Skip to main content

Fuzzy Portfolio Selection Models: A Numerical Study

  • Chapter
  • First Online:
Financial Decision Making Using Computational Intelligence

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 70))

Abstract

In this chapter we analyze the numerical performance of some possibilistic models for selecting portfolios in the framework of risk-return trade-off. Portfolio optimization deals with the problem of how to allocate wealth among several assets, taking into account the uncertainty involved in the behavior of the financial markets. Different approaches for quantifying the uncertainty of the future return on the investment are considered: either assuming that the return on every individual asset is modeled as a fuzzy number or directly measuring the uncertainty associated with the return on a given portfolio. Conflicting goals representing the uncertain return on and risk of a fuzzy portfolio are analyzed by means of possibilistic moments: interval-valued mean, downside-risk, and coefficient of skewness. Thus, several nonlinear multi-objective optimization problems for determining the efficient frontier could appear. In order to incorporate possible trading requirements and investor’s wishes, some constraints are added to the optimization problems, and the effects of their fulfillment on the corresponding efficient frontiers are analyzed using a data set from the Spanish stock market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.P. Anagnostopoulos, G. Mamanis, A portfolio optimization model with three objectives and discrete variables. Comp. Oper. Res. 37, 1285–1297 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arenas, A. Bilbao, M.V. Rodríguez, A fuzzy goal programming approach to portfolio selection. Eur. J. Oper. Res. 133, 287–297 (2001)

    Article  MATH  Google Scholar 

  3. E. Ballestero, C. Romero, Portfolio selection: A compromise programming solution. J. Oper. Res. Soc. 47, 1377–1386 (1996)

    MATH  Google Scholar 

  4. M. Bazaraa, H. Sherali, C. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd edn. (Wiley, New York, 2006)

    Book  MATH  Google Scholar 

  5. R. Bellman, L.A. Zadeh, Decision-making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970)

    Article  MathSciNet  Google Scholar 

  6. J.D. Bermúdez, J.V. Segura, E. Vercher, A fuzzy ranking strategy for portfolio selection applied to the Spanish stock market, in Proceedings of the 2007 IEEE International Conference on Fuzzy Systems (2007), pp. 787–790

    Google Scholar 

  7. J.D. Bermúdez, J.V. Segura, E. Vercher, A multi-objective genetic algorithm for cardinality constrained fuzzy portfolio selection. Fuzzy Set. Syst. 188, 16–26 (2012)

    Article  MATH  Google Scholar 

  8. R. Bhattacharyya, S. Kar, D.D. Majumber, Fuzzy Mean-Variance-skewness portfolio selection models by interval analysis. Comp. Math. Appl. 61, 126–137 (2011)

    Article  MATH  Google Scholar 

  9. S.P. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  10. W. Briec, K.Kerstens, O. Jokund, Mean-variance-skewness portfolio performance gauging. A general shortage function and dual approach. Manag. Sci. 53, 135–149 (2007)

    MATH  Google Scholar 

  11. C. Carlsson, R. Fullér, On possibilistic mean value and variance of fuzzy numbers. Fuzzy Set. Syst. 122, 315–326 (2001)

    Article  MATH  Google Scholar 

  12. C. Carlsson, R. Fullér, P. Majlender, A possibilistic approach to selecting portfolios with highest utility score. Fuzzy Set. Syst. 131, 13–21 (2002)

    Article  MATH  Google Scholar 

  13. S. Chanas, On the interval approximation of a fuzzy number. Fuzzy Set. Syst. 122, 353–356 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. T.-J. Chang, N. Meade, J.E. Beasley, Y.M. Sharaiha, Heuristics for cardinality constrained portfolio optimization. Comp. Oper. Res. 27, 1271–1302 (2000)

    Article  MATH  Google Scholar 

  15. T.-J. Chang, S.-Ch. Yang, K.-J. Chang, Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst. Appl. 36, 10529–10537 (2009)

    Article  Google Scholar 

  16. V. Chankong, Y.Y. Haimes, Multiobjective Decision Making: Theory and Methodology (North Holland, New York, 1983)

    MATH  Google Scholar 

  17. C.A.C. Coello, Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

    Article  Google Scholar 

  18. M. Delgado, M.A. Vila, W. Voxman, On a canonical representation of fuzzy numbers. Fuzzy Set. Syst. 93, 125–135 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Dubois, H. Prade, The mean value of a fuzzy number. Fuzzy Set. Syst. 24, 279–300 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Dubois, H. Prade, Fuzzy numbers: an overview, in Analysis of Fuzzy Information, ed. by J. Bezdek (CRC Press, Boca Raton, 1988), pp. 3–39

    Google Scholar 

  21. D. Dubois, H. Prade, Fundamentals of Fuzzy Sets (Kluwer, Boston, 2000)

    Book  MATH  Google Scholar 

  22. Y. Fang, K.K. Lai, S.Y. Wang, Fuzzy portfolio optimization, in Lecture Notes in Economics and Mathematical Systems, vol. 609 (Springer, Berlin, 2008)

    Book  Google Scholar 

  23. R. Fullér, P. Majlender, On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Set. Syst. 136, 363–374 (2003)

    Article  MATH  Google Scholar 

  24. P. Grzegorzewski, Nearest interval approximation of a fuzzy number. Fuzzy Set. Syst. 130, 321–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Hasuike, H. Katagiri, H. Ishii, Portfolio selection problems with random fuzzy variable returns. Fuzzy Set. Syst. 160, 2579–2596 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence (University of Michigan Press, Michigan, 1975)

    Google Scholar 

  27. X. Huang, A new perspective for optimal portfolio selection with random fuzzy returns. Inform. Sci. 177, 5404–5414 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Jana, T.K. Roy, S.K. Mazumder, Multi-objective possibilistic model for portfolio selection with transaction cost. J. Comput. Appl. Math. 228, 188–196 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. J.J. Júdice, C.O. Ribeiro, J.P. Santos, A comparative analysis of the Markowitz and Konno portfolio selection models. Investigaão Operacional 23(2), 211–224 (2003)

    Google Scholar 

  30. H. Konno, K. Suzuki, A mean-variance-skewness optimization model. J. Oper. Res. Soc. Jpn. 38, 137–187 (1995)

    Google Scholar 

  31. H. Konno, H. Yamazaki, Mean-absolute deviation portfolio optimization model and its application to Tokyo stock market. Manag. Sci. 37, 519–531 (1991)

    Article  Google Scholar 

  32. H. Konno, H. Waki, A. Yuuki, Portfolio optimization under lower partial risk measures. Asia Pac. Financ. Market 9, 127–140 (2002)

    Article  MATH  Google Scholar 

  33. V. Lacagnina, A. Pecorella, A stochastic soft constraints fuzzy model for a portfolio selection problem. Fuzzy Set. Syst. 157, 1317–1327 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Lai, Portfolio selection with skewness: A multiple-objective approach. Rev. Quant. Finance Account. 1, 293–305 (1991)

    Article  Google Scholar 

  35. M. Laumanns, E. Zitzler, L. Thiele, A unified model for multi-objective evolutionary algorithms with elitism, in Proceedings of the 2000 Congress on Evolutionary Computation (IEEE Press, Piscataway, 2000), pp. 46–53

    Google Scholar 

  36. T. León, E. Vercher, Solving a class of fuzzy linear programs by using semi-infinite programming techniques. Fuzzy Set. Syst. 146, 235–252 (2004)

    Article  MATH  Google Scholar 

  37. T. León, V. Liern, E. Vercher, Viability of infeasible portfolio selection problems: A fuzzy approach. Eur. J. Oper. Res. 139, 178–189 (2002)

    Article  MATH  Google Scholar 

  38. T. León, V. Liern, P. Marco, J.V. Segura, E. Vercher, A downside risk approach for the portfolio selection problem with fuzzy returns. Fuzzy Econ. Rev. 9, 61–77 (2004)

    Google Scholar 

  39. H. Levy, H.M. Markowitz, Approximating expected utility by a function of mean and variance. Am. Econ. Rev. 69, 308–317 (1975)

    Google Scholar 

  40. X. Li, Z, Qin, S. Kar, Mean-Variance-skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202, 239–247 (2010)

    Google Scholar 

  41. C.C. Lin, T.Y. Liu, Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185, 393–404 (2007)

    Article  Google Scholar 

  42. J. Lintner, The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Rev. Econ. Stat. 47, 13–37 (1965)

    Article  Google Scholar 

  43. D. Maringer, H. Kellerer, Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum 25(4), 481–495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. H.M. Markowitz, Portfolio selection. J. Finance 7, 77–91 (1952)

    Google Scholar 

  45. H.M. Markowitz, Portfolio Selection: Efficient Diversification of Investments (Wiley, New York, 1959)

    Google Scholar 

  46. F.J. Ortí, J. Sáez, A. Terceño, On the treatment of uncertainty in portfolio selection. Fuzzy Econ. Rev. 7, 59–80 (2002)

    Google Scholar 

  47. C. Papahristodoulou, E. Dotzauer, Optimal portfolios using linear programming models. J. Oper. Res. Soc. 55, 1169–1177 (2004)

    Article  MATH  Google Scholar 

  48. S. Ramaswamy, Portfolio Selection Using Fuzzy Decision Theory. BIS Working Paper no. 59, Bank for International Settlements (1998)

    Google Scholar 

  49. A. Saedifar, E. Pasha, The possibilistic moments of fuzzy numbers and their applications. J. Comput. Appl. Math. 223, 1028–1042 (2009)

    Article  MathSciNet  Google Scholar 

  50. W.F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk. J. Finance 19, 425–442 (1964)

    Google Scholar 

  51. Y. Simaan, Estimation risk in portfolio selection: The mean variance model versus the mean absolute deviation model. Manag. Sci. 43, 1437–1446 (1997)

    Article  Google Scholar 

  52. R. Slowinski, Fuzzy Sets in Decision Analysis, Operations Research and Statistics (Kluwer, Boston, 1998)

    Book  MATH  Google Scholar 

  53. H. Soleimani, H.R. Golmakani, M.H. Salimi, Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm. Expert Syst. Appl. 36, 5058–5063 (2009)

    Article  Google Scholar 

  54. F. Sortino, R. van der Meer, Downside risk. J. Portfolio Manag. 17, 27–32 (1991)

    Article  Google Scholar 

  55. M.G. Speranza, Linear programming model for portfolio optimization. Finance 14, 107–123 (1993)

    Google Scholar 

  56. R.E. Steuer, Y. Qi, M. Hirschberger, Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection. Ann. Oper. Res. 152, 297–317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Tamiz, Multi-objective programming and goal programming, in Lecture Notes in Economics and Mathematical Systems, vol. 432 (Springer, Berlin, 1996)

    Book  Google Scholar 

  58. T. Tanaka, P. Guo, Possibilistic data analysis and its application to portfolio selection problems. Fuzzy Econ. Rev. 2, 2–23 (1999)

    Google Scholar 

  59. E. Vercher, Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming. J. Comput. Appl. Math. 217, 381–393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. E. Vercher, J.D. Bermúdez, A possibilistic mean-downside risk-skewness model for efficient portfolio selection. Technical Report: TR Departament Estadística i Investigació Operativa, Universitat de València (2011)

    Google Scholar 

  61. E. Vercher, J.D. Bermúdez, J.V. Segura, Fuzzy portfolio optimization under downside risk measures. Fuzzy Set. Syst. 158, 769–782 (2007)

    Article  MATH  Google Scholar 

  62. S.Y. Wang, Y.S. Xia, Portfolio selection and asset pricing, in Lecture Notes in Economics and Mathematical Systems, vol. 514 (Springer, Berlin, 2002)

    Book  Google Scholar 

  63. J. Watada, Fuzzy portfolio selection and its applications to decision making. Tatra Mountains Mathematical Publication 13, 219–248 (1997)

    MathSciNet  MATH  Google Scholar 

  64. P. Xidonas, G. Mavrotas, C. Zopounidis, J. Psarras, IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection. Eur. J. Oper. Res. 210, 398–409 (2010)

    Article  MathSciNet  Google Scholar 

  65. L.A. Zadeh, Fuzzy sets. Inf. Contr. 8, 338–353 (1965)

    MathSciNet  MATH  Google Scholar 

  66. L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Set. Syst. 1, 3–28 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  67. H.J. Zimmermann, Fuzzy Programming and linear programming with several objective functions. Fuzzy Set. Syst. 1, 45–55 (1978)

    Article  MATH  Google Scholar 

  68. H.J. Zimmermann, Fuzzy Set Theory and its Applications, 4th edn. (Kluwer, Boston, 2001)

    Book  Google Scholar 

  69. C. Zopounidis, M. Doumpos, Multi-criteria decision aid in financial decision making: Methodologies and literature review. J. Multi-Criteria Decis. Anal. 11, 167–186 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Ministerio de Ciencia e Innovación of Spain under grant number MTM2008-03993. This manuscript was prepared during a research stay of E. Vercher at the Centre for Interdisciplinary Mathematics (CIM), Uppsala University (Sweden), supported by the Vicerectorat d’Investigació i Política Científica, University of València (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enriqueta Vercher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vercher, E., Bermúdez, J.D. (2012). Fuzzy Portfolio Selection Models: A Numerical Study. In: Doumpos, M., Zopounidis, C., Pardalos, P. (eds) Financial Decision Making Using Computational Intelligence. Springer Optimization and Its Applications, vol 70. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3773-4_10

Download citation

Publish with us

Policies and ethics