Skip to main content

Abstract

Diuretics are among the most commonly prescribed pharmacologic agents in the world. In this chapter, we provide a clinically focused review of the major classes of diuretics, including the aquaretics, a newer class of agents that enhance the urinary excretion of solute-free water. We review key factors that influence diuretic efficacy, including the mechanisms underlying natriuretic adaptation and resistance. Lastly, we discuss approaches to the treatment of common generalized edematous states, including heart failure, cirrhosis, nephrotic syndrome, and chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Runyon BA. Practice guidelines Committee AAftSoLD. Management of adult patients with ascites due to cirrhosis. Hepatology. 2004;39(3): 841–56.

    PubMed  Google Scholar 

  2. Okusa MD, Ellison DH. Physiology and pathophysiology of diuretic action. In: Alpern RJ, Hebert SC, editors. The kidney: physiology and pathophysiology. 4th ed. Amsterdam: Elsevier; 2008. p. 1051–984.

    Google Scholar 

  3. Schwartz GJ. Physiology and molecular biology of renal carbonic anhydrase. J Nephrol. 2002;15 Suppl 5:S61–74.

    PubMed  CAS  Google Scholar 

  4. Schwartz GJ, Kittelberger AM, Barnhart DA, Vijayakumar S. Carbonic anhydrase IV is expressed in H(+)-secreting cells of rabbit kidney. Am J Physiol Renal Physiol. 2000;278(6):F894–904.

    PubMed  CAS  Google Scholar 

  5. Soleimani M, Aronson PS. Ionic mechanism of Na+-HCO-3 cotransport in rabbit renal basolateral membrane vesicles. J Biol Chem. 1989;264:18302–8.

    PubMed  CAS  Google Scholar 

  6. Pastorekova S, Parkkila S, Pastorek J, Supuran CT. Carbonic anhydrases: current state of the art, therapeutic applications and future prospects. J Enzyme Inhib Med Chem. 2004;19(3):199–229.

    PubMed  CAS  Google Scholar 

  7. DuBose TD, Lucci MS. Effect of carbonic anhydrase inhibition on superficial and deep nephron bicarbonate reabsorption inthe rat. J Clin Invest. 1983;71:55–65.

    PubMed  CAS  Google Scholar 

  8. Ellison DH, Okusa MD, Schrier RW. Mechanisms of diuretic action. In: Schrier RW, editor. Diseases of the kidney and urinary tract. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2007. p. 2122–50.

    Google Scholar 

  9. Cogan MG, Maddox DA, Warnock DG, Lin ET, Rector Jr FC. Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat. Am J Physiol. 1979;237:F447–54.

    PubMed  CAS  Google Scholar 

  10. Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J. Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol. 1999;277(3 Pt 2):F447–53.

    PubMed  CAS  Google Scholar 

  11. Buckalew Jr VM, Walker BR, Puschett JB, Goldberg M. Effects of increased sodium delivery on distal tubular sodium reabsorption with and without volume expansion in man. J Clin Invest. 1970;49:2336–44.

    PubMed  CAS  Google Scholar 

  12. Velázquez H, Wright FS. Control by drugs of renal potassium handling. Ann Rev Pharmacol Toxicol. 1986;26:293–309.

    Google Scholar 

  13. Neto M, Pilloff B, Simon J. Dissolution of renal uric acid calculus with allopurinal and alkalization of urine: a case report. J Urol. 1976;115(6):740–1.

    PubMed  CAS  Google Scholar 

  14. Prescott LF, Balali-Mood M, Critchley JA, Johnstone AF, Proudfoot AT. Diuresis or urinary alkalinization for salicylate poisoning? British Med J. 1982;285: 1383–6.

    CAS  Google Scholar 

  15. Grissom CK, Roach RC, Sarnquist FH, Hackett PH. Acetazolamide in the treatment of acute mountain sickenss: clinical efficacy and effect on gas. Ann Intern Med. 1992;116:461–5.

    PubMed  CAS  Google Scholar 

  16. Parfitt AM. Acetazolamide and sodium bicarbonate induced nehrocalcinosis and nephrolithiasis; relationship to citrate and calcium excretion. Arch Intern Med. 1969;124:736–40.

    PubMed  CAS  Google Scholar 

  17. Shankar SS, Brater DC. Loop diuretics: from the Na-K-2Cl transporter to clinical use. Am J Physiol Renal Physiol. 2003;284(1):F11–21.

    PubMed  CAS  Google Scholar 

  18. Reeves WB, Andreoli TE. Sodium chloride transport in the loop of Henle, distal convoluted tubule, and collecting duct. In: Alpern RJ, Hebert SC, editors. The kidney: physiology and pathophysiology. Amsterdam: Elsevier; 2008. p. 849–88.

    Google Scholar 

  19. Isenring P, Forbush III B. Ion and bumetanide binding by the Na-K-Cl cotransporter. Importance of transmembrane domains. J Biol Chem. 1997;272: 24556–62.

    PubMed  CAS  Google Scholar 

  20. Obermüller N, Kunchaparty S, Ellison DH, Bachmann S. Expression of the Na-K-2Cl cotransporter by macula densa and thick ascending limb cells of rat and rabbit nephron. J Clin Invest. 1996;98:635–40.

    PubMed  Google Scholar 

  21. Schnermann J, Homer W. Smith Award lecture. The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance. J Am Soc Nephrol. 2003;14(6):1681–94.

    PubMed  Google Scholar 

  22. Skott O, Briggs JP. Direct demonstration of macula densa-mediated renin secretion. Science. 1987;237(4822):1618–20.

    PubMed  CAS  Google Scholar 

  23. Francis GS, Siegel RM, Goldsmith SR, Olivari MT, Levine B, Cohn JN. Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Ann Intern Med. 1985;103: 1–6.

    PubMed  CAS  Google Scholar 

  24. Larsen FF. Haemodynamic effects of high or low doses of furosemide in acute myocardial infarction. Eur Heart J. 1988;9(2):125–31.

    PubMed  CAS  Google Scholar 

  25. Goldsmith SR, Francis G, Cohn JN. Attenuation of the pressor response to intravenous furosemide by angiotensin converting enzyme inhibition in congestive heart failure. Am J Cardiol. 1989;64:1382–5.

    PubMed  CAS  Google Scholar 

  26. Ellison DH. Diuretic therapy and resistance in congestive heart failure. Cardiology. 2001;96(3–4):132–43.

    PubMed  CAS  Google Scholar 

  27. Hawkins RG, Houston MC. Is population-wide diuretic use directly associated with the incidence of end-stage renal disease in the United States? A hypothesis. Am J Hypertens. 2005;18(6):744–9.

    PubMed  Google Scholar 

  28. Sun D, Samuelson LC, Yang T, et al. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA. 2001;98(17):9983–8.

    PubMed  CAS  Google Scholar 

  29. Wright FS, Schnermann J. Interference with feedback control of glomerular filtration rate by furosemide, triflocin, and cyanide. J Clin Invest. 1974;53:1695–708.

    PubMed  CAS  Google Scholar 

  30. Body JJ. Hypercalcemia of malignancy. Semin Nephrol. 2004;24(1):48–54.

    PubMed  Google Scholar 

  31. Vasko MR, Brown-Cartwright D, Knochel JP, Nixon JV, Brater DC. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985;102:314–8.

    PubMed  CAS  Google Scholar 

  32. Brater DC. Diuretic therapy. N Engl J Med. 1998;339:387–95.

    PubMed  CAS  Google Scholar 

  33. Cannon PJ, Heinemann HO, Albert MS, Laragh JH, Winters RW. “Contraction” alkalosis after diuresis of edematous patients with ethacrynic acid. Ann Intern Med. 1965;62:979–90.

    PubMed  CAS  Google Scholar 

  34. Mizuta K, Adachi M, Iwasa KH. Ultrastructural localization of the Na-K-Cl cotransporter in the lateral wall of the rabbit cochlear duct. Hear Res. 1997;106(1–2):154–62.

    PubMed  CAS  Google Scholar 

  35. Ryback LP. Ototoxicity of loop diuretics. Otolaryngol Clin North Am. 1993;26:829–44.

    Google Scholar 

  36. Star RA. Ototoxicity. Academic Press: San Diego; 1997. p. 637–42.

    Google Scholar 

  37. Reilly RF, Ellison DH. Mammalian distal tubule: physiology, pathophysiology, and molecular anatomy. Physiol Rev. 2000;80(1):277–313.

    PubMed  CAS  Google Scholar 

  38. Meneton P, Loffing J, Warnock DG. Sodium and potassium handling by the aldosterone-sensitive distal nephron: the pivotal role of the distal and connecting tubule. Am J Physiol Renal Physiol. 2004;287(4):F593–601.

    PubMed  CAS  Google Scholar 

  39. Beaumont K, Vaughn DA, Fanestil DD. Thiazide diuretic drug receptors in rat kidney: identification with [3H]metolazone. Proc Natl Acad Sci. 1988;85:2311–4.

    PubMed  CAS  Google Scholar 

  40. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288(23):2981–97.

