Advertisement

Tropical and Subtropical Root and Tuber Crops

Chapter

Abstract

The chapter provides a comprehensive treatment of the genetic resources conservation status of the major root and tuber crops in the world. The germplasm collections in both the CGIAR centers and national programs were identified. The quality of the collections in terms of genetic diversity, maintenance, safe movement and characterization were presented when data is available. The conservation strategies and methods used were described and this includes field, in vitro, cryo and seed banking. The complementary role of in situ conservation to the long-term ex situ conservation was illustrated in native potato in the Peruvian Andes as a dynamic conservation strategy. The experience in the application of ISO 17025 standard at the International Potato Center in relation to germplasm distribution and disease indexing was discussed. The agronomic traits identified by crop experts for germplasm evaluation were collated and this represents the challenges that the genebanks have to undertake in the coming years. Root and tuber crops have proven themselves in history to be important survival crops, in recent years also provided local food security and affected by international commodity prices fluctuation. The future promises of these groups of crops were contemplated in relation to climate change and increasing productivity with less and less arable land – the ‘chuno’ factor and the ‘poultry farm’ potato concept.

Keywords

Sweet Potato Core Collection Wild Potato Tuber Crop Taxon Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akoroda MO, Chheda HR (1983) Agro-botanical and species relationships of Guinea yams. Trop Agric 60:242–248Google Scholar
  2. Allem AC (1987) Manihot esculenta is a native of the neotropics. FAO/IBPGR Plant Genet Resour Newsl 71:22–24Google Scholar
  3. Allem AC (1994) The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol 41(3):133–150Google Scholar
  4. Al-Shehbaz IA (2010) A synopsis of the South American Lepidium (Brassicaceae). Darwiniana 48(2):141–167Google Scholar
  5. Arbizu C (1994) The agroecology of achira in Peru. CIP Circular 20(3):12–13Google Scholar
  6. Arbizu C, Robles E (1986) Catalogo de los recursos geneticos de raices y tuberculos andinos. Universidad Nacional de San Cristobal de Huamanga, Facultad de Ciencias Agrarias, Prog. De Investigaciones en Cultivos Andinos, AyacuchoGoogle Scholar
  7. Austin DF (1977) Hybrid polyploids in Ipomoea section Batatas. J Hered 68:259–260Google Scholar
  8. Austin DF (1988) The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species. In: Exploration, maintenance and utilization of sweet potato genetic resources. Report of the first sweet potato planning conference 1987. International Potato Center, Lima, pp 27–59Google Scholar
  9. Austin DF, Huaman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45(1):3–38Google Scholar
  10. Bai KV, Asiedu R, Dixon AGO (1993) Cytogenetics of Manihot species and interspecific hybrids. In: Proceedings of the first international meeting of the cassava biotechnology network. CIAT, CartagenaGoogle Scholar
  11. Bailey H (1976) Hortus third. A concise dictionary of plants cultivated in the United States and Canada. McMillan, New YorkGoogle Scholar
  12. Barnes H (1975) The diffusion of the manioc plant from South America to Africa: an assay in ethnobotanical culture history. Dissertation, Columbia UniversityGoogle Scholar
  13. Blas R, Arbizu C (1995) Estudios preliminaries sobre la variacion de la arracacha (Arracacia xanthorrhiza Bancroft). In: Resumenes del Primer Congreso Peruano de Cultivos Andinos ‘Oscar Blanco Galdos’, Universidad Nacional de San Cristobal de Huamanga, Facultad de Ciencias Agrarias, Programa de Investigacion en Cultivos Andinos, Ayacucho, Peru, 11–16 setiembre 1995, Cultivos Andinos 5(1):17Google Scholar
  14. Bonierbale M, Guevara C, Dixon AGO, Ng NQ, Asiedu R, Ng SYC (1997) Cassava. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust – conservation and use of plant genetic resources, CGIAR centres. Cambridge University Press, Cambridge, pp 1–20Google Scholar
  15. Brako L (1993) Cannaceae. In: Brako L, Zaruchi JL (eds) Catalogue of the flowering plants and gymnosperms of Peru. Missouri Botanical Garden, St. Louis, p 326Google Scholar
  16. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824Google Scholar
  17. Brown AHD (2000) Aroids. Plants of the Arum family, 2nd edn. Timber Press, Portland, 392 ppGoogle Scholar
  18. Brucher H (1989) Useful plants of neotropical origin and their wild relatives. Springer, BerlinGoogle Scholar
  19. Bukasov SM (1930) The cultivated plants of Mexico, Guatamala and Colombia. Bull Appl Bot Genet Plant Breed (Leningrad) Suppl 47:191–226, 513–525Google Scholar
  20. Cardenas M, Hawkes JG (1948) Numero de cromosomas de algunas plantas nativas cultivades por los indios en los Andes. Revista de Agricutura, Universidad Mayor de San Simon, Cochabamba 5(4):30–32Google Scholar
  21. Castillo R, Nieto C, Peralta E (1988) El germoplasma de cultivos andinos en Ecuador. In: Memorias del VI Congreso Internacional sobre Cultivos Andinos, Quito, Ecuador, 30 mayo–2 junio 1988. Instituto Nacional de Investigaciones Agropecuarias (INIAP), pp 323–331Google Scholar
  22. Clement CR (1994) Crops of the Amazon and Orinoco regions. Their origin, decline and future. In: Hernández-Bermejo JE, León J (eds) Neglected crops: 1492 from a different perspective, FAO plant production and protection series. FAO, Rome, pp 195–203Google Scholar
  23. Constance L (1949) The South American species of Arracacia (Umbelliferae) and some related genera. Bull Torrey Bot Club 76(1):39–52Google Scholar
  24. Chacón G (1990) La maca (Lepidium peruvianurn) Chacón sp. nov.) y su habitat. Rev. Peruana de Biologia 3:171–272Google Scholar
  25. Darlington CD, Janaki-Ammal EK (1945) Chromosome atlas of cultivated plants. G. Allen, LondonGoogle Scholar
  26. de Azkue D, Martinez A (1990) Chromosome number of Oxalis tuberose alliance (Oxalidaceae). Plant Syst Evol 169:25–29Google Scholar
  27. del Rio AH, Bamberg JB (2003) The effect of genebank seed increase on the genetics of recently collected potato (Solanum) germplasm. Am J Potato Res 80:215–218Google Scholar
  28. Dini A, Migiliuolo G, Rastrelli L, Saturnino P, Schettino O (1994) Chemical composition of Lepidium meyenii. Food Chem 49:347–349Google Scholar
  29. Dumont R, Hamon P, Seignobos S (1994) Les ignames au Cameroun. Reperes, Cultures annuelles. CIRAD-CA, MontpellierGoogle Scholar
  30. Edison S, Sreekumari SK, Pillai SV, Sheela MN (2004) Diversity and genetic resources of taro in India. In: Guarino L, Taylor M, Osborn T (eds) Third taro symposium. Secretariat of the Pacific Community, Fiji, 21–23 May 2003, pp 85–88Google Scholar
  31. Emshwiller E, Doyle JJ (2002) Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae). 2. Chloroplast-expressed glutamine synthetase data. Am J Bot 89(7): 1042–1056PubMedGoogle Scholar
  32. Engel E (1970) Exploration of the Chilca canyon. Curr Anthropol 11:55–58Google Scholar
  33. Espinosa P, Vaca R, Abad J (1993) Informe sobre la producion de archira en Patate: limitantes y posibilidades. Equipo de Ciencias Sociales: 1–22. CIP, QuitoGoogle Scholar
  34. FAO (1996) ‘Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture and the Leipzig declaration’, adopted by the international technical conference on plant genetic resources, Leipzig, 17–23 Jun 1996, FAO. www.fao.org/ag/AGP/agps/GpaEN/leipzig.htm
  35. FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Commission on genetic resources for food and agriculture. FAO, RomeGoogle Scholar
  36. FAOSTAT (2009) Summary of world food and agriculture statistics. www.fao.org/faostat. Access 20 February 2012
  37. Ferreyra R (1986) Flora y vegetación del Perú. Gran Geografía del Perú. Coedit. Manfer Mejia Baca, Barcelona España. Tomo II: pp 11–13Google Scholar
  38. Flores I (1991) Estudio del processo de elaboracion de khaya. In Generacion de tecnología para procesamiento de cultivos andinos. Informe Tecnico Final. INIAA-FUNDEAGRO, Huancayo, pp 34–53Google Scholar
  39. Gandarillas H, Luizaga J (1967) Numero de cromosomas de la papalisa (Ullucus tuberosus Caldas). Sayana Revista Boliviana de Agricultura 5(2):8–9Google Scholar
  40. Giacometti DC, Leon J (1994) Tannia, yautia (Xanthosoma sagittifolium). In: Hernaldo JE, Leon J (eds) Neglected crops: 1492 fauna different perspective, vol 26, Plant production and protection series. FAO, Rome, pp 253–260Google Scholar
  41. Glendinning DR (1975a) Neo-tuberosum: new potato breeding material. 1. The origin, composition, and development of the tuberosum and neo-tuberosum gene pools. Potato Res 18:256–261Google Scholar
  42. Glendinning DR (1975b) Neo-tuberosum: new potato breeding material. 2. A comparison of neo-tuberosum with unselected Andigena and with Tuberosum. Potato Res 18:343–350Google Scholar
  43. Glendinning DR (1975c) Neo-tuberosum: new potato breeding material. 3. Characteristics and variability of neo-tuberosum, and its potential value in breeding. Potato Res 18:351–362Google Scholar
  44. Glendinning DR (1975d) Chilean potatoes: an appraisal. Potato Res 18:306–307Google Scholar
  45. Gonzales R, Arbizu C (1995) Niveles de ploidia de las archiras cultivadas en el Peru. In: Resumenes del Primer Congreso Peruano de Cultivos Andinos ‘Oscar Blanco Galdos’. Universidad Nacional de San Cristobal de Huamanga, Facultad de Ciencias Agrarias, Programa de Investigacion en Cultivos Andinos, Ayacucho, 11–16 setiembre 1995, Cultivos Andinos 5(1):17Google Scholar
  46. Grout BWW, Henshaw GG (1978) Freeze preservation of potato shoot-tip cultures. Ann Bot 42:1227–1229Google Scholar
  47. Gulick P, Henshey C, Eswuinas-Alcazar J (1983) Genetic resources of cassava and wild relatives. International Board for Plant Genetic Resources, RomeGoogle Scholar
  48. Hamon P, Dumont R, Zoundjihekpon J, Tio-Toure B, Hamon S (1995) Wild yams in West Africa: morphological characteristics. ORSTOM, ParisGoogle Scholar
  49. Hanson J (1985) Methods for storing tropical root crop germplasm with special reference to yam. Plant Genet Resour Newsl 64:24–32Google Scholar
  50. Harlan JR, de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517Google Scholar
  51. Hata Y, Hara T, Oikawa T, Yamamoto M, Hirose N, Nagashima T, Torihama N, Watabe A, Yamashita M (1983) The effect of oligofructans (neosugar) on hyperpilemia. Geriatr Med 21:156–167Google Scholar
  52. Hawkes JG (1989) The domestication of roots and tubers in the American tropics. In: Hillman BC, Harris DR (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp 481–503Google Scholar
  53. Hawkes JG (1990) The potato – evolution, biodiversity and genetic resources. Belhaven Press, LondonGoogle Scholar
  54. Hay A (1998) Botanical varieties in taro, Colocasia esculenta: leaving old baggage behind. A report on taro consultancy no. CO2C. IPGRI, Rome, 13 ppGoogle Scholar
  55. Hershey C (1987) Cassava germplasm resources. In: Proceedings of the workshop on cassava breeding: a multidisciplinary review, Philippines, 4–7 Mar 1985Google Scholar
  56. Hiroe M (1979) Umbelliferae of the world. Anake Book, TokyoGoogle Scholar
  57. Ho TV, Hao BT (1995) Studies on edible Canna in Vietnam. In: Chujoy E (ed) Root crops germplasm research in Vietnam. National Institute of Agricultural Sciences (INSA)/International Development Research Center (IDRC)/International Potato Center (CIP), Hanoi/Tanglin/ManilaGoogle Scholar
  58. Huaman Z, Hawkes JG, Rowe PR (1980) A biosystematic study of the origin of the diploid potato, Solanum ajanhuiri. Euphytica 31:665–675Google Scholar
  59. Hunter D, Heywood V (2011) Crop wild relatives: a manual of in situ conservation. Earthscan, LondonGoogle Scholar
  60. Irwin SV, Kaufusi P, Banks K, de la Peña R, Cho JJ (1998) Molecular characterization of taro (Colocasia esculenta) using RAPD markers. Euphytica 99:183–189Google Scholar
  61. Jennings DL (1976) Cassava, Manihot esculenta (Euphorbiaceae). In: Simmonds N (ed) Evolution of crop plants. Longman, London, pp 81–84Google Scholar
  62. Johns T, Kitts WD, Newsome F, Towers GHN (1982) Anti-reproductive and other medicinal effects of Tropaeolum tuberosum. J Ethnopharmacol 5:149–161PubMedGoogle Scholar
  63. Jones WO (1959) Manioc in Africa. Stanford University Press, StanfordGoogle Scholar
  64. Jones A (1967) Should Nishiyama’s K123 (Ipomoea trifida) be designated I. batatas? Econ Bot 21:163–166Google Scholar
  65. King SR (1988) Economic botany of the Andean tuber crop complex: Lepidium meyenii, Oxalis tuberose, Tropaeolum tuberosum and Ullucus tuberosus. Ph.D. thesis, The City University of New York, New YorkGoogle Scholar
  66. Kreike CM, van Eck HJ, Lebot V (2004) Genetic diversity of taro, Colocasia esculenta (L.) Schott, in Southeast Asia and the Pacific. Theor Appl Genet 109:761–768PubMedGoogle Scholar
  67. Larkka J, Jokela P, Pietila L, Viinikka Y (1992) Karyotypes and meiosis of cultivated and wild ulluco. Caryologia 45(3–4):229–235Google Scholar
  68. Lebot V (1992) Genetic vulnerability of Oceania’s traditional crops. Exp Agric 28:309–323Google Scholar
  69. Lebot V (1999) Biomolecular evidence for plant domestication in Sahul. Genet Resour Crop Evol 46:619–628Google Scholar
  70. Lebot V, Aradhya KM (1991) Isozyme variation in taro (Colocasia esculenta (L.) Schott) from Asia and the Pacific. Euphytica 56:55–66Google Scholar
  71. Lebot V, Prana M, Kreike N, van Heck H, Pardales J, Okpul T, Gendua T, Thongjiem M, Hue H, Viet N, Yap TC (2004) Characterisation of taro (Colocasia esculenta (L.) Schott) genetic resources in Southeast Asia and Oceania. Genet Resour Crop Evol 51:381–392Google Scholar
  72. Leon J (1967) Andean tuber and root crops: origin and variability. In: Proceedings of the international symposium on tropical root crops, University of West Indies, St. Augustine, 2–8 Apr 1967, pp 118–123Google Scholar
  73. Liesner RL (1993) Nictaginaceae. In: Brako L, Zarucchi JL (eds) Catalogue of flowering plants and gymnosperms of Peru. Missouri Botanical Garden, St. Louis, pp 750–754Google Scholar
  74. Maas PJM, Maas H (1988) Cannaceae. In: Harling G, Anderson L (eds) Flora of Ecuador, vol 32. Swedish Research Council, Stockholm, pp 1–9Google Scholar
  75. MacBride JF (1937) Mirabilis L. In: Flora of Peru, Chicago, Field Mus Nat Hist Bot 13(2): 539–546Google Scholar
  76. Magoon M, Krishnan R, Bai K (1969) Morphology of the pachytene chromosomes and meiosis in Manihot esculenta Crantz. Cytologia 34:612–626Google Scholar
  77. Martin FW (1974a) Tropical yams and their potential. Series – part 1. Dioscorea esculenta. USDA agriculture handbook no. 457. U.S. Department of Agriculture, Agricultural Research Service, Washington, DCGoogle Scholar
  78. Martin FW (1974b) Tropical yams and their potential. Series – part 2. Dioscorea bulbifera. USDA agriculture handbook no. 466. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  79. Martin FW (1976) Tropical yams and their potential. Series – part 3. Dioscorea alata. USDA agriculture handbook no. 495. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  80. Martin FW, Degras L (1978a) Tropical yams and their potential. Series – part 5. Dioscorea trifada. USDA agriculture handbook no. 522. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  81. Martin FW, Degras L (1978b) Tropical yams and their potential. Series – part 6. Minor cultivated Dioscorea species. USDA agriculture handbook no. 538. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  82. Martin FW, Rhodes AM (1978) The relationship of Dioscorea cayenensis and D. rotundata. Trop Agric 55:195–206Google Scholar
  83. Martin FW, Sadik S (1977) Tropical yams and their potential. Series – part 4. Dioscorea rotundata and Dioscorea cayenensis. USDA agriculture handbook no. 502. U.S. Department of Agriculture, Washington, DCGoogle Scholar
  84. Martins R (1976) New archeological techniques for the study of ancient root crops in Peru. Ph.D. thesis, University of Birmingham, EnglandGoogle Scholar
  85. Mathias ME, Constance L (1962) Arracacia Bancroft. In: Mathias ME, Constance L (eds) Flora of Peru vol XIII(1), part V. Field Museum of Natural History, Chicago, pp 13–19Google Scholar
  86. Mathias ME, Constance L (1976) The genus Niphogeton (Umbelliferae) – a second encore. Bot J Linn Soc 72(4):311–324Google Scholar
  87. Macbride JF (1949) Oxalidaceae. In: Flora of Peru, Field Mus. Nat. Hist. Bot. 13(2): 544–602Google Scholar
  88. Matthews PJ (1990) The origins, dispersal and domestication of taro. Ph.D. thesis. Australian National University, CanberraGoogle Scholar
  89. Matthews PJ (1991) A possible tropical wildtype taro: Colocasia esculenta var. aquatilis. Indo Pac Prehist Assoc Bull 11:69–81Google Scholar
  90. Matthews PJ (2002) Potential of root crops for food and industrial resources. In: Potential of root crops for food and industrial resources. Twelfth symposium of the International Society for Tropical Root Crops (ISTRC), 10–16 Sept 2000, Tsukuba, pp 524–533Google Scholar
  91. Matthews PJ (2004) Genetic diversity of taro, and the preservation of culinary knowledge. Ethnobot Res Appl 2:55–71Google Scholar
  92. Maxted N, Dulloo ME, Ford-Lloyd BV, Iriondo J, Jarvis A (2008) Gap analysis: a tool for complementary genetic conservation assessment. Divers Distrib 14:1018–1030Google Scholar
  93. Mendez M, Arbizu C, Orrillo M (1994) Niveles de ploidia de los ullucos cultivados y silvestres. En Resumenes de trabajos presentados al VIII Congreso Internacional de Sistemas Agropecuarios Andinos y su proyección al tercer milenio, Universidad Austral de Chile, Valdivia, 21–26 marzo 1994, Agro Sur 22:12Google Scholar
  94. Meza G (1995) Variedades nativas de archira (Canna edulis Ker Cawler) en la Valle del Apurimac. Centro de Investigacion en Cultivos Andinos, Facultad de Agronomia y Zootecnia, Universidad Nacional de San Antonio Abad del Cusco, CuscoGoogle Scholar
  95. Miglietta F, Magliulo V, Bindi M, Cerio L, Vaccari FP, Loduca V, Peressotti A (1998) Free air CO2 enrichment of potato (Solanum tuberosum L.): development, growth and yield. Glob Chang Biol 4:163–172Google Scholar
  96. Morales R (1969) Caracteristicas físicas, químicas y organolépticas del almidon de ‘achira’ (Canna edulis Ker var.). Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales XIII(51):357–369Google Scholar
  97. Nassar N (1978a) Conservation of the genetic resources of cassava (Manihot esculenta) – determination of wild species localities with emphasis on probable origin. Econ Bot 32(3):311–320Google Scholar
  98. Nassar N (1978b) Microcenters of wild cassava, Manihot spp. Diversity in central Brazil. Turrialba 28(4):345–347Google Scholar
  99. Ng NQ (1993) Annual Report 1992, Genetic Resources Unit, Crop Improvement Division, International Institute of Tropical Agriculture. IITA, Ibadan, NigeriaGoogle Scholar
  100. Nishiyama I (1963) The origin of sweet potato plant. In: Barrau J (ed) Plants and the migrations of Pacific peoples. Bishop Museum Press, Honolulu, pp 119–128Google Scholar
  101. Nishiyama I (1971) Evolution and domestication of sweet potato. Bot Mag Tokyo 84:377–387Google Scholar
  102. Nishiyama I, Miyasaki T, Sakamoto S (1975) Evolutionary autoploidy in the sweet potato (Ipomoea batatas (L.) Lam.) and its progenitors. Euphytica 24:197–208Google Scholar
  103. Noratto G, Cisneros-Zevallos L, Mo H (2004) Tropaeolum tuberosum (mashua) extracts suppress tumor cell proliferation. FASEB J. 18(5):A886–A886 (Suppl.).Google Scholar
  104. Noyer JL, Billot C, Weber P, Brottier P, Quero-Garcia J, Lebot V (2004) Genetic diversity of taro (Colocasia esculenta (L.) Schott) assessed by SSR markers. In: Guarino L, Taylor M, Osborn T (eds) Third taro symposium. 21–23 May 2003, Secretariat of the Pacific Community, Fiji, pp 174–180Google Scholar
  105. NRC (National Research Council) (1989) Lost crops of the Incas. Little-known plants of the Andes with promise for worldwide cultivation. National Academic Press, Washington, DCGoogle Scholar
  106. O’Brien JP (1972) The sweet potato: its origin and dispersal. Am Anthropol 74:343–365Google Scholar
  107. O’Neal LM, Whitaker TW (1947) Embroideries of the early Nazca period and the crops depicted on them. Southw J Anthropol 3(4):294–321Google Scholar
  108. Ochoa CM (1975) Potato collecting expedition in Chile, Bolivia and Peru, and the genetic erosion of indigenous cultivars. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, CambridgeGoogle Scholar
  109. Ochoa CM (1984) Solanum hygrothermicum, new potato species cultivated in the lowlands of Peru. Econ Bot 38:128–133Google Scholar
  110. Ochoa CM (1999) Las papas de Sudamerica: Peru. Centro International de La Papa (CIP), LimaGoogle Scholar
  111. Ochoa CM (2003) Las Papas del Peru. CIP, UNALM, CSUDE, LimaGoogle Scholar
  112. Ochoa CM (2008) Homenaje a la trayectoria cientifica del Dr. Carlos M. Ochoa Nieves. Memoria de actividades y participantes. 13 Congreso Latinoamericano de Genetica y VI Congreso Peruano de Genetica – “Recursos Genetica Latinamericanos: Vida para la vida”, LimaGoogle Scholar
  113. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci U S A 96:5586–5591PubMedGoogle Scholar
  114. Olsen KM, Schaal BA (2001) Microsatellite variation in cassava (Manihot esculenta, Euphorbiaceae) and its wild relatives: further evidence for a southern Amazonian origin of domestication. Am J Bot 88:131–142PubMedGoogle Scholar
  115. Orting B, Gruneberg WJ, Sørensen M (1996) Ahipa (Pachyrhizus ahipa (Wedd.) Parodi) in Bolivia. Genet Res Crop Evol 43:435–446Google Scholar
  116. Plaisted RL (1971) A project to duplicate 400 years of potato evolution. N Y Food Life Sci 4:24–26Google Scholar
  117. Plucknett DL (1976) Edible aroids. In: Simmonds NW (ed.) Evolution of crop plants. Longman, London. pp. 10–12Google Scholar
  118. Pool A (1993) Oxalidaceae. In: Brako L, Zarucchi JL (eds) Cataloque of the flowering plants and gymnosperms of Peru. Missouri Botanical Garden, St. Louis, pp 867–875Google Scholar
  119. Purseglove JK (1972) Tropical crops. Monocotyledons I. Longman, LondonGoogle Scholar
  120. Quiros C, Epperson A, Hu J, Holle M (1996) Physiological studies and determination of chromosome number in maca, Lepidium meyenii (Brassicaceae). Econ Bot 50(2):216–223Google Scholar
  121. Quero-Garcı´a J, Noyer JL, Weber A, Perrier X, McKey D, Lebot V (2006) Recombination and clonality in taro (Colocasia esculenta (L.) Schott): implications for the evolution of cultivar diversity. Paper presented at the 14th Triennial Symposium of the International Society for Tropical Root Crops (ISTRC), Thiruvananthapuram, India, 21–26 November 2006Google Scholar
  122. Rea J (1992) Raices andinas. In: Hernandez JE, Bermejo, Leon J (eds). Cultivos marginados, otro perspectiva de 1492 Colección FAO: Produccion y protección vegetal n. 26, RomaGoogle Scholar
  123. Rea J (1995) Informe técnico sobre conservación in situ de raíces y tuberculos andinos. Programa Colaborativo Biodiversidad de Raices y Tuberculos Andinos, Centro Internacional de la Papa-Cooperacion Tecnica Suiza, LimaGoogle Scholar
  124. Rea J, Leon J (1965) La mauka (Mirabilis expansa Ruiz & Pavon), un aporte de la agricultura andina prehispanica de Bolivia. Anales Cientificos (Universidad Agraria, la Molina, Peru) 3(1):38–41Google Scholar
  125. Rea J, Morales D (1980) Catalogo de tuberculos andinos. Ministerio de Asuntos Campesinos y Agropecuarios, Instituto Boliviano de Tecnologia Agropecuaria, Programa de Cultivos Andinos, La PazGoogle Scholar
  126. Reyes Castro G (2006) Studies on cocoyam (Xanthosoma spp.) in Nicaragua, with emphasis on Dasheen mosaic virus. Diss. (sammanfattning/summary) Uppsala: Sveriges lantbruksuniv., Acta Universitatis agriculturae Sueciae, 1652–6880; 2006:7Google Scholar
  127. Reynaldo GV, Moreno U, Black CC (1986) Growth, partitioning, and harvest index of tuber-bearing Solanum genotypes grown in two contrasting Peruvian environments. Plant Physiol 82:103–108Google Scholar
  128. Roa AC, Maya MM, Duque MC, Tohme J, Allem AC, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:741–750Google Scholar
  129. Robinson H (1978) Studies in the Heliantheae (Asteraceae) XII. Re-establishment of the genus Smallanthus. Phytologia 39(1):47–53Google Scholar
  130. Rogers DJ (1965) Some botanical and ethnological considerations of Manihot esculenta. Econ Bot 19(4):369–377Google Scholar
  131. Rogers DJ, Appan SG (1973) Flora neotropica monograph no. 13 Manihot Manihotoides (Euphorbiaceae). Hafner Press, New York, pp 1–272Google Scholar
  132. Rogers DJ, Fleming HS (1973) A monograph of Manihot esculenta with an explanation of the taximetrics methods used. Econ Bot 27:1–113Google Scholar
  133. Rosegrant MW (2009) Roots and tubers: opportunities and challenges under growing resource scarcity. Presentation at ISTRC conference on roots and tubers: the overlooked opportunities, CIP, Lima, 2 Nov 2009Google Scholar
  134. Roullier C, Rossel G, Tay D, Mckey D, Lebot V (2011) Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces. Mol Ecol 20:3963–3977PubMedGoogle Scholar
  135. Salas A, Tay D, Centeno R (2009) Catalogue of the Global FAO-International Treaty ‘in trust’ wild potato collection at the International Potato Center (CIP). In: Pieterse L, Hils U (eds) World catalogue of potato varieties 2009/10. Agrimedia, Clenze. ISBN 3-86037-984-4Google Scholar
  136. Sauer J (1952) Agricultural origins and dispersals. American Geographical Society, New YorkGoogle Scholar
  137. Schmiediche PE, Hawkes JG, Ochoa CM (1982) The breeding of the cultivated potato species Solanum juzepczukii Buk. and S. curtilobum Juz. Et Buk. II. Euphytica 31:695–707Google Scholar
  138. Seminario J (1993) Aspectos etnobotanicos del chago, miso o mauka (Mirabilis expansa R. y P.) en el Peru. Boletin de Lima 86:71–79Google Scholar
  139. Simmonds NW (1964) Studies of the tetraploid potatoes. II. Factor in the evolution of the tuberosum group. J Linn Soc (Bot) 59:43–56Google Scholar
  140. Smith CE (1968) The New World centers of origin of cultivated plants and the archaeological evidence. Econ Bot 22(3):253–266Google Scholar
  141. Sparre B, Anderson L (1991) A taxonomic revision of the Tropaeolaceae. Opera Bot 108:1–140Google Scholar
  142. Sperling C (1987) Systematics of the Basellaceae. Ph.D. dissertation. Harvard University, Cambridge, MAGoogle Scholar
  143. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci USA 102:14694–14699PubMedGoogle Scholar
  144. Spooner DM, Núñez J, Trujillo G, del Rosario HM, Guzmán F, Ghislain M (2007) Extensive simple sequence repeat genotyping of potato landraces supports a major reevaluation of their gene pool structure and classification. Proc Natl Acad Sci USA 104:19398–19403PubMedGoogle Scholar
  145. Sørensen M (1988) A taxonomic revision of the genus Pachyrhizus Rich. ex DC. nom. cons. Nord J Bot 8(2):167–192Google Scholar
  146. Tapia C, Castillo R, Mazon N (1996) Catalogo de recursos geneticos de raices y tuberculos andinos en Ecuador. Instituto Nacional Autonomo de Investigaciones Agropecuarias, Departamento Nacional de Recursos Fitogeneticos y Biotecnologia, QuitoGoogle Scholar
  147. Tello J, Hermann M, Calderon YA (1992) La maca (Lepidium meyenii Walp): cultivo alimenticio potencial para las zonas altoandinas. Boletin de Lima 81:59–66Google Scholar
  148. Terauchi R, Chikaleke VA, Thottapilly GS, Hahn SK (1992) Origin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuclear ribosomal DNA. Theor Appl Genet 83:743–751Google Scholar
  149. The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195Google Scholar
  150. Thompson LG, Mosley-Thompson E, Davis M, Brecher H (2011) Tropical glaciers, recorders and indicators of climate change are disappearing globally. Ann Glaciol 52(59):23–34Google Scholar
  151. Towle MA (1961) The ethnobotany of pre-Columbian Peru. Aldine, ChicagoGoogle Scholar
  152. Ugent D, Peterson W (1988) Archeological remains of potato and sweet potato in Peru. CIP Circular 16:1–10Google Scholar
  153. Ugent D, Pozorski S, Pozorski T (1986) Archeological manioc (Manihot) from coastal Peru. Econ Bot 40:78–102Google Scholar
  154. Ugent D, Dillehay T, Ramirez C (1987) Potato remains from a late Pleistocene settlement in south central Chile. Econ Bot 4:17–27Google Scholar
  155. Umanah E, Hartman R (1973) Chromosome numbers and karyotypes of some Manihot species. J Am Soc Hortic Sci 98:272–274Google Scholar
  156. Uphof JC (1968) Dictionary of economic plants, 2nd edn. Verlag von J Cramer, New YorkGoogle Scholar
  157. Vallenas M (1995) Vigencia del cultivo de Mauka (Mirabilis expansa) en Puno, Perú. En: Resúmenes del Primer Congreso Peruano de Cultivos Andinos “Oscar Blanco Galdós”, 11–16 de setiembre, Huamanga, pp 72–73Google Scholar
  158. Vavilov NI (1992) Origin and geography of cultivated plants: (collected works 1920–1940). In: Dorfeyev V (ed) Cambridge University Press, CambridgeGoogle Scholar
  159. Vivanco F, Arbizu C (1995) Variacion morfológica del ulluco (Ullucus tuberosus Caldas), oca (Oxalis tuberosa Mol.) y mashua (Tropaeolum tuberosum R.&P.). In: Resumenes del Primer Congreso Peruano de Cultivos Andinos ‘Oscar Blanco Galdos’, Universidad Nacional de San Cristobal de Huamanga, Facultad de Ciencias Agrarias, Programa de Investigacion en Cultivos Andinos, Ayacucho, 11–16 setiembre 1995, Cultivos Andinos 5(1):18Google Scholar
  160. Weberbauer A (1945) El mundo vegetal de los andes peruanos. Estacion Experimental Agricola La Molina, Ministerio de Agricultura, LimaGoogle Scholar
  161. Wells JR (1965) A taxonomic study of Polymnia (Compositae). Brittonia 17:144–159Google Scholar
  162. Wilson JE (1984) Cocoyam. In: Goldsworthy PR, Fisher NM (eds) The physiology of tropical field crop. Wiley, New York/London, pp 589–605Google Scholar
  163. Yacovleff E (1933) La jíquima, raíz comestible extinguida en el Peru. Rev Mus Nac (Lima) 2(1):51–66Google Scholar
  164. Yacovleff E, Herrera FL (1934–1935) El mundo vegetal de los antigous peruanos. Rev Mus Hist Nat (Lima) 3(3):243–322, 4(1):31–100Google Scholar
  165. Yen DE (1974) The sweet potato and Oceania. Bishop Mus Bull (Honolulu) 236:1–389Google Scholar
  166. Yen DE (1993) The origins of subsistence agriculture in Oceania and the potential for future tropical food crops. Econ Bot 47:3–14Google Scholar
  167. Zardini E (1991) Ethnobotanical notes on ‘yacon’, Polymnia sonchifolia (Asteraceae). Econ Bot 45(1):72–85Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Genetic Resources Conservation and Characterization DivisionInternational Potato Center (CIP)LimaPeru

Personalised recommendations