Skip to main content

Abstract

Potassium (K+) is the most abundant monovalent mineral in the body and the major intracellular cation. Only about 2 % of total body K+ is extracellular and maintenance of a proper ratio of K+ concentration across the cell membrane is required for many cellular processes. Ion channels selective for K+ dominate the resting permeability of most cells, so this ratio is also the main determinant of the resting membrane potential, which is especially critical for normal function of nerve, muscle, and the cardiac conduction system. Overall K+ balance is accomplished through mechanisms that involve transfer of ingested K+ into cells (internal K + homeostasis) and transport of K+ out of the body (external K + homeostasis), the latter primarily via the kidney. This chapter reviews the cellular and molecular physiology of potassium homeostasis, the pathophysiology of hypokalemia and hyperkalemia, and the diagnosis and clinical management of the dyskalemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulop M. Hyperkalemia in diabetic ketoacidosis. Am J Med Sci. 1990;299:164–9.

    PubMed  CAS  Google Scholar 

  2. Singhal PC, Venkatesan J, Gibbons N, Gibbons J. Prevalence and predictors of rhabdomyolysis in patients with hypokalemia. N Engl J Med. 1990;323:1488.

    PubMed  CAS  Google Scholar 

  3. Helfant RH. Hypokalemia and arrhythmias. Am J Med. 1986;80:13–22.

    PubMed  CAS  Google Scholar 

  4. Mandal AK. Hypokalemia and hyperkalemia. Med Clin North Am. 1997;81:611–39.

    PubMed  CAS  Google Scholar 

  5. Schwartz WB, Relman AS. Effects of electrolyte disorders on renal structure and function. N Engl J Med. 1967;276:383–9. contd.

    PubMed  CAS  Google Scholar 

  6. Montague BT, Ouellette JR, Buller GK. Retrospective review of the frequency of ECG changes in hyperkalemia. Clin J Am Soc Nephrol. 2008;3:324–30.

    PubMed  Google Scholar 

  7. Littmann L, Monroe MH, Taylor 3rd L, Brearley Jr WD. The hyperkalemic Brugada sign. J Electro­cardiol. 2007;40:53–9.

    PubMed  Google Scholar 

  8. Tanawuttiwat T, Harindhanavudhi T, Bhan A, Dia M. Hyperkalemia-induced Brugada pattern: an unusual manifestation. J Cardiovasc Med (Hagerstown). 2010;11:285–7.

    Google Scholar 

  9. Mason B. Principles of geochemistry. 3rd ed. New York: Wiley; 1966.

    Google Scholar 

  10. Hardison R. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J Exp Biol. 1998;201:1099–117.

    PubMed  CAS  Google Scholar 

  11. Clausen T. Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev. 2003;83:1269–324.

    PubMed  CAS  Google Scholar 

  12. Stein WD. The sodium pump in the evolution of animal cells. Philos Trans R Soc Lond B Biol Sci. 1995;349:263–9.

    PubMed  CAS  Google Scholar 

  13. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev. 2005;85:319–71.

    PubMed  CAS  Google Scholar 

  14. Bygrave FL. The ionic environment and metabolic control. Nature. 1967;214:667–71.

    PubMed  CAS  Google Scholar 

  15. Giebisch GH. A trail of research on potassium. Kidney Int. 2002;62:1498–512.

    PubMed  CAS  Google Scholar 

  16. Mills B, Tupper JT. Cell cycle dependent changes in potassium transport. J Cell Physiol. 1976;89: 123–32.

    PubMed  CAS  Google Scholar 

  17. Davy H. 1807 Bakerian Lecture: on some new phenomena of chemical changes produced by electricity, particularly the decomposition of fixed alkalies, and the exhibition of the new substances which constitute their bases: and on the general nature of alkaline bodies. Philos Trans R Soc. 1808;98:1–44.

    Google Scholar 

  18. Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957;23:394–401.

    PubMed  CAS  Google Scholar 

  19. Gennari FJ, Segal AS. Hyperkalemia: an adaptive response in chronic renal insufficiency. Kidney Int. 2002;62:1–9.

    PubMed  CAS  Google Scholar 

  20. Dluhy RG, Axelrod L, Williams GH. Serum immunoreactive insulin and growth hormone response to potassium infusion in normal man. J Appl Physiol. 1972;33:22–6.

    PubMed  CAS  Google Scholar 

  21. Rosa RM, Silva P, Young JB, et al. Adrenergic modulation of extrarenal potassium disposal. N Engl J Med. 1980;302:431–4.

    PubMed  CAS  Google Scholar 

  22. Brown RS. Extrarenal potassium homeostasis. Kidney Int. 1986;30:116–27.

    PubMed  CAS  Google Scholar 

  23. Bia MJ, Lu D, Tyler K, De Fronzo RA. Beta adrenergic control of extrarenal potassium disposal. A beta-2 mediated phenomenon. Nephron. 1986;43:117–22.

    PubMed  CAS  Google Scholar 

  24. Akaike N. Sodium pump in skeletal muscle: central nervous system-induced suppression by alpha-adrenoreceptors. Science (New York, NY). 1981;213:1252–4.

    CAS  Google Scholar 

  25. Williams ME, Rosa RM, Silva P, Brown RS, Epstein FH. Impairment of extrarenal potassium disposal by alpha-adrenergic stimulation. N Engl J Med. 1984;311:145–9.

    PubMed  CAS  Google Scholar 

  26. Clausen T. Hormonal and pharmacological modification of plasma potassium homeostasis. Fundam Clin Pharmacol. 2010;24:595–605.

    PubMed  CAS  Google Scholar 

  27. Rigato I, Blarasin L, Kette F. Severe hypokalemia in 2 young bicycle riders due to massive caffeine intake. Clin J Sport Med. 2010;20:128–30.

    PubMed  Google Scholar 

  28. Passmore AP, Kondowe GB, Johnston GD. Caffeine and hypokalemia. Ann Intern Med. 1986;105:468.

    PubMed  CAS  Google Scholar 

  29. Mudge DW, Johnson DW. Coca-Cola and kangaroos. Lancet. 2004;364:1190.

    PubMed  Google Scholar 

  30. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.

