harper Collins Publishers Inc. New York, 777 ppGoogle Scholar
  63. Shigyo M, Kik C (2008) Onion. In: Prohens J, Nuez F (eds) Handbook of plant breeding-vegetables II: Fabaceae, Liliaceae, Umbelliferae and Solanaceae. Springer, New York, pp 121–159Google Scholar
  64. Siemonsma JS, Piluek K (1994) Plant resources of South-East Asia. No 8. Vegetables. PROSEA Foundation, Bogor, 412 ppGoogle Scholar
  65. Tal M, Katz A, Heikin H, Dehan K (1979) Salt tolerance in the wild relatives of the cultivated tomato: proline accumulation in Lycopersicon esculentum Mill., L. peruvianum Mill. and Solanum pennellii Cor. Treated with NaCl and polyethylene glycol. New Phytol 82:349–355CrossRefGoogle Scholar
  66. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:181–189CrossRefGoogle Scholar
  67. Tenkouano A (2011) The nutritional and economic potential of vegetables. In: State of the world’s food and agriculture 2011 Worldwatch Institute/W. W. Norton & Company, New York, pp 27–38 (notes pp 190–193)Google Scholar
  68. The Context Network (2010) Global seed sector 2020 outlook: major vegetable crops, 2nd edn.; accessed in August 2011
  69. Toppino L, Valè G, Rotino GL (2008) Inheritence of Fusarium wilt resistance introgressed from Solanum aethiopicum Gilo and Aculeatum groups into cultivated eggplant (S. melongena) and development of associated PCR-based markers. Molecular Breeding 22(2):237–250Google Scholar
  70. Tsunoda S (1980) Eco-physiology of wild and cultivated forms in Brassica and allied genera. In: Gómez-Ocampo C, Tsunoda S, Hinata bK (eds) Brassica crops and wild allies. Japan Scientific Societies Press, Tokyo, pp 109–120Google Scholar
  71. USDA-ARS (2011a) Taxon: Brassica nigra (L.) W.D.J. Koch. Germplasm Resources Information Network–(GRIN) (online database). National Germplasm Resources Laboratory, Beltsville.; accessed in March 2011
  72. USDA-ARS (2011b) Taxon: Raphanus raphanistrum L. Germplasm Resources Information Network–(GRIN) (online database). National Germplasm Resources Laboratory, Beltsville.; accessed in April 2011
  73. USDA-ARS (2011c) Taxon: Raphanus raphanistrum L. subsp. landra (Moretti ex DC.) Bonnier & Layens. Germplasm Resources Information Network–(GRIN) (online database). National Germplasm Resources Laboratory, Beltsville.; accessed in April 2011
  74. USDA-ARS (2011d) Taxon: Capsicum baccatum L. var. umbilicatum (Vell.) Hunz. & Barboza. Germplasm Resources Information Network–(GRIN) (online database). National Germplasm Resources Laboratory, Beltsville.; accessed in April 2011
  75. USDA-ARS (2011e) Family: Solananceae Juss., nom. cons. National Genetic Resources Program. Germplasm Resources Information Network–(GRIN) (online database). National Germplasm Resources Laboratory, Beltsville.; accessed in April 2011
  76. USDA-NRCS (2011) Allium porrum L.–garden leek. National Resources Conservation Service (plants database).; accessed in March 2011
  77. Vidavski F, Czosnek H, Gazit S, Levy D, Lapidot M (2008) Pyramiding of genes conferring ­resistance to Tomato yellow leaf curl virus from different wild tomato species. Plant Breed 127(6):625–631CrossRefGoogle Scholar
  78. Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-Rom. Plant Syst Evol 259:249–258CrossRefGoogle Scholar
  79. Wiersema JH, León B (1999) World economic plants. A standard reference. CRC Press, Boca RatonGoogle Scholar
  80. Wikipedia (2011a) Habanero chili.; accessed in March 2011
  81. Wikipedia (2011b) Naga Viper pepper.; accessed in March 2011
  82. World Information and Early Warning System on PGRFA (WIEWS) (2011a) WIEWS Germplasm Report (based on genus-specific searches worldwide; example Allium):; accessed in April 2011Google Scholar
  83. World Information and Early Warning System on PGRFA (WIEWS) (2011b)  =  &i_RC  =  &i WIEWS Germplasm Report._VINST  =  &i_LT  =  N&i_d  =  false&i_j  =  &i_r  =  0&i_a  =  Navigate&i_t  =  &i_m  =  true&i_f  =  &i_op  =  &i_np1  =  &i_np2  =  &i_FC  =  &i_FG  =  &i_FP  =  &i_s  =  N&i_UP  =  N&i_TI  =  N&i_TC  =  N&i_TR  =  Y&i_SO  =  N&i_DA  =  &i_CHLE  =  &i_SELE  =  &i_CHGP  =  &i_SEGP  =  &i_CHPG  =  &i_SEPG  =  &i_CHGE  =  &i_SEGE  =  &i_CHOT  =  &i_SEOT  =  &i_All  =  &i_l  =  EN&query_CALLER  =  %2Fwiews%2Fgermplasm_query.htm&i_u  =  &i_p  =  &query_REGION  =  362&query_AREA  =  &query_INSTCODE  =  &query_SPECIES  =  Phaseolus&query_SAMPLE=; consulted on 18 May 2011Google Scholar
  84. World Information and Early Warning System (WIEWS) (2012) WIEWS Germplasm Report.; accessed on 16 May 2012CrossRefGoogle Scholar
  85. Yasumoto K, Nagashima T, Umeda T, Yoshimi M, Yamagishi H, Terachi T (2008) Genetic and molecular analysis of the restoration of fertility (Rf) genes for Ogura male-sterility from a Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides Makino). Euphytica 164(2):395–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.AVRDC - The World Vegetable CenterTainanTaiwan

Personalised recommendations