Skip to main content

Disorders of Water Metabolism

  • Chapter
  • First Online:

Abstract

Disorders of serum sodium are very frequently encountered particularly in hospitalized elderly patients. Most often these reflect disorders in water balance. This chapter reviews normal water regulation, and how dysregulation culminates in hyponatremic and hypernatremic states. The complications of these electrolyte disorders, particularly as they relate to neurological adaptations and sequelae, are discussed. An approach to the diagnosis, evaluation, and treatment of these disorders is presented with emphasis on assessment of extracellular fluid volume status, interpretation of urinary osmolality and urinary sodium, and calculation of water excess and deficits. The central role of the presence or absence of vasopressin in the pathogenesis and treatment of dysnatremias permeates the entire chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Waikar SS, Mount DB, Curhan GC. Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med. 2009;122:857–65.

    Article  PubMed  CAS  Google Scholar 

  2. Nguyen MK, Kurtz I. New insights into the pathophysiology of the dysnatremias: a quantitative analysis. Am J Physiol Renal Physiol. 2004;287:F172–80.

    Article  PubMed  CAS  Google Scholar 

  3. Schoen EJ. Minimum urine total solute concentration in response to water loading in normal men. J Appl Physiol. 1957;10:267–70.

    PubMed  CAS  Google Scholar 

  4. Lindeman RD, Van Buren HC, Raisz LG. Osmolar renal concentrating ability in healthy young men and hospitalized patients without renal disease. N Engl J Med. 1960;262:1306–9.

    Article  PubMed  CAS  Google Scholar 

  5. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.

    PubMed  CAS  Google Scholar 

  6. Berl T, Schrier RW. Disorders of Water Homeostasis. In: Schrier RW, editor. Renal and electrolyte disorders. 6th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2010. p. 1–44.

    Google Scholar 

  7. Berl T. Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol. 2008;19:1076–8.

    Article  PubMed  CAS  Google Scholar 

  8. Sterns RH, Silver SM. Brain volume regulation in response to hypo-osmolality and its correction. Am J Med. 2006;119:S12–6.

    Article  PubMed  CAS  Google Scholar 

  9. Ayus JC, Arieff AI. Noncardiogenic pulmonary edema in marathon runners. Ann Intern Med. 2000;133:1011.

    PubMed  Google Scholar 

  10. Arieff AI, Ayus JC, Fraser CL. Hyponatraemia and death or permanent brain damage in healthy children. BMJ. 1992;304:1218–22.

    Article  PubMed  CAS  Google Scholar 

  11. Pollock AS, Arieff AI. Abnormalities of cell volume regulation and their functional consequences. Am J Physiol. 1980;239:F195–205.

    PubMed  CAS  Google Scholar 

  12. Arieff AI. Hyponatremia, convulsions, respiratory arrest, and permanent brain damage after elective surgery in healthy women. N Engl J Med. 1986;314: 1529–35.

    Article  PubMed  CAS  Google Scholar 

  13. Ayus JC, Armstrong D, Arieff AI. Hyponatremia with hypoxia: effects on brain adaptation, perfusion, and histology in rodents. Kidney Int. 2006;69:1319–25.

    PubMed  CAS  Google Scholar 

  14. Ayus JC, Arieff AI. Brain damage and postoperative hyponatremia: the role of gender. Neurology. 1996;46:323–8.

    Article  PubMed  CAS  Google Scholar 

  15. Ayus JC, Wheeler JM, Arieff AI. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med. 1992;117:891–7.

    PubMed  CAS  Google Scholar 

  16. Fraser CL, Kucharczyk J, Arieff AI, Rollin C, Sarnacki P, Norman D. Sex differences result in increased morbidity from hyponatremia in female rats. Am J Physiol. 1989;256:R880–5.

    PubMed  CAS  Google Scholar 

  17. Sonnenblick M, Friedlander Y, Rosin AJ. Diuretic-induced severe hyponatremia. Review and analysis of 129 reported patients. Chest. 1993;103:601–6.

    Article  PubMed  CAS  Google Scholar 

  18. Szatalowicz VL, Miller PD, Lacher JW, Gordon JA, Schrier RW. Comparative effect of diuretics on renal water excretion in hyponatraemic oedematous disorders. Clin Sci (Lond). 1982;62:235–8.

    CAS  Google Scholar 

  19. Chow KM, Szeto CC, Wong TY, Leung CB, Li PK. Risk factors for thiazide-induced hyponatraemia. QJM. 2003;96:911–7.

    Article  PubMed  CAS  Google Scholar 

  20. Durward A, Tibby SM, Murdoch IA. Hyponatraemia can be caused by standard fluid regimens. BMJ. 2000;320:943.

    Article  PubMed  CAS  Google Scholar 

  21. Franchi-Gazzola R, Dall’Asta V, Sala R, Visigalli R, Bevilacqua E, Gaccioli F, Gazzola GC, Bussolati O. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta Physiol (Oxf). 2006;187:273–83.

    Article  CAS  Google Scholar 

  22. Norenberg MD. Central pontine myelinolysis: historical and mechanistic considerations. Metab Brain Dis. 2010;25:97–106.

    Article  PubMed  Google Scholar 

  23. Berl T, Rastegar A. A patient with severe hyponatremia and hypokalemia: osmotic demyelination following potassium repletion. Am J Kidney Dis. 2010;55:742–8.

    Article  PubMed  Google Scholar 

  24. Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol. 1994;4:1522–30.

    PubMed  CAS  Google Scholar 

  25. McKee AC, Winkelman MD, Banker BQ. Central pontine myelinolysis in severely burned patients: relationship to serum hyperosmolality. Neurology. 1988;38:1211–7.

    Article  PubMed  CAS  Google Scholar 

  26. Sica DA. Hyponatremia and heart failure—pathophysiology and implications. Congest Heart Fail. 2005;11:274–7.

    Article  PubMed  Google Scholar 

  27. Heuman DM, Abou-Assi SG, Habib A, Williams LM, Stravitz RT, Sanyal AJ, Fisher RA, Mihas AA. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology. 2004;40: 802–10.

    PubMed  Google Scholar 

  28. Schrier RW. Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol. 2006;47:1–8.

    Article  PubMed  Google Scholar 

  29. Licata G, Di Pasquale P, Parrinello G, Cardinale A, Scandurra A, Follone G, Argano C, Tuttolomondo A, Paterna S. Effects of high-dose furosemide and small-volume hypertonic saline solution infusion in comparison with a high dose of furosemide as bolus in refractory congestive heart failure: long-term effects. Am Heart J. 2003;145:459–66.

    Article  PubMed  CAS  Google Scholar 

  30. Cardenas A, Gines P. Management of complications of cirrhosis in patients awaiting liver transplantation. J Hepatol. 2005;42(Suppl):S124–33.

    Article  PubMed  Google Scholar 

  31. Koenig MA, Bryan M, Lewin 3rd JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology. 2008;70:1023–9.

    Article  PubMed  CAS  Google Scholar 

  32. Soupart A, Ngassa M, Decaux G. Therapeutic relowering of the serum sodium in a patient after excessive correction of hyponatremia. Clin Nephrol. 1999;51: 383–6.

    PubMed  CAS  Google Scholar 

  33. Oya S, Tsutsumi K, Ueki K, Kirino T. Reinduction of hyponatremia to treat central pontine myelinolysis. Neurology. 2001;57:1931–2.

    Article  PubMed  CAS  Google Scholar 

  34. Perianayagam A, Sterns RH, Silver SM, Grieff M, Mayo R, Hix J, Kouides R. DDAVP is effective in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol. 2008;3: 331–6.

    Article  PubMed  CAS  Google Scholar 

  35. Sterns RH, Hix JK, Silver S. Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis. 2010;56:774–9.

    Article  PubMed  CAS  Google Scholar 

  36. Greenberg A, Verbalis JG. Vasopressin receptor antagonists. Kidney Int. 2006;69:2124–30.

    Article  PubMed  CAS  Google Scholar 

  37. Velez JC, Dopson SJ, Sanders DS, Delay TA, Arthur JM. Intravenous conivaptan for the treatment of hyponatraemia caused by the syndrome of inappropriate secretion of antidiuretic hormone in hospitalized patients: a single-centre experience. Nephrol Dial Transplant. 2010;25:1524–31.

    Article  PubMed  CAS  Google Scholar 

  38. Renneboog B, Musch W, Vandemergel X, Manto MU, Decaux G. Mild chronic hyponatremia is associated with falls, unsteadiness, and attention deficits. Am J Med. 2006;119(71):e71–8.

    Google Scholar 

  39. Verbalis JG, Barsony J, Sugimura Y, Tian Y, Adams DJ, Carter EA, Resnick HE. Hyponatremia-induced osteoporosis. J Bone Miner Res. 2010;25:554–63.

    Article  PubMed  CAS  Google Scholar 

  40. Gankam Kengne F, Andres C, Sattar L, Melot C, Decaux G. Mild hyponatremia and risk of fracture in the ambulatory elderly. QJM. 2008;101:583–8.

    Article  PubMed  CAS  Google Scholar 

  41. Sica DA. Hyponatremia and heart failure—treatment considerations. Congest Heart Fail. 2006;12:55–60.

    Article  PubMed  CAS  Google Scholar 

  42. Udelson JE, Smith WB, Hendrix GH, Painchaud CA, Ghazzi M, Thomas I, Ghali JK, Selaru P, Chanoine F, Pressler ML, Konstam MA. Acute hemodynamic effects of conivaptan, a dual V(1A) and V(2) vasopressin receptor antagonist, in patients with advanced heart failure. Circulation. 2001;104:2417–23.

    Article  PubMed  CAS  Google Scholar 

  43. Abraham WT, Shamshirsaz AA, McFann K, Oren RM, Schrier RW. Aquaretic effect of lixivaptan, an oral, non-peptide, selective V2 receptor vasopressin antagonist, in New York Heart Association functional class II and III chronic heart failure patients. J Am Coll Cardiol. 2006;47:1615–21.

    Article  PubMed  CAS  Google Scholar 

  44. Gheorghiade M, Niazi I, Ouyang J, Czerwiec F, Kambayashi J, Zampino M, Orlandi C. Vasopressin V2-receptor blockade with tolvaptan in patients with chronic heart failure: results from a double-blind, randomized trial. Circulation. 2003;107:2690–6.

    Article  PubMed  CAS  Google Scholar 

  45. Schrier RW, Gross P, Gheorghiade M, Berl T, Verbalis JG, Czerwiec FS, Orlandi C. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112.

    Article  PubMed  CAS  Google Scholar 

  46. Wong F, Blei AT, Blendis LM, Thuluvath PJ. A vasopressin receptor antagonist (VPA-985) improves serum sodium concentration in patients with hyponatremia: a multicenter, randomized, placebo-controlled trial. Hepatology. 2003;37:182–91.

    Article  PubMed  CAS  Google Scholar 

  47. Gerbes AL, Gulberg V, Gines P, Decaux G, Gross P, Gandjini H, Djian J. Therapy of hyponatremia in cirrhosis with a vasopressin receptor antagonist: a randomized double-blind multicenter trial. Gastroenterology. 2003;124:933–9.

    Article  PubMed  CAS  Google Scholar 

  48. Guyader D, Patat A, Ellis-Grosse EJ, Orczyk GP. Pharmacodynamic effects of a nonpeptide antidiuretic hormone V2 antagonist in cirrhotic patients with ascites. Hepatology. 2002;36:1197–205.

    Article  PubMed  CAS  Google Scholar 

  49. Gines P, Cardenas A, Arroyo V, Rodes J. Management of cirrhosis and ascites. N Engl J Med. 2004;350: 1646–54.

    Article  PubMed  CAS  Google Scholar 

  50. Londono MC, Guevara M, Rimola A, Navasa M, Taura P, Mas A, Garcia-Valdecasas JC, Arroyo V, Gines P. Hyponatremia impairs early posttransplantation outcome in patients with cirrhosis undergoing liver transplantation. Gastroenterology. 2006;130: 1135–43.

    Article  PubMed  Google Scholar 

  51. Furst H, Hallows KR, Post J, Chen S, Kotzker W, Goldfarb S, Ziyadeh FN, Neilson EG. The urine/plasma electrolyte ratio: a predictive guide to water restriction. Am J Med Sci. 2000;319:240–4.

    Article  PubMed  CAS  Google Scholar 

  52. Soupart A, Gross P, Legros J, Alfoldi S, Annane D, Heshmati H, Decaux G. Successful long-term treatment of hyponatremia in syndrome of inappropriate antidiuretic hormone secretion with satavaptan (SR121463B), an orally active nonpeptide vasopressin V2-receptor antagonist. CJASN. 2006;1: 1154–60.

    PubMed  CAS  Google Scholar 

  53. Berl T, Quittnat-Pelletier F, Verbalis JG, Schrier RW, Bichet DG, Ouyang J, Czerwiec FS. Oral tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol. 2010;21:705–12.

    Article  PubMed  CAS  Google Scholar 

  54. Finberg L, Luttrell C, Redd H. Pathogenesis of lesions in the nervous system in hypernatremic states. II. Experimental studies of gross anatomic changes and alterations of chemical composition of the tissues. Pediatrics. 1959;23:46–53.

    PubMed  CAS  Google Scholar 

  55. Arieff AI, Guisado R. Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