    PubMed  CAS  Google Scholar 

  31. Moreno M, Murphy C, Goldsmith C. Increase in serum potassium resulting from the administration of hypertonic mannitol and other solutions. J Lab Clin Med. 1969;73:291–8.

    PubMed  CAS  Google Scholar 

  32. Sirken G, Raja R, Garces J, Bloom E, Fumo P. Contrast-induced translocational hyponatremia and hyperkalemia in advanced kidney disease. Am J Kidney Dis. 2004;43:e31–5.

    PubMed  Google Scholar 

  33. Goldfarb S, Cox M, Singer I, Goldberg M. Acute hyperkalemia induced by hyperglycemia: hormonal mechanisms. Ann Intern Med. 1976;84:426–32.

    PubMed  CAS  Google Scholar 

  34. Viberti GC. Glucose-induced hyperkalaemia: a hazard for diabetics? Lancet. 1978;1:690–1.

    PubMed  CAS  Google Scholar 

  35. Conte G, Dal Canton A, Imperatore P, et al. Acute increase in plasma osmolality as a cause of hyperkalemia in patients with renal failure. Kidney Int. 1990;38:301–7.

    PubMed  CAS  Google Scholar 

  36. Adrogue HJ, Madias NE. PCO2 and [K+]p in metabolic acidosis: certainty for the first and uncertainty for the other. J Am Soc Nephrol. 2004;15:1667–8.

    PubMed  Google Scholar 

  37. Adrogue HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med. 1981;71:456–67.

    PubMed  CAS  Google Scholar 

  38. Krapf R, Caduff P, Wagdi P, Staubli M, Hulter HN. Plasma potassium response to acute respiratory alkalosis. Kidney Int. 1995;47:217–24.

    PubMed  CAS  Google Scholar 

  39. Jones JW, Sebastian A, Hulter HN, Schambelan M, Sutton JM, Biglieri EG. Systemic and renal acid-base effects of chronic dietary potassium depletion in humans. Kidney Int. 1982;21:402–10.

    PubMed  CAS  Google Scholar 

  40. Rector Jr FC, Bloomer HA, Seldin DW. Effect of potassium deficiency on the reabsorption of bicarbonate in the proximal tubule of the rat kidney. J Clin Invest. 1964;43:1976–82.

    PubMed  CAS  Google Scholar 

  41. Soleimani M, Burnham CE. Physiologic and ­molecular aspects of the Na+:HCO 3 cotransporter in health and disease processes. Kidney Int. 2000;57: 371–84.

    PubMed  CAS  Google Scholar 

  42. Fulop M. Serum potassium in lactic acidosis and ketoacidosis. N Engl J Med. 1979;300:1087–9.

    PubMed  CAS  Google Scholar 

  43. Wiederseiner JM, Muser J, Lutz T, Hulter HN, Krapf R. Acute metabolic acidosis: characterization and diagnosis of the disorder and the plasma potassium response. J Am Soc Nephrol. 2004;15:1589–96.

    PubMed  CAS  Google Scholar 

  44. Berliner RW, Kennedy Jr TJ, Hilton JG. Renal mechanisms for excretion of potassium. Am J Physiol. 1950;162:348–67.

    PubMed  CAS  Google Scholar 

  45. Giebisch G, Stanton B. Potassium transport in the nephron. Annu Rev Physiol. 1979;41:241–56.

    PubMed  CAS  Google Scholar 

  46. O’Neil RG, Hayhurst RA. Functional differentiation of cell types of cortical collecting duct. Am J Physiol. 1985;248:F449–53.

    PubMed  Google Scholar 

  47. Madsen KM, Tisher CC. Structural-functional relationships along the distal nephron. Am J Physiol. 1986;250:F1–15.

    CAS  Google Scholar 

  48. Woda CB, Leite Jr M, Rohatgi R, Satlin LM. Effects of luminal flow and nucleotides on [Ca2+]i in rabbit cortical collecting duct. Am J Physiol Renal Physiol. 2002;283:F437–46.

    PubMed  CAS  Google Scholar 

  49. Palmer LG, Frindt G. High-conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol Renal Physiol. 2007;292:F966–73.

    PubMed  CAS  Google Scholar 

  50. Holtzclaw JD, Grimm PR, Sansom SC. Intercalated cell BK-alpha/beta4 channels modulate sodium and potassium handling during potassium adaptation. J Am Soc Nephrol. 2010;21:634–45.

    PubMed  CAS  Google Scholar 

  51. Grimm PR, Irsik DL, Liu L, Holtzclaw JD, Sansom SC. Role of BKbeta1 in Na+ reabsorption by cortical collecting ducts of Na+-deprived mice. Am J Physiol Renal Physiol. 2009;297:F420–8.

    PubMed  CAS  Google Scholar 

  52. Giebisch G, Krapf R, Wagner C. Renal and extrarenal regulation of potassium. Kidney Int. 2007;72: 397–410.

    PubMed  CAS  Google Scholar 

  53. DuBose Jr TD, Gitomer J, Codina J. H+, K+-ATPase. Curr Opin Nephrol Hypertens. 1999;8:597–602.

    PubMed  Google Scholar 

  54. Field MJ, Stanton BA, Giebisch GH. Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J Clin Invest. 1984;74: 1792–802.

    PubMed  CAS  Google Scholar 

  55. Muto S. Potassium transport in the mammalian collecting duct. Physiol Rev. 2001;81:85–116.

    PubMed  CAS  Google Scholar 

  56. Alvarez de la Rosa D, Gimenez I, Forbush B, Canessa CM. SGK1 activates Na+-K+-ATPase in amphibian renal epithelial cells. Am J Physiol Cell Physiol. 2006;290:C492–8.

    PubMed  CAS  Google Scholar 

  57. Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem. 1999;274:37834–9.

    PubMed  CAS  Google Scholar 

  58. Pearce D, Kleyman TR. Salt, sodium channels, and SGK1. J Clin Invest. 2007;117:592–5.

    PubMed  CAS  Google Scholar 

  59. Ring AM, Leng Q, Rinehart J, et al. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci U S A. 2007;104:4025–9.

    PubMed  CAS  Google Scholar 

  60. Shimkets RA, Warnock DG, Bositis CM, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell. 1994;79:407–14.

    PubMed  CAS  Google Scholar 

  61. Wilson FH, Disse-Nicodeme S, Choate KA, et al. Human hypertension caused by mutations in WNK kinases. Science (New York, NY). 2001;293:1107–12.

    CAS  Google Scholar 

  62. Kahle KT, Wilson FH, Leng Q, et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat Genet. 2003;35:372–6.

    PubMed  CAS  Google Scholar 

  63. Ring AM, Cheng SX, Leng Q, et al. WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci U S A. 2007;104: 4020–4.

    PubMed  CAS  Google Scholar 

  64. Rastegar A, Biemesderfer D, Kashgarian M, Hayslett JP. Changes in membrane surfaces of collecting duct cells in potassium adaptation. Kidney Int. 1980;18:293–301.

    PubMed  CAS  Google Scholar 

  65. Good DW, Wright FS. Luminal influences on potassium secretion: sodium concentration and fluid flow rate. Am J Physiol. 1979;236:F192–205.

    PubMed  CAS  Google Scholar 

  66. Good DW, Velazquez H, Wright FS. Luminal influences on potassium secretion: low sodium concentration. Am J Physiol. 1984;246:F609–19.

    PubMed  CAS  Google Scholar 

  67. Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow-dependent K+ secretion in the cortical collecting duct is mediated by a maxi-K channel. Am J Physiol Renal Physiol. 2001;280:F786–93.

    PubMed  CAS  Google Scholar 

  68. Taniguchi J, Imai M. Flow-dependent activation of maxi K+ channels in apical membrane of rabbit connecting tubule. J Membr Biol. 1998;164:35–45.

    PubMed  CAS  Google Scholar 

  69. Satlin LM, Sheng S, Woda CB, Kleyman TR. Epithelial Na+ channels are regulated by flow. Am J Physiol Renal Physiol. 2001;280:F1010–8.

    PubMed  CAS  Google Scholar 

  70. Gennari FJ, Goldstein MB, Schwartz WB. The nature of the renal adaptation to chronic hypocapnia. J Clin Invest. 1972;51:1722–30.

    PubMed  CAS  Google Scholar 

  71. Kassirer JP, Schwartz WB. The response of normal man to selective depletion of hydrochloric acid. Factors in the genesis of persistent gastric alkalosis. Am J Med. 1966;40:10–8.

    PubMed  CAS  Google Scholar 

  72. Klastersky J, Vanderklen B, Daneau D, Mathiew M. Carbenicillin and hypokalemia. Ann Intern Med. 1973;78:774–5.

    PubMed  CAS  Google Scholar 

  73. Ellison DH, Velazquez H, Wright FS. Stimulation of distal potassium secretion by low lumen chloride in the presence of barium. Am J Physiol. 1985;248: F638–49.

    PubMed  CAS  Google Scholar 

  74. Amorim JB, Bailey MA, Musa-Aziz R, Giebisch G, Malnic G. Role of luminal anion and pH in distal tubule potassium secretion. Am J Physiol Renal Physiol. 2003;284:F381–8.

    PubMed  CAS  Google Scholar 

  75. Welt LG. Experimental magnesium depletion. Yale J Biol Med. 1964;36:325–49.

    PubMed  CAS  Google Scholar 

  76. Whang R, Welt LG. Observations in experimental magnesium depletion. J Clin Invest. 1963;42:305–13.

    PubMed  CAS  Google Scholar 

  77. Altura BM, Altura BT. Interactions of Mg and K on blood vessels—aspects in view of hypertension. Review of present status and new findings. Magnesium. 1984;3:175–94.

    PubMed  CAS  Google Scholar 

  78. Matsuda H, Saigusa A, Irisawa H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature. 1987;325:156–9.

    PubMed  CAS  Google Scholar 

  79. Lu Z, MacKinnon R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature. 1994;371:243–6.

    PubMed  CAS  Google Scholar 

  80. Yang L, Frindt G, Palmer LG. Magnesium modulates ROMK channel-mediated potassium secretion. J Am Soc Nephrol. 2010;21:2109–16.

    PubMed  CAS  Google Scholar 

  81. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18:2649–52.

    PubMed  Google Scholar 

  82. Wei Y, Zavilowitz B, Satlin LM, Wang WH. Angiotensin II inhibits the ROMK-like small conductance K channel in renal cortical collecting duct during dietary potassium restriction. J Biol Chem. 2007;282:6455–62.

    PubMed  CAS  Google Scholar 

  83. Yue P, Sun P, Lin DH, Pan C, Xing W, Wang W. Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels. Kidney Int. 2011;79:423–31.

    PubMed  CAS  Google Scholar 

  84. Schnermann J, Homer W. Smith Award lecture. The juxtaglomerular apparatus: from anatomical peculiarity to physiological relevance. J Am Soc Nephrol. 2003;14:1681–94.

    PubMed  Google Scholar 

  85. Adrogue HJ, Madias NE. Sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356:1966–78.

    PubMed  CAS  Google Scholar 

  86. Rimmer JM, Horn JF, Gennari FJ. Hyperkalemia as a complication of drug therapy. Arch Intern Med. 1987;147:867–9.

    PubMed  CAS  Google Scholar 

  87. Satlin LM, Carattino MD, Liu W, Kleyman TR. Regulation of cation transport in the distal nephron by mechanical forces. Am J Physiol Renal Physiol. 2006;291:F923–31.

    PubMed  CAS  Google Scholar 

  88. Field MJ, Stanton BA, Giebisch GH. Influence of ADH on renal potassium handling: a micropuncture and microperfusion study. Kidney Int. 1984;25:502–11.

    PubMed  CAS  Google Scholar 

  89. Greenberg A. Diuretic complications. Am J Med Sci. 2000;319:10–24.

    PubMed  CAS  Google Scholar 

  90. Perazella MA. Drug-induced hyperkalemia: old culprits and new offenders. Am J Med. 2000;109:307–14.

    PubMed  CAS  Google Scholar 

  91. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.

    PubMed  CAS  Google Scholar 

  92. Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med. 2004;351:543–51.

    PubMed  CAS  Google Scholar 

  93. Loughlin J, Seeger JD, Eng PM, et al. Risk of hyperkalemia in women taking ethinylestradiol/drospirenone and other oral contraceptives. Contraception. 2008;78:377–83.

    PubMed  CAS  Google Scholar 

  94. Genazzani AR, Mannella P, Simoncini T. Drospirenone and its antialdosterone properties. Climacteric. 2007;10 Suppl 1:11–8.

    PubMed  CAS  Google Scholar 

  95. Hajjar IM, Grim CE, George V, Kotchen TA. Impact of diet on blood pressure and age-related changes in blood pressure in the US population: analysis of NHANES III. Arch Intern Med. 2001;161:589–93.

    PubMed  CAS  Google Scholar 

  96. Institute of Medicine. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. In: Food and Nutrition Board. Washington, DC: National Academies Press; 2004. p. 173–246.

    Google Scholar 

  97. Rabinowitz L, Green DM, Sarason RL, Yamauchi H. Homeostatic potassium excretion in fed and fasted sheep. Am J Physiol. 1988;254:R357–80.

    PubMed  CAS  Google Scholar 

  98. Lee FN, Oh G, McDonough AA, Youn JH. Evidence for gut factor in K+ homeostasis. Am J Physiol Renal Physiol. 2007;293:F541–7.

    PubMed  CAS  Google Scholar 

  99. Greenfeld D, Mickley D, Quinlan DM, Roloff P. Hypokalemia in outpatients with eating disorders. Am J Psychiatry. 1995;152:60–3.

    PubMed  CAS  Google Scholar 

  100. Elisaf M, Liberopoulos E, Bairaktari E, Siamopoulos K. Hypokalaemia in alcoholic patients. Drug Alcohol Rev. 2002;21:73–6.

    PubMed  Google Scholar 

  101. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339:451–8.

    PubMed  CAS  Google Scholar 

  102. Lin SH. Thyrotoxic periodic paralysis. Mayo Clin Proc. 2005;80:99–105.

    PubMed  Google Scholar 

  103. Cannon SC. Pathomechanisms in channelopathies of skeletal muscle and brain. Annu Rev Neurosci. 2006;29:387–415.

    PubMed  CAS  Google Scholar 

  104. Jurkat-Rott K, Mitrovic N, Hang C, et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci U S A. 2000;97:9549–54.

    PubMed  CAS  Google Scholar 

  105. Manoukian MA, Foote JA, Crapo LM. Clinical and metabolic features of thyrotoxic periodic paralysis in 24 episodes. Arch Intern Med. 1999;159:601–6.

    PubMed  CAS  Google Scholar 

  106. Ryan DP, da Silva MR, Soong TW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010;140:88–98.

    PubMed  CAS  Google Scholar 

  107. Lin SH, Lin YF, Chen DT, Chu P, Hsu CW, Halperin ML. Laboratory tests to determine the cause of hypokalemia and paralysis. Arch Intern Med. 2004;164:1561–6.

    PubMed  Google Scholar 

  108. Lin SH, Chu P, Cheng CJ, Chu SJ, Hung YJ, Lin YF. Early diagnosis of thyrotoxic periodic paralysis: spot urine calcium to phosphate ratio. Crit Care Med. 2006;34:2984–9.

    PubMed  CAS  Google Scholar 

  109. Ko GT, Chow CC, Yeung VT, Chan HH, Li JK, Cockram CS. Thyrotoxic periodic paralysis in a Chinese population. QJM. 1996;89:463–8.

    PubMed  CAS  Google Scholar 

  110. Lin SH, Lin YF. Propranolol rapidly reverses ­paralysis, hypokalemia, and hypophosphatemia in thyrotoxic periodic paralysis. Am J Kidney Dis. 2001;37:620–3.

    PubMed  CAS  Google Scholar 

  111. Huang TY, Lin SH. Thyrotoxic hypokalemic periodic paralysis reversed by propranolol without rebound hyperkalemia. Ann Emerg Med. 2001;37: 415–6.

    PubMed  CAS  Google Scholar 

  112. Brambilla G, Cenci T, Franconi F, et al. Clinical and pharmacological profile in a clenbuterol epidemic poisoning of contaminated beef meat in Italy. Toxicol Lett. 2000;114:47–53.

    PubMed  CAS  Google Scholar 

  113. Bahlmann H, Lindwall R, Persson H. Acute barium nitrate intoxication treated by hemodialysis. Acta Anaesthesiol Scand. 2005;49:110–2.

    PubMed  CAS  Google Scholar 

  114. Brown RS. Potassium homeostasis and clinical implications. Am J Med. 1984;77:3–10.

    PubMed  CAS  Google Scholar 

  115. Knochel JP, Dotin LN, Hamburger RJ. Patho­physiology of intense physical conditioning in a hot climate. I. Mechanisms of potassium depletion. J Clin Invest. 1972;51:242–55.

    PubMed  CAS  Google Scholar 

  116. Schwartz WB, Kassirer JP. Medical management of chronic renal failure. Am J Med. 1968;44:786–802.

    PubMed  CAS  Google Scholar 

  117. Solomon R. The relationship between disorders of K+ and Mg2+ homeostasis. Semin Nephrol. 1987;7: 253–62.

    PubMed  CAS  Google Scholar 

  118. Gill Jr JR, Frolich JC, Bowden RE, et al. Bartter’s syndrome: a disorder characterized by high urinary prostaglandins and a dependence of hyperreninemia on prostaglandin synthesis. Am J Med. 1976;61:43–51.

    PubMed  Google Scholar 

  119. Stein JH. The pathogenetic spectrum of Bartter’s syndrome. Kidney Int. 1985;28:85–93.

    PubMed  CAS  Google Scholar 

  120. Simon DB, Lifton RP. The molecular basis of inherited hypokalemic alkalosis: Bartter’s and Gitelman’s syndromes. Am J Physiol. 1996;271:F961–6.

    PubMed  CAS  Google Scholar 

  121. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.

    PubMed  CAS  Google Scholar 

  122. Rodriguez-Soriano J. Bartter and related syndromes: the puzzle is almost solved. Pediatr Nephrol (Berlin, Germany). 1998;12:315–27.

    CAS  Google Scholar 

  123. Wrong O, Metcalfe-Gibson A, Morrison RB, Ng ST, Howard AV. In vivo dialysis of faeces as a method of stool analysis. I. Technique and results in normal subjects. Clin Sci. 1965;28:357–75.

    PubMed  CAS  Google Scholar 

  124. Kavic SM, Frehm EJ, Segal AS. Case studies in cholera: lessons in medical history and science. Yale J Biol Med. 1999;72:393–408.

    PubMed  CAS  Google Scholar 

  125. Oster JR, Materson BJ, Rogers AI. Laxative abuse syndrome. Am J Gastroenterol. 1980;74:451–8.

    PubMed  CAS  Google Scholar 

  126. de Wolff FA, de Haas EJ, Verweij M. A screening method for establishing laxative abuse. Clin Chem. 1981;27:914–7.

    PubMed  Google Scholar 

  127. Shelton JH, Santa Ana CA, Thompson DR, Emmett M, Fordtran JS. Factitious diarrhea induced by stimulant laxatives: accuracy of diagnosis by a clinical reference laboratory using thin layer chromatography. Clin Chem. 2007;53:85–90.

    PubMed  CAS  Google Scholar 

  128. Holmberg C. Congenital chloride diarrhoea. Clin Gastroenterol. 1986;15:583–602.

    PubMed  CAS  Google Scholar 

  129. Blondon H, Bechade D, Desrame J, Algayres JP. Secretory diarrhoea with high faecal potassium concentrations: a new mechanism of diarrhoea associated with colonic pseudo-obstruction? Report of five patients. Gastroenterol Clin Biol. 2008;32:401–4.

    PubMed  CAS  Google Scholar 

  130. Simon M, Duong JP, Mallet V, et al. Over-expression of colonic K+ channels associated with severe potassium secretory diarrhoea after haemorrhagic shock. Nephrol Dial Transplant. 2008;23:3350–2.

    PubMed  CAS  Google Scholar 

  131. Van Dinter Jr TG, Fuerst FC, Richardson CT, et al. Stimulated active potassium secretion in a patient with colonic pseudo-obstruction: a new mechanism of secretory diarrhea. Gastroenterology. 2005;129: 1268–73.

    PubMed  Google Scholar 

  132. Sandle GI, Hunter M. Apical potassium (BK) channels and enhanced potassium secretion in human colon. QJM. 2010;103:85–9.

    PubMed  CAS  Google Scholar 

  133. Sebastian A, McSherry E, Morris Jr RC. On the mechanism of renal potassium wasting in renal tubular acidosis associated with the Fanconi syndrome (type 2 RTA). J Clin Invest. 1971;50:231–43.

    PubMed  CAS  Google Scholar 

  134. Messiaen T, Deret S, Mougenot B, et al. Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients. Medicine. 2000;79:135–54.

    PubMed  CAS  Google Scholar 

  135. Estevez R, Boettger T, Stein V, et al. Barttin is a Cl channel beta-subunit crucial for renal Cl reabsorption and inner ear K+ secretion. Nature. 2001;414: 558–61.

    PubMed  CAS  Google Scholar 

  136. Miyamura N, Matsumoto K, Taguchi T, et al. Atypical Bartter syndrome with sensorineural deafness with G47R mutation of the beta-subunit for ClC-Ka and ClC-Kb chloride channels, barttin. J Clin Endocrinol Metabol. 2003;88:781–6.

    CAS  Google Scholar 

  137. Schlingmann KP, Konrad M, Jeck N, et al. Salt wasting and deafness resulting from mutations in two chloride channels. N Engl J Med. 2004;350:1314–9.

    PubMed  CAS  Google Scholar 

  138. Vargas-Poussou R, Huang C, Hulin P, et al. Functional characterization of a calcium-sensing receptor mutation in severe autosomal dominant hypocalcemia with a Bartter-like syndrome. J Am Soc Nephrol. 2002;13:2259–66.

    PubMed  CAS  Google Scholar 

  139. Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB. Gitelman’s syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 2001;59:710–7.

    PubMed  CAS  Google Scholar 

  140. Batlle D, Moorthi KM, Schlueter W, Kurtzman N. Distal renal tubular acidosis and the potassium enigma. Semin Nephrol. 2006;26:471–8.

    PubMed  CAS  Google Scholar 

  141. Sebastian A, McSherry E, Morris Jr RC. Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest. 1976;58:454–69.

    PubMed  CAS  Google Scholar 

  142. Taher SM, Anderson RJ, McCartney R, Popovtzer MM, Schrier RW. Renal tubular acidosis associated with toluene “sniffing”. N Engl J Med. 1974;290: 765–8.

    PubMed  CAS  Google Scholar 

  143. Streicher HZ, Gabow PA, Moss AH, Kono D, Kaehny WD. Syndromes of toluene sniffing in adults. Ann Intern Med. 1981;94:758–62.

    PubMed  CAS  Google Scholar 

  144. Carlisle EJ, Donnelly SM, Vasuvattakul S, Kamel KS, Tobe S, Halperin ML. Glue-sniffing and distal renal tubular acidosis: sticking to the facts. J Am Soc Nephrol. 1991;1:1019–27.

    PubMed  CAS  Google Scholar 

  145. Gill Jr JR, George JM, Solomon A, Bartter FC. Hyperaldosteronism and renal sodium loss reversed by drug treatment for malignant hypertension. N Engl J Med. 1964;270:1088–92.

    PubMed  Google Scholar 

  146. Lenz T, Thiede HM, Nussberger J, Atlas SA, Distler A, Schulte KL. Hyperreninemia and secondary hyperaldosteronism in a patient with pheochromocytoma and von Hippel-Lindau disease. Nephron. 1992;62:345–50.

    PubMed  CAS  Google Scholar 

  147. Leogite J, Schillo F, Viennet G, et al. Reninoma: a rare but curable cause of high blood pressure, a case report. Ann Endocrinol. 2003;64:198–201.

    CAS  Google Scholar 

  148. Conn JW, Cohen EL, Rovner DR, Nesbit RM. Normokalemic primary aldosteronism. A detectable cause of curable “essential” hypertension. JAMA. 1965;193:200–6.

    PubMed  CAS  Google Scholar 

  149. Schirpenbach C, Reincke M. Primary aldosteronism: current knowledge and controversies in Conn’s syndrome. Nat Clin Pract. 2007;3:220–7.

    CAS  Google Scholar 

  150. Conn JW, Knopf RF, Nesbit RM. Clinical characteristics of primary aldosteronism from an analysis of 145 cases. Am J Surg. 1964;107:159–72.

    PubMed  CAS  Google Scholar 

  151. Marples D, Frokiaer J, Dorup J, Knepper MA, Nielsen S. Hypokalemia-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J Clin Invest. 1996;97: 1960–8.

    PubMed  CAS  Google Scholar 

  152. Choi M, Scholl UI, Yue P, et al. K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 2011;331: 768–72.

    PubMed  CAS  Google Scholar 

  153. Lifton RP, Dluhy RG, Powers M, et al. A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature. 1992;355:262–5.

    PubMed  CAS  Google Scholar 

  154. Orth DN. Cushing’s syndrome. N Engl J Med. 1995;332:791–803.

    PubMed  CAS  Google Scholar 

  155. Torpy DJ, Mullen N, Ilias I, Nieman LK. Association of hypertension and hypokalemia with Cushing’s syndrome caused by ectopic ACTH secretion: a series of 58 cases. Ann N Y Acad Sci. 2002;970: 134–44.

    PubMed  CAS  Google Scholar 

  156. Geller DS, Farhi A, Pinkerton N, et al. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science (New York, NY). 2000;289:119–23.

    CAS  Google Scholar 

  157. Morineau G, Sulmont V, Salomon R, et al. Apparent mineralocorticoid excess: report of six new cases and extensive personal experience. J Am Soc Nephrol. 2006;17:3176–84.

    PubMed  CAS  Google Scholar 

  158. Mune T, Rogerson FM, Nikkila H, Agarwal AK, White PC. Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet. 1995;10:394–9.

    PubMed  CAS  Google Scholar 

  159. van Uum SH. Liquorice and hypertension. Neth J Med. 2005;63:119–20.

    PubMed  Google Scholar 

  160. Mumoli N, Cei M. Licorice-induced hypokalemia. Int J Cardiol. 2008;124:e42–4.

    PubMed  Google Scholar 

  161. Serra A, Uehlinger DE, Ferrari P, et al. Glycyrrhetinic acid decreases plasma potassium concentrations in patients with anuria. J Am Soc Nephrol. 2002;13:191–6.

    PubMed  CAS  Google Scholar 

  162. Rossier BC. 1996 Homer Smith Award Lecture. Cum grano salis: the epithelial sodium channel and the control of blood pressure. J Am Soc Nephrol. 1997;8:980–92.

    PubMed  CAS  Google Scholar 

  163. Snyder PM. Minireview: regulation of epithelial Na+ channel trafficking. Endocrinology. 2005;146:5079–85.

    PubMed  CAS  Google Scholar 

  164. Liddle GW, Bledsoe T, Coppage WS. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians. 1963;76:99–213.

    Google Scholar 

  165. Gennari FJ, Hussain-Khan S, Segal A. An unusual case of metabolic alkalosis: a window into the pathophysiology and diagnosis of this common acid-base disturbance. Am J Kidney Dis. 2010;55:1130–5.

    PubMed  Google Scholar 

  166. Sterns RH, Cox M, Feig PU, Singer I. Internal potassium balance and the control of the plasma potassium concentration. Medicine. 1981;60:339–54.

    PubMed  CAS  Google Scholar 

  167. Murakami K, Tomita M, Kawamura N, et al. Severe metabolic acidosis and hypokalemia in a patient with enterovesical fistula. Clin Exp Nephrol. 2007;11: 225–9.

    PubMed  Google Scholar 

  168. Murthy K, Harrington JT, Siegel RD. Profound hypokalemia in diabetic ketoacidosis: a therapeutic challenge. Endocr Pract. 2005;11:331–4.

    PubMed  Google Scholar 

  169. Yasue H, Itoh T, Mizuno Y, Harada E. Severe hypokalemia, rhabdomyolysis, muscle paralysis, and respiratory impairment in a hypertensive patient taking herbal medicines containing licorice. Intern Med. 2007;46:575–8.

    PubMed  Google Scholar 

  170. Kunin AS, Surawicz B, Sims EA. Decrease in serum potassium concentrations and appearance of cardiac arrhythmias during infusion of potassium with glucose in potassium-depleted patients. N Engl J Med. 1962;266:228–33.

    PubMed  CAS  Google Scholar 

  171. Kruse JA, Carlson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med. 1990;150: 613–7.

    PubMed  CAS  Google Scholar 

  172. Hamill RJ, Robinson LM, Wexler HR, Moote C. Efficacy and safety of potassium infusion therapy in hypokalemic critically ill patients. Crit Care Med. 1991;19:694–9.

    PubMed  CAS  Google Scholar 

  173. Sugimoto T, Kume S, Osawa N, Nakazawa J, Koya D, Kashiwagi A. Familial pseudohyperkalemia: a rare cause of hyperkalemia. Intern Med. 2005;44: 875–8.

    PubMed  Google Scholar 

  174. Bywaters EGL, Beall D. Crush injuries with impairment of renal function. Br Med J. 1941;1:427.

    PubMed  CAS  Google Scholar 

  175. Grossman RA, Hamilton RW, Morse BM, Penn AS, Goldberg M. Nontraumatic rhabdomyolysis and acute renal failure. N Engl J Med. 1974;291:807–11.

    PubMed  CAS  Google Scholar 

  176. Gowda RM, Cohen RA, Khan IA. Toad venom ­poisoning: resemblance to digoxin toxicity and therapeutic implications. Heart (British Cardiac Society). 2003;89:e14.

    CAS  Google Scholar 

  177. Martyn JA, Richtsfeld M. Succinylcholine-induced hyperkalemia in acquired pathologic states: etiologic factors and molecular mechanisms. Anesthesiology. 2006;104:158–69.

    PubMed  CAS  Google Scholar 

  178. Lehmann-Horn F, Jurkat-Rott K. Voltage-gated ion channels and hereditary disease. Physiol Rev. 1999;79:1317–72.

    PubMed  CAS  Google Scholar 

  179. Ptacek LJ, Johnson KJ, Griggs RC. Genetics and physiology of the myotonic muscle disorders. N Engl J Med. 1993;328:482–9.

    PubMed  CAS  Google Scholar 

  180. Pickar JG, Spier SJ, Snyder JR, Carlsen RC. Altered ionic permeability in skeletal muscle from horses with hyperkalemic periodic paralysis. Am J Physiol. 1991;260:C926–33.

    PubMed  CAS  Google Scholar 

  181. Cruz DN, Perazella MA. Biochemical aberrations in a dialysis patient following parathyroidectomy. Am J Kidney Dis. 1997;29:759–62.

    PubMed  CAS  Google Scholar 

  182. Armstrong CM. Distinguishing surface effects of calcium ion from pore-occupancy effects in Na+ channels. Proc Natl Acad Sci U S A. 1999;96: 4158–63.

    PubMed  CAS  Google Scholar 

  183. Ponce SP, Jennings AE, Madias NE, Harrington JT. Drug-induced hyperkalemia. Medicine. 1985;64:357–70.

    PubMed  CAS  Google Scholar 

  184. Perry MC. Cautopyreiophagia. N Engl J Med. 1977;296:824.

    PubMed  CAS  Google Scholar 

  185. Abu-Hamdan DK, Sondheimer JH, Mahajan SK. Cautopyreiophagia. Cause of life-threatening hyperkalemia in a patient undergoing hemodialysis. Am J Med. 1985;79:517–9.

    PubMed  CAS  Google Scholar 

  186. Oster JR, Singer I, Fishman LM. Heparin-induced aldosterone suppression and hyperkalemia. Am J Med. 1995;98:575–86.

    PubMed  CAS  Google Scholar 

  187. Conn JW, Rovner DR, Cohen EL, Anderson Jr JE. Inhibition by heparinoid of aldosterone biosynthesis in man. J Clin Endocrinol Metabol. 1966;26: 527–32.

    CAS  Google Scholar 

  188. Wilson ID, Goetz FC. Selective hypoaldosteronism after prolonged heparin administration. A case report, with postmortem findings. Am J Med. 1964;36:635–40.

    PubMed  CAS  Google Scholar 

  189. Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004;351:585–92.

    PubMed  CAS  Google Scholar 

  190. Goldberg AI, Dunlay MC, Sweet CS. Safety and tolerability of losartan potassium, an angiotensin II receptor antagonist, compared with hydrochlorothiazide, atenolol, felodipine ER, and angiotensin-converting enzyme inhibitors for the treatment of systemic hypertension. Am J Cardiol. 1995;75: 793–5.

    PubMed  CAS  Google Scholar 

  191. Reardon LC, Macpherson DS. Hyperkalemia in outpatients using angiotensin-converting enzyme inhibitors. How much should we worry? Arch Intern Med. 1998;158:26–32.

    PubMed  CAS  Google Scholar 

  192. Bakris GL, Siomos M, Richardson D, et al. ACE inhibition or angiotensin receptor blockade: impact on potassium in renal failure. VAL-K Study Group. Kidney Int. 2000;58:2084–92.

    PubMed  CAS  Google Scholar 

  193. Preston RA, Baltodano NM, Alonso AB, Epstein M. Comparative effects on dynamic renal potassium excretion of ACE inhibition versus angiotensin receptor blockade in hypertensive patients with type II diabetes mellitus. J Clin Pharmacol. 2002;42:754–61.

    PubMed  CAS  Google Scholar 

  194. Svensson M, Gustafsson F, Galatius S, Hildebrandt PR, Atar D. Hyperkalaemia and impaired renal function in patients taking spironolactone for congestive heart failure: retrospective study. BMJ (Clinical research ed). 2003;327:1141–2.

    Google Scholar 

  195. Velazquez H, Perazella MA, Wright FS, Ellison DH. Renal mechanism of trimethoprim-induced hyperkalemia. Ann Intern Med. 1993;119:296–301.

    PubMed  CAS  Google Scholar 

  196. Szerlip HM, Weiss J, Singer I. Profound hyperkalemia without electrocardiographic manifestations. Am J Kidney Dis. 1986;7:461–5.

    PubMed  CAS  Google Scholar 

  197. Keith NM, Osterberg AE, Burchell HB. Some effects of potassium salts in man. Ann Intern Med. 1942;16:879–92.

    CAS  Google Scholar 

  198. Thomson WAR. The effect of potassium on the heart in man. Br Heart J. 1939;1:269–82.

    PubMed  CAS  Google Scholar 

  199. Tarail R. Relationship of abnormalities in concentration of serum potassium to electrocardiographic disturbances. Am J Med. 1948;5:828–37.

    PubMed  CAS  Google Scholar 

  200. Nerbonne JM, Kass RS. Molecular physiology of cardiac repolarization. Physiol Rev. 2005;85:1205–53.

    PubMed  CAS  Google Scholar 

  201. Frankenhaeuser B, Hodgkin AL. The action of calcium on the electrical properties of squid axons. J Physiol. 1957;137:218–44.

    PubMed  CAS  Google Scholar 

  202. Armstrong CM, Cota G. Calcium ion as a cofactor in Na channel gating. Proc Natl Acad Sci U S A. 1991;88:6528–31.

    PubMed  CAS  Google Scholar 

  203. Armstrong CM, Cota G. Calcium block of Na+ channels and its effect on closing rate. Proc Natl Acad Sci U S A. 1999;96:4154–7.

    PubMed  CAS  Google Scholar 

  204. Allon M. Hyperkalemia in end-stage renal disease: mechanisms and management. J Am Soc Nephrol. 1995;6:1134–42.

    PubMed  CAS  Google Scholar 

  205. Gold H, Kwit N. Digitalis and calcium synergism. Science (New York, NY). 1937;86:330–1.

    CAS  Google Scholar 

  206. Smith PK, Winkler AW, Hoff HE. Calcium and digitalis synergism: the toxicity of calcium salts injected intravenously into digitalized animals. Arch Int Med. 1939;64:322–8.

    CAS  Google Scholar 

  207. Lown B, Black H, Moore FD. Digitalis, electrolytes and the surgical patient. Am J Cardiol. 1960;6:309–37.

    PubMed  CAS  Google Scholar 

  208. Nola GT, Pope S, Harrison DC. Assessment of the synergistic relationship between serum calcium and digitalis. Am Heart J. 1970;79:499–507.

    PubMed  CAS  Google Scholar 

  209. Fenton F, Smally AJ, Laut J. Hyperkalemia and digoxin toxicity in a patient with kidney failure. Ann Emerg Med. 1996;28:440–1.

    PubMed  CAS  Google Scholar 

  210. Van Deusen SK, Birkhahn RH, Gaeta TJ. Treatment of hyperkalemia in a patient with unrecognized digitalis toxicity. J Toxicol. 2003;41:373–6.

    Google Scholar 

  211. Allon M, Dunlay R, Copkney C. Nebulized albuterol for acute hyperkalemia in patients on hemodialysis. Ann Intern Med. 1989;110:426–9.

    PubMed  CAS  Google Scholar 

  212. Blumberg A, Weidmann P, Shaw S, Gnadinger M. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85:507–12.

    PubMed  CAS  Google Scholar 

  213. Blumberg A, Weidmann P, Ferrari P. Effect of prolonged bicarbonate administration on plasma potassium in terminal renal failure. Kidney Int. 1992;41:369–74.

    PubMed  CAS  Google Scholar 

  214. Flatman JA, Clausen T. Combined effects of ­adrenaline and insulin on active electrogenic Na+-K+ transport in rat soleus muscle. Nature. 1979;281: 580–1.

    PubMed  CAS  Google Scholar 

  215. Lillemoe KD, Romolo JL, Hamilton SR, Pennington LR, Burdick JF, Williams GM. Intestinal necrosis due to sodium polystyrene (kayexalate) in sorbitol enemas: clinical and experimental support for the hypothesis. Surgery. 1987;101:267–72.

    PubMed  CAS  Google Scholar 

  216. Gerstman BB, Kirkman R, Platt R. Intestinal necrosis associated with postoperative orally administered sodium polystyrene sulfonate in sorbitol. Am J Kidney Dis. 1992;20:159–61.

    PubMed  CAS  Google Scholar 

  217. Rogers FB, Li SC. Acute colonic necrosis associated with sodium polystyrene sulfonate (Kayexalate) enemas in a critically ill patient: case report and review of the literature. J Trauma. 2001;51:395–7.

    PubMed  CAS  Google Scholar 

  218. Kelsey PB, Chen S, Lauwers GY. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 37–2003. A 79-year-old man with coronary artery disease, peripheral vascular disease, end-stage renal disease, and abdominal pain and distention. N Engl J Med. 2003;349: 2147–55.

    PubMed  CAS  Google Scholar 

  219. Sterns RH, Rojas M, Bernstein P, Chennupati S. Ion-exchange resins for the treatment of hyperkalemia: are they safe and effective? J Am Soc Nephrol. 2010;21:733–5.

    PubMed  CAS  Google Scholar 

  220. Watson M, Abbott KC, Yuan CM. Damned if you do, damned if you don’t: potassium binding resins in hyperkalemia. Clin J Am Soc Nephrol. 2010;5:1723–6.

    PubMed  CAS  Google Scholar 

  221. McGowan CE, Saha S, Chu G, Resnick MB, Moss SF. Intestinal necrosis due to sodium polystyrene sulfonate (Kayexalate) in sorbitol. South Med J. 2009;102:493–7.

    PubMed  CAS  Google Scholar 

  222. Rashid A, Hamilton SR. Necrosis of the gastrointestinal tract in uremic patients as a result of sodium polystyrene sulfonate (Kayexalate) in sorbitol: an underrecognized condition. Am J Surg Pathol. 1997;21:60–9.

    PubMed  CAS  Google Scholar 

  223. Cheng ES, Stringer KM, Pegg SP. Colonic necrosis and perforation following oral sodium polystyrene sulfonate (Resonium A/Kayexalate) in a burn patient. Burns. 2002;28:189–90.

    PubMed  Google Scholar 

  224. Emmett M, Hootkins RE, Fine KD, Santa Ana CA, Porter JL, Fordtran JS. Effect of three laxatives and a cation exchange resin on fecal sodium and potassium excretion. Gastroenterology. 1995;108: 752–60.

    PubMed  CAS  Google Scholar 

  225. Dardik A, Moesinger RC, Efron G, Barbul A, Harrison MG. Acute abdomen with colonic necrosis induced by Kayexalate-sorbitol. South Med J. 2000;93:511–3.

    PubMed  CAS  Google Scholar 

  226. Gruy-Kapral C, Emmett M, Santa Ana CA, Porter JL, Fordtran JS, Fine KD. Effect of single dose resin-cathartic therapy on serum potassium concentration in patients with end-stage renal disease. J Am Soc Nephrol. 1998;9:1924–30.

    PubMed  CAS  Google Scholar 

  227. Kamel KS, Wei C. Controversial issues in the treatment of hyperkalaemia. Nephrol Dial Transplant. 2003;18:2215–8.

    PubMed  Google Scholar 

  228. Farese S, Kruse A, Pasch A, et al. Glycyrrhetinic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int. 2009;76:877–84.

    PubMed  CAS  Google Scholar 

  229. Sherman RA, Hwang ER, Bernholc AS, Eisinger RP. Variability in potassium removal by hemodialysis. Am J Nephrol. 1986;6:284–8.

    PubMed  CAS  Google Scholar 

  230. Hou S, McElroy PA, Nootens J, Beach M. Safety and efficacy of low-potassium diasylate. Am J Kidney Dis. 1989;13:137–43.

    PubMed  CAS  Google Scholar 

  231. Karnik JA, Young BS, Lew NL, et al. Cardiac arrest and sudden death in dialysis units. Kidney Int. 2001;60:350–7.

    PubMed  CAS  Google Scholar 

  232. Lameire N, Van Biesen W, Vanholder R. Did 20 years of technological innovations in hemodialysis contribute to better patient outcomes? Clin J Am Soc Nephrol. 2009;4 Suppl 1:S30–40.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Segal M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Segal, A. (2013). Potassium and the Dyskalemias. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_3

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics