Skip to main content

Financial Evaluation of Life Insurance Policies in High Performance Computing Environments

  • Chapter
  • First Online:
  • 1894 Accesses

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 70))

Abstract

The European Directive Solvency II has increased the request of stochastic asset–liability management models for insurance undertakings. The Directive has established that insurance undertakings can develop their own “internal models” for the evaluation of values and risks in the contracts. In this chapter, we give an overview on some computational issues related to internal models. The analysis is carried out on “Italian style” profit-sharing life insurance policies (PS policy) with minimum guaranteed return. We describe some approaches for the development of accurate and efficient algorithms for their simulation. In particular, we discuss the development of parallel software procedures. Main computational kernels arising in models employed in this framework are stochastic differential equations (SDEs) and high-dimensional integrals. We show how one can develop accurate and efficient procedures for PS policies simulation applying different numerical methods for SDEs and techniques for accelerating Monte Carlo simulations for the evaluation of the integrals. Moreover, we show that the choice of an appropriate probability measure provides a significative gain in terms of accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the following formulas, for sake of brevity, it is understood that all the expected values are conditional expectations.

  2. 2.

    We do not deal with a ratings-based model, in the form of [21, 22, 31]. We do not consider the potential of upgrades or downgrades of the underlying bonds, which would result in a shift of the default intensity to that of the new rating. We use constant credit quality corporate bond indices to estimate the dynamics of the default intensities.

  3. 3.

    We refer to criteria applied by ECB when selecting bonds for the estimation of yield curves (www.ecb.int/stats/money/yc/html/index.en.html).

  4. 4.

    Source Bloomberg.

References

  1. G. Barone-Adesi, E. Barone, G. Castagna, Pricing bonds and bond options with default risk. Eur. Financ. Manag. 4, 231–282 (1998)

    Article  Google Scholar 

  2. F. Black, M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81(3), 637–654 (1973)

    Article  Google Scholar 

  3. D. Brigo, A. Alfonsi, Credit default swaps calibration and option pricing with the SSRD stochastic intensity and interest-rate model. Finance Stochast. 9(1), 29–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Brigo, F. Mercurio, Interest Rate Models: Theory and Practice (Springer, New York, 2006)

    MATH  Google Scholar 

  5. S.J. Brown, P.H. Dybvig, The empirical implications of the Cox, Ingersoll, Ross theory of the term structure of interest rates. J. Finance 41(3), 617–630 (1986)

    Google Scholar 

  6. H. Bulhmann, New math for life insurance. Astin Bull. 32(2), 209–211 (2002)

    Article  Google Scholar 

  7. R. Caflisch, W. Morokoff, A. Owen, Valuation of mortgage-backed securities using Brownian bridges to reduce effective dimension. J. Comput. Finance 1, 27–46 (1998)

    Google Scholar 

  8. G. Castellani, L. Passalacqua, Applications of distributed and parallel computing in the solvency II framework: the DISAR system, in Euro-Par 2010 Parallel Processing Workshops, ed. by M.R. Guarracino, F. Vivien, J.L. Träff, M. Cannataro, M. Danelutto, A. Hast, F. Perla, A. Knüpfer, B. Di Martino, M. Alexander. Lecture Notes in Computer Science, vol. 6586 (Springer, Berlin, 2011), pp. 413–421

    Google Scholar 

  9. G. Castellani, M. De Felice, F. Moriconi, C. Pacati, Embedded Value in Life Insurance. Working paper (2005)

    Google Scholar 

  10. G. Castellani, M. De Felice, F. Moriconi, Manuale di Finanza, vol. III. Modelli Stocastici e Contratti Derivati (Società editrice il Mulino, Bologna, 2006)

    Google Scholar 

  11. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, P. Zanetti, On high performance software development for the numerical simulation of life insurance policies, in Numerical Methods for Finance, ed. by J. Miller, I.D. Edelman, J. Appleby (Chapman and Hall/CRC, Dublin, 2007), pp. 87–111

    Google Scholar 

  12. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, P. Zanetti, On parallel asset-liability management in life insurance: A forward risk-neutral approach. Parallel Comput. 36(7), 390–402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Corsaro, Z. Marino, F. Perla, P. Zanetti, Measuring default risk in a parallel ALM software for life insurance portfolios, in Euro-Par 2010 Parallel Processing Workshops, ed. by M.R. Guarracino, F. Vivien, J.L. Träff, M. Cannataro, M. Danelutto, A. Hast, F. Perla, A. Knüpfer, B. Di Martino, M. Alexander. Lecture Notes in Computer Science, vol. 6586 (Springer, Berlin, 2011), pp. 471–478

    Google Scholar 

  14. S. Corsaro, P.L. De Angelis, Z. Marino, F. Perla, Participating life insurance policies: An accurate and efficient parallel software for COTS clusters. Comput. Manag. Sci. 8(3), 219–236 (2011)

    Article  MathSciNet  Google Scholar 

  15. J.C. Cox, J.E. Ingersoll, S.A Ross. A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Google Scholar 

  16. G. Deelstra, F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochast. Model Data Anal. 14(1), 77–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. De Felice, F. Moriconi, Market consistent valuation in life insurance: Measuring fair value and embedded options. Giornale dell’Istituto Italiano degli Attuari 67, 95–117 (2004)

    Google Scholar 

  18. M. De Felice, F. Moriconi, Market based tools for managing the life insurance company. Astin Bull. 35(1), 79–111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the taking-up and pursuit of the business of Insurance and Reinsurance. Official Journal of the European Union 335(52), 1–155 (2009)

    Google Scholar 

  20. D. Duffie, Credit risk modeling with affine processes. J. Bank. Finance 29, 2751–2802 (2005)

    Article  Google Scholar 

  21. D. Duffie, K.J. Singleton, Modeling term structures of defaultable bonds. Rev. Financ. Stud. 12(4), 686–720 (1999)

    Article  Google Scholar 

  22. D. Duffie, K.J. Singleton, Credit Risk: Pricing, Measurement, and Management (Princeton University Press, Princeton, 2003)

    Google Scholar 

  23. H. Geman, N. El Karoui, J.C. Rochet. Changes of numéraire, changes of probability measure and option pricing. J. Appl. Probab. 32(2), 443–458 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Glasserman, Monte Carlo Methods in Financial Engineering (Springer, New York, 2004)

    MATH  Google Scholar 

  25. D. Higham, X. Mao, Convergence of Monte Carlo simulations involving the mean-reverting square root process. J. Comput. Finance 8(3), 35–62 (2005)

    Google Scholar 

  26. J. Hull, A. White, One-factor interest rate models and the valuation of interest rate derivative securities. J. Financ. Quant. Anal. 28, 235–254 (1993)

    Article  Google Scholar 

  27. IAIS, Guidance Paper on the Use of Internal Models for Regulatory Capital Purpose, International Association of Insurance Supervisors, Basel, Guidance paper no. 2.6 (2008)

    Google Scholar 

  28. J. Jamshidian, An exact bond option formula. J. Finance 44(1), 205–209 (1989)

    Article  Google Scholar 

  29. R.A. Jarrow, D. Lando, S.M. Turnbull, A Markov model for the term structure of credit risk spreads. Rev. Finan. Stud. 10(2), 481–523 (1997)

    Article  Google Scholar 

  30. P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, 1992)

    MATH  Google Scholar 

  31. D. Lando, On Cox processes and credit risky securities. Rev. Derivatives Res. 2(2–3), 99–120 (1998)

    Google Scholar 

  32. D. Lando, Credit Risk Modeling, Theory and Applications (Princeton University Press, Princeton, 2004)

    Google Scholar 

  33. R. Lord, R. Koekkoek, D. van Dijk, A comparison of biased simulation schemes for stochastic volatility models. Quant. Finance 10(2), 177–194 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Mascagni, A. Srinivasan, Algorithm 806: SPRNG: A scalable library for pseudorandom number generation. ACM Trans. Math. Software 26, 436–461 (2000)

    Article  Google Scholar 

  35. M. Mascagni, S.A. Cuccaro, D.V. Pryor, M.L. Robinson, A fast, high-quality, and reproducible lagged-Fibonacci pseudorandom number generator. J. Comput. Phys. 15, 211–219 (1995)

    Article  MathSciNet  Google Scholar 

  36. G.N. Milstein, A method of second-order accuracy integration of stochastic differential equations. Theor. Probab. Appl. 23, 396–401 (1978)

    Article  Google Scholar 

  37. G.N. Milstein, E. Platen, H. Schurz, Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35(3), 1010–1019 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Pacati, Estimating the Euro term structure of interest rates. Research Group on “Models for Mathematical Finance”, Working Paper 32 (1999)

    Google Scholar 

  39. S. Paskov, J. Traub, Faster valuation of financial derivatives. J. Portfolio Manag. 22(1), 113–123 (1995)

    Article  Google Scholar 

  40. P.J. Schonbucher, Credit Derivatives Pricing Models – Models, Pricing and Implementation (Wiley, New York, 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Corsaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Corsaro, S., De Angelis, P.L., Marino, Z., Zanetti, P. (2012). Financial Evaluation of Life Insurance Policies in High Performance Computing Environments. In: Doumpos, M., Zopounidis, C., Pardalos, P. (eds) Financial Decision Making Using Computational Intelligence. Springer Optimization and Its Applications, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3773-4_11

Download citation

Publish with us

Policies and ethics