    Google Scholar 

  41. Kunau Jr RT, Weller DR, Webb HL. Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest. 1975;56(2):401–7.

    PubMed  CAS  Google Scholar 

  42. Okusa MD, Erik A, Persson G, Wright FS. Chlorothiazide effect on feedback-mediated control of glomerular filtration rate. Am J Physiol. 1989;257:F137–44.

    PubMed  CAS  Google Scholar 

  43. Walter SJ, Shirley DG. The effect of chronic hydrochlorothiazide administration on renal function in the rat. Clin Sci (Lond). 1986;70(4):379–87.

    CAS  Google Scholar 

  44. Prevention and treatment of kidney stones. A consensus conference. JAMA. 1988;260:977–81.

    Google Scholar 

  45. Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest. 2005;115(6):1651–8.

    PubMed  CAS  Google Scholar 

  46. Belge H, Gailly P, Schwaller B, et al. Renal expression of parvalbumin is critical for NaCl handling and response to diuretics. Proc Natl Acad Sci USA. 2007;104(37):14849–54.

    PubMed  CAS  Google Scholar 

  47. Ljunghall S, Backman U, Danielson BG, Fellstrom B, Johansson G, Wikstrom B. Calcium and magnesium metabolism during long-term treatment with thiazides. Scand J Urol Nephrol. 1981;15(3): 257–62.

    PubMed  CAS  Google Scholar 

  48. Ellison DH. Divalent cation transport by the distal nephron: insights from Bartter’s and Gitelman’s syndromes. Am J Physiol Renal Physiol. 2000;279(4):F616–25.

    PubMed  CAS  Google Scholar 

  49. Pluznick JL, Wei P, Carmines PK, Sansom SC. Renal fluid and electrolyte handling in BKCa-beta1−/− mice. Am J Physiol Renal Physiol. 2003;284(6): F1274–9.

    PubMed  CAS  Google Scholar 

  50. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18(10):2649–52.

    PubMed  Google Scholar 

  51. Brater DC. Diuretic pharmacokinetics and pharmacodynamics. In: Seldin DW, Giebisch G, editors. Diuretic agents: clinical physiology and pharmacology. San Diego: Academic Press; 1997. p. 189–208.

    Google Scholar 

  52. Carter BL, Ernst ME, Cohen JD. Hydrochlorothiazide versus chlorthalidone: evidence supporting their interchangeability. Hypertension. 2004;43(1):4–9.

    PubMed  CAS  Google Scholar 

  53. Ernst ME, Carter BL, Goerdt CJ, et al. Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure. Hypertension. 2006;47(3):352–8.

    PubMed  CAS  Google Scholar 

  54. Austin PC, Mamdani MM, Tu K, Zwarenstein M. Changes in prescribing patterns following publication of the ALLHAT trial. JAMA. 2004;291(1): 44–5.

    PubMed  CAS  Google Scholar 

  55. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–72.

    PubMed  CAS  Google Scholar 

  56. Kim GH, Lee JW, Oh YK, et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na–Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15(11):2836–43.

    PubMed  CAS  Google Scholar 

  57. Cesar KR, Magaldi AJ. Thiazide induces water absorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Physiol. 1999;277(5 Pt 2):F756–60.

    PubMed  CAS  Google Scholar 

  58. Chow KM, Szeto CC, Wong TY, Leung CB, Li PK. Risk factors for thiazide-induced hyponatraemia. QJM. 2003;96(12):911–7.

    PubMed  CAS  Google Scholar 

  59. Friedman E, Shadel M, Halkin H, Farfel Z. Thiazide-induced hyponatremia: reproducibility by single dose rechallenge and an analysis of pathogenesis. Ann Intern Med. 1989;110:24–30.

    PubMed  CAS  Google Scholar 

  60. Harper R, Ennis CN, Sheridan B, Atkinson AB, Johnston GD, Bell PM. Effects of low dose versus conventional dose thiazide diuretic on insulin action in essential hypertension. BMJ. 1994;309:226–30.

    PubMed  CAS  Google Scholar 

  61. Carlsen JE, Kober L, Torp-Pedersen C, Johansen P. Relation between dose of bendrofluazide, antihypertensive effect, and adverse biochemical effects. BMJ. 1990;300:975–8.

    PubMed  CAS  Google Scholar 

  62. Helderman JH, Elahi D, Andersen DK, et al. Prevention of the glucose intolerance of thiazide diuretics by maintenance of body potassium. Diabetes 1983;32:106–11.

    Google Scholar 

  63. Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension. 2006;48(2):219–24.

    PubMed  CAS  Google Scholar 

  64. Schild L. The epithelial sodium channel: from molecule to disease. Rev Physiol Biochem Pharmacol. 2004;151:93–107.

    PubMed  CAS  Google Scholar 

  65. McCormick JA, Bhalla V, Pao AC, Pearce D. SGK1: a rapid aldosterone-induced regulator of renal sodium reabsorption. Physiology (Bethesda). 2005;20:134–9.

    CAS  Google Scholar 

  66. Couette B, Lombes M, Baulieu E-E, Rafestin-Oblin M-E. Aldosterone antagonists destablilize the mineralocorticoid receptor. Biochem J. 1992;282:697–702.

    PubMed  CAS  Google Scholar 

  67. Delyani JA. Mineralocorticoid receptor antagonists: the evolution of utility and pharmacology. Kidney Int. 2000;57(4):1408–11.

    PubMed  CAS  Google Scholar 

  68. Busch AE, Suessbrich H, Kunzelmann K, et al. Blockade of epithelial Na+ channels by triamterene-underlying mechanisms and molecular basis. Pflugers Arch. 1996;432:760–6.

    PubMed  CAS  Google Scholar 

  69. Kashlan OB, Sheng S, Kleyman TR. On the interaction between amiloride and its putative alpha-subunit epithelial Na+ channel binding site. J Biol Chem. 2005;280(28):26206–15.

    PubMed  CAS  Google Scholar 

  70. Liew D, Krum H. Aldosterone receptor antagonists for hypertension: what do they offer? Drugs. 2003;63(19):1963–72.

    PubMed  CAS  Google Scholar 

  71. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    PubMed  CAS  Google Scholar 

  72. Pitt B, Williams G, Remme W, et al. The EPHESUS trial: eplerenone in patients with heart failure due to systolic dysfunction complicating acute myocardial infarction. Eplerenone Post-AMI Heart Failure Efficacy and Survival Study. Cardiovasc Drugs Ther. 2001;15(1):79–87.

    PubMed  CAS  Google Scholar 

  73. Ahmed A, Zannad F, Love TE, et al. A propensity-matched study of the association of low serum ­potassium levels and mortality in chronic heart failure. Eur Heart J. 2007;28(11):1334–43.

    PubMed  CAS  Google Scholar 

  74. Perez-Ayuso RM, Arroyo V, Planas R, et al. Randomized comparative study of efficacy of furosemide versus spironolactone in nonazotemic cirrhosis with ascites. Relationship between the diuretic response an the activity of the renin-aldosterone system. Gastroenterology. 1983;84:961–8.

    PubMed  CAS  Google Scholar 

  75. Griffing GT, Cole AG, Aurecchia SA, Sindler BH, Komanicky P, Melby JC. Amiloride for primary hyperaldosteronism. Clin Pharmacol Ther. 1982; 31:56–61.

    PubMed  CAS  Google Scholar 

  76. Colussi G, Rombola G, De Ferrari ME, Macaluso M, Minetti L. Correction of hypokalemia with antialdosterone therapy in Gitelman’s syndrome. Am J Nephrol. 1994;14(2):127–35.

    PubMed  CAS  Google Scholar 

  77. Botero-Velez M, Curtis JJ, Warnock DG. Brief Report: Liddle’s syndrome revisited-a disorder of sodium reabsorption in the distal tubule. N Engl J Med. 1994;174:178–8078.

    Google Scholar 

  78. Batlle DC, von Riotte AB, Gaviria M, Grupp M. Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N Engl J Med. 1985;312(7):408–14.

    PubMed  CAS  Google Scholar 

  79. Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004; 351(6):543–51.

    PubMed  CAS  Google Scholar 

  80. Rose LI, Underwood RH, Newmark SR, Kisch ES, Williams GH. Pathophysiology of spironolactone-induced gynecomastia. Ann Intern Med. 1977;87: 398–403.

    PubMed  CAS  Google Scholar 

  81. Ettinger B, Oldroyd NO, Sorgel F. Triamterene nephrolithiasis. JAMA. 1980;244(21):2443–5.

    PubMed  CAS  Google Scholar 

  82. Weinberg MS, Quigg RJ, Salant DJ, Bernard DB. Anuric renal failure precipitated by indomethacin and triamterene. Nephron. 1985;40:216–8.

    PubMed  CAS  Google Scholar 

  83. Favre L, Glasson P, Vallotton MB. Reversible acute renal failure from combined triamterene and indomethacin: a study in healthy subjects. Ann Intern Med. 1982;96:317–20.

    PubMed  CAS  Google Scholar 

  84. Wong NLM, Quamme GA, Sutton RAL, Dirks JH. Effects of mannitol on water and electrolyte transport in dog kidney. J Lab Clin Med. 1979;94: 683–92.

    PubMed  CAS  Google Scholar 

  85. Stinebaugh BJ, Bartow SA, Eknoyan G, Martinez-Maldonado M, Suki WN. Renal handling of bicarbonate:effectof mannitol diuresis. Am J Physiol. 1971;220:1271–4.

    PubMed  CAS  Google Scholar 

  86. Morris CR, Alexander EA, Bruns FJ, Levinsky NG. Restoration and maintenance of glomerular filtration by mannitol during hypoperfusion of the kidney. J Clin Invest. 1972;51:1555–64.

    PubMed  CAS  Google Scholar 

  87. Atherton JC, Hai MA, Thomas S. Depletion of medullary urea concentration gradient in rat kidney during osmotic diuresis. J Physiol. 1968;194(1):21P–2.

    PubMed  CAS  Google Scholar 

  88. Better OS, Rubinstein I, Winaver JM, Knochel JP. Mannitol therapy revisited (1940–1997). Kidney Int. 1997;51:886–94.

    Google Scholar 

  89. Weiner IM. Diuretics and other agents employed in the mobilization of edema fluid. In: Gilman AG, Rall TW, Nies AS, Taylor AS, editors. The pharmacological basis of therapeutics. 8th ed. New York: Pergamon Press; 1990. p. 713–42.

    Google Scholar 

  90. Quon DK, Worthen DM. Dose response of intravenous mannitol on the human eye. Ann Opthalmol. 1981;13:1392–3.

    CAS  Google Scholar 

  91. Gong G, Lindberg J, Abrams J, Whitaker WR, Wade CE, Gouge S. Comparison of hypertonic saline solutions and dextran in dialysis-induced hypotension. J Am Soc Nephrol. 1993;3:1808–12.

    PubMed  CAS  Google Scholar 

  92. Arieff AI. Dialysis disequilibrium syndrome: current concepts on pathogenesis and prevention. Kidney Int. 1994;45:629.

    PubMed  CAS  Google Scholar 

  93. Oster JR, Singer I. Hyponatremia, hyposmolality, and hypotonicity: tables and fables. Arch Intern Med. 1999;159(4):333–6.

    PubMed  CAS  Google Scholar 

  94. Moreno M, Murphy C, Goldsmith C. Increase in serum potassium resulting from the administration of hypertonic mannitol and other solutions. J Lab Clin Med. 1969;73:291.

    PubMed  CAS  Google Scholar 

  95. Gipstein RM, Boyle JD. Hypernatremia complicating prolonged mannitol diuresis. N Engl J Med. 1965;272:1116.

    PubMed  CAS  Google Scholar 

  96. Doi K, Ogawa N, Suzuki E, Noiri E, Fujita T. Mannitol-induced acute renal failure. Am J Med. 2003;115(7):593–4.

    PubMed  Google Scholar 

  97. Greenberg A, Verbalis JG. Vasopressin receptor antagonists. Kidney Int. 2006;69(12):2124–30.

    PubMed  CAS  Google Scholar 

  98. Verbalis JG, Ghali JK, Gross P. Efficacy and safety of vasoptressin antagonist conivaptan in patients with euvolemic hyponatremia evaluated in a phase III clinical trial. J Clin Oncol. 2006;24:8550.

    Google Scholar 

  99. Palm C, Pistrosch F, Herbrig K, Gross P. Vasopressin antagonists as aquaretic agents for the treatment of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S87–92.

    PubMed  CAS  Google Scholar 

  100. Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5): 447–57.

    PubMed  CAS  Google Scholar 

  101. Gheorghiade M, Gattis WA, O’Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291(16): 1963–71.

    PubMed  CAS  Google Scholar 

  102. Gheorghiade M, Konstam MA, Burnett Jr JC, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST clinical status trials. JAMA. 2007;297(12):1332–43.

    PubMed  CAS  Google Scholar 

  103. Konstam MA, Gheorghiade M, Burnett Jr JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA. 2007;297(12):1319–31.

    PubMed  CAS  Google Scholar 

  104. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    PubMed  CAS  Google Scholar 

  105. Wang X, Gattone II V, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51.

    PubMed  CAS  Google Scholar 

  106. Bennett WM. V2 receptor antagonists in cystic kidney diseases: an exciting step towards a practical treatment. J Am Soc Nephrol. 2005;16(4):838–9.

    PubMed  Google Scholar 

  107. Murray MD, Deer MM, Ferguson JA, et al. Open-label randomized trial of torsemide compared with furosemide therapy for patients with heart failure. Am J Med. 2001;111(7):513–20.

    PubMed  CAS  Google Scholar 

  108. Kaojarern S, Day B, Brater DC. The time course of delivery of furosemide into urine: an independent determinant of overall response. Kidney Int. 1982;22:69–74.

    PubMed  CAS  Google Scholar 

  109. Sweet DH, Bush KT, Nigam SK. The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Physiol Renal Physiol. 2001;281(2):F197–205.

    PubMed  CAS  Google Scholar 

  110. Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006;290(2):F251–61.

    PubMed  CAS  Google Scholar 

  111. Wright SH. Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol. 2005;204(3):309–19.

    PubMed  CAS  Google Scholar 

  112. Somogyi AA, Hovens CM, Muirhead MR, Bochner F. Renal tubular secretion of amiloride and its inhibition by cimetidine in humans and in an animal model. Drug Metab Dispos. 1989;17(2):190–6.

    PubMed  CAS  Google Scholar 

  113. Rose HJ, Pruitt AW, McNay JL. Effect of experimental azotemia on renal clearance of furosemide in the dog. J Pharmacol Exp Ther. 1976;196:238–47.

    PubMed  CAS  Google Scholar 

  114. Brater DC. Effects of probenecid on furosemide response. Clin Pharmacol Ther. 1978;24:548–54.

    PubMed  CAS  Google Scholar 

  115. Ellison DH, Wilcox CS. Diuretics. In: Taal MW, Chertow GM, Marsden PA, Skorecki K, Yu ASL and Brenner BM, editors. Brenner and Rector’s the kidney. Philadelphia, Elsevier; 2008. p. 1646–78.

    Google Scholar 

  116. Gagnon E, Bergeron MJ, Brunet GM, Daigle ND, Simard CF, Isenring P. Molecular mechanisms of Cl− transport by the renal Na(+)-K(+)-Cl− cotransporter. Identification of an intracellular locus that may form part of a high affinity Cl(−)-binding site. J Biol Chem. 2004;279(7):5648–54.

    PubMed  CAS  Google Scholar 

  117. Chen ZF, Vaughn DA, Beaumont K, Fanestil DD. Effects of diuretic treatment and of dietary sodium on renal binding of 3H-metolazone. J Am Soc Nephrol. 1990;1:91–8.

    PubMed  CAS  Google Scholar 

  118. Ellison DH, Velázquez H, Wright FS. Adaptation of the distal convoluted tubule of the rat: structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Invest. 1989;83:113–26.

    PubMed  CAS  Google Scholar 

  119. Kaissling B, Bachmann S, Kriz W. Structural adaptation of the distal convoluted tubule to prolonged furosemide treatment. Am J Physiol. 1985;248:F374–81.

    PubMed  CAS  Google Scholar 

  120. Kaissling B, Stanton BA. Adaptation of distal tubule and collecting duct to increased sodium delivery. I. Ultrastructure. Am J Physiol. 1988;255:F1256–68.

    PubMed  CAS  Google Scholar 

  121. Stanton BA, Kaissling B. Adaptation of distal tubule and collecting duct to increased sodium delivery. II. Na+ and K+ transport. Am J Physiol. 1988;255:F1269–75.

    PubMed  CAS  Google Scholar 

  122. Cahill RA, Spitzer TR, Mazumder A. Marrow engraftment and clinical manifestations of capillary leak syndrome. Bone Marrow Transplant. 1996;18(1):177–84.

    PubMed  CAS  Google Scholar 

  123. Schrier RW. Body fluid volume regulation in health and disease: a unifying hypothesis. Ann Intern Med. 1990;113:155–9.

    PubMed  CAS  Google Scholar 

  124. Schrier RW, Gurevich AK, Cadnapaphornchai MA. Pathogenesis and management of sodium and water retention in cardiac failure and cirrhosis. Semin Nephrol. 2001;21(2):157–72.

    PubMed  CAS  Google Scholar 

  125. Clement DL. Management of venous edema: insights from an international task force. Angiology. 2000;51(1):13–7.

    PubMed  CAS  Google Scholar 

  126. Pockros PJ, Reynolds TB. Rapid diuresis in patients with ascites from chronic liver disease: the importance of peripheral edema. Gastroenterology. 1986;90(6):1827–33.

    PubMed  CAS  Google Scholar 

  127. Rose BD. Diuretics. Kidney Int. 1991;39:336–52.

    PubMed  CAS  Google Scholar 

  128. Bock HA, Stein JH. Diuretics and the control of extracellular fluid volume: role of counterregulation. Semin Nephrol. 1988;8(3):264–72.

    PubMed  CAS  Google Scholar 

  129. Lahav M, Regev A, Ra’anani P, Thodor E. Intermittent administration of furosemide vs continuous infusion preceded by a loading dose for congestive heart failure. Chest. 1992;102:725–31.

    PubMed  CAS  Google Scholar 

  130. Rudy DW, Voelker JR, Greene PK, Esparza FA, Brater DC. Loop diuretics for chronic renal insufficiency: a continuous infusion is more efficacious than bolus therapy. Ann Intern Med. 1991;115:360–6.

    PubMed  CAS  Google Scholar 

  131. Ellison DH. Adaptation to diuretic drugs. In: Seldin DW, Giebisch G, editors Diuretic agents: clinical physiology and pharmacology. San Diego: Academic Press; 1997. p. 209–32.

    Google Scholar 

  132. Vargo DL, Kramer WG, Black PK, Smith WB, Serpas T, Brater DC. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide and furosemide in patients with congestive heart failure. Clin Pharmacol Ther. 1995;57:601–9.

    PubMed  CAS  Google Scholar 

  133. Vasavada N, Saha C, Agarwal R. A double-blind randomized crossover trial of two loop diuretics in chronic kidney disease. Kidney Int. 2003;64(2): 632–40.

    PubMed  CAS  Google Scholar 

  134. Shah MR, Stevenson LW. Searching for evidence: refractory questions in advanced heart failure. J Card Fail. 2004;10(3):210–8.

    PubMed  Google Scholar 

  135. Stevenson LW, Nohria A, Mielniczuk L. Torrent or torment from the tubules? Challenge of the cardiorenal connections. J Am Coll Cardiol. 2005;45(12):2004–7.

    PubMed  Google Scholar 

  136. Shah MR, Flavell CM, Weintraub JR, et al. Intensity and focus of heart failure disease management after hospital discharge. Am Heart J. 2005;149(4):715–21.

    PubMed  Google Scholar 

  137. Eshaghian S, Horwich TB, Fonarow GC. Relation of loop diuretic dose to mortality in advanced heart failure. Am J Cardiol. 2006;97(12):1759–64.

    PubMed  CAS  Google Scholar 

  138. Cooper HA, Dries DL, Davis CE, Shen YL, Domanski MJ. Diuretics and risk of arrhythmic death in patients with left ventricular dysfunction. Circulation. 1999;100(12):1311–5.

    PubMed  CAS  Google Scholar 

  139. Stampfer M, Epstein SE, Beiser GD, Braunwald E. Hemodynamic effects of diuresis at rest and during intense upright exercise in patients with impaired cardiac function. Circulation. 1968;37(6):900–11.

    PubMed  CAS  Google Scholar 

  140. Channer KS, McLean KA, Lawson-Matthew P, Richardson M. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J. 1994;71:146–50.

    PubMed  CAS  Google Scholar 

  141. Knauf H, Mutschler E. Diuretic effectiveness of hydrochlorothiazide and furosemide alone and in combination in chronic renal failure. J Cardiovasc Pharmacol. 1995;26:394–400.

    PubMed  CAS  Google Scholar 

  142. Fliser D. Loop diuretics and thiazides—the case for their combination in chronic renal failure [editorial]. Nephrol Dial Transplant. 1996;11(3):408–10.

    PubMed  CAS  Google Scholar 

  143. Ellison DH. Intensive diuretic therapy: high doses, combinations, and constant infusions. In: Seldin DW, Giebisch G, editors. Diuretic agents: clinical physiology and pharmacology. San Diego: Academic Press; 1997. p. 281–300.

    Google Scholar 

  144. Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol. 2005;46(6):e1–82.

    PubMed  Google Scholar 

  145. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.

    PubMed  CAS  Google Scholar 

  146. Schrier RW, Cadnapaphornchai MA, Ohara M. Water retention and aquaporins in heart failure, liver disease and pregnancy. J R Soc Med. 2001;94(6): 265–9.

    PubMed  CAS  Google Scholar 

  147. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    PubMed  Google Scholar 

  148. Anderson RJ, Linas S, Berns AS, et al. Nonoliguric acute renal failure. N Engl J Med. 1977;296: 1134–8.

    PubMed  CAS  Google Scholar 

  149. Heyman SN, Rosen S, Epstein FH, Spokes K, Brezis ML. Loop diuretics reduce hypoxic damage to proximal tubules of the isolated perfused rat kidney. Kidney Int. 1994;45(4):981–5.

    PubMed  CAS  Google Scholar 

  150. Allison MEM, Shilliday I. Loop diuretic therapy in acute and chronic renal failure. J Cardiovasc Pharmacol. 1993;22 Suppl 3:S59–70.

    PubMed  Google Scholar 

  151. Brown CB, Ogg CS, Cameron JS. High dose frusemide in acute renal failure: a controlled trial. Clin Nephrol. 1981;15:90–6.

    PubMed  CAS  Google Scholar 

  152. Mehta RL, Pascual MT, Soroko S, Chertow GM. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20): 2547–53.

    PubMed  CAS  Google Scholar 

  153. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.

    PubMed  CAS  Google Scholar 

  154. Schrier RW, Ecder T. Gibbs memorial lecture. Unifying hypothesis of body fluid volume regulation: implications for cardiac failure and cirrhosis. Mt Sinai J Med. 2001;68(6):350–61.

    PubMed  CAS  Google Scholar 

  155. Shear L, Ching S, Gabuzda GJ. Compartmentalization of ascites and edema in patients with hepatic cirrhosis. N Engl J Med. 1970;282(25):1391–6.

    PubMed  CAS  Google Scholar 

  156. Wright G, Jalan R. Management of hepatic encephalopathy in patients with cirrhosis. Best Pract Res Clin Gastroenterol. 2007;21(1):95–110.

    PubMed  Google Scholar 

  157. Schrier RW, Fassett RG. A critique of the overfill hypothesis of sodium and water retention in the nephrotic syndrome. Kidney Int. 1998;53(5):1111–7.

    PubMed  CAS  Google Scholar 

  158. Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ. Interstitial inflammation, sodium retention, and the pathogenesis of nephrotic edema: a unifying hypothesis. Kidney Int. 2002;62(4):1379–84.

    PubMed  CAS  Google Scholar 

  159. Voelker JR, Jameson DM, Brater DC. In vitro evidence that urine composition affects the fraction of active furosemide in the nephrotic syndrome. J Pharmacol Exp Ther. 1989;250:772–8.

    PubMed  CAS  Google Scholar 

  160. Agarwal R, Gorski JC, Sundblad K, Brater DC. Urinary protein binding does not affect response to furosemide in patients with nephrotic syndrome. J Am Soc Nephrol. 2000;11(6):1100–5.

    PubMed  CAS  Google Scholar 

  161. Mattana J, Patel A, Ilunga C, Singhal PC. Furosemide-albumin complexes in refractory nephrotic syndrome and chronic renal failure [letter] [see comments]. Nephron. 1996;73(1):122–3.

    PubMed  CAS  Google Scholar 

  162. Fliser D, Zurbruggen I, Mutschler E, et al. Coadministration of albumin and furosemide in patients with the nephrotic syndrome [in process citation]. Kidney Int. 1999;55(2):629–34.

    PubMed  CAS  Google Scholar 

  163. Blendis L, Wong F. Intravenous albumin with diuretics: protean lessons to be learnt? [editorial; comment]. J Hepatol. 1999;30(4):727–30.

    PubMed  CAS  Google Scholar 

  164. Gentilini P, Casini-Raggi V, Di Fiore G, et al. Albumin improves the response to diuretics in patients with cirrhosis and ascites: results of a randomized, controlled trial. J Hepatol. 1999;30(4): 639–45.

    PubMed  CAS  Google Scholar 

  165. Brater DC, Chalasani N, Gorski JC, et al. Effect of albumin-furosemide mixtures on response to furosemide in cirrhotic patients with ascites. Trans Am Clin Climatol Assoc 2001;112:108–15; ­discussion 16.

    Google Scholar 

  166. Mitch WE, Wilcox CS. Disorders of body fluids, sodium and potassium in chronic renal failure. AmJMed. 1982;72:536–50.

    CAS  Google Scholar 

  167. Koomans HA, Roos JC, Boer P, Geyskes GG, Mees EJ. Salt handling in patients with chronic renal insufficiency. Miner Electrolyte Metab. 1982;7(3): 134–45.

    PubMed  CAS  Google Scholar 

  168. Wilcox CS. New insights into diuretic use in patients with chronic renal disease. J Am Soc Nephrol. 2002;13(3):798–805.

    PubMed  Google Scholar 

  169. Chennavasin P, Seiwell R, Brater DC. Pharmacokinetic-dynamic analysis of the indomethacin-furosemide interaction in man. J Pharmacol Exp Ther. 1980;215:77–81.

    PubMed  CAS  Google Scholar 

  170. De Nicola L, Minutolo R, Bellizzi V, et al. Achievement of target blood pressure levels in chronic kidney disease: a salty question? Am J Kidney Dis. 2004;43(5):782–95.

    PubMed  Google Scholar 

  171. Wollam GL, Tarazi RC, Bravo EL, Dustan HP. Diuretic potency of combined hydrochlorothiazide and furosemide therapy in patients with azotemia. Am J Med. 1982;72:929–38.

    PubMed  CAS  Google Scholar 

  172. Fliser D, Schröter M, Neubeck M, Ritz E. Coadministration of thiazides increases the efficacy of loop diuretics even in patients with advanced renal failure. Kidney Int. 1994;46:482–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Ellison M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Subramanya, A.R., Ellison, D.H. (2013). Diuretic Therapy. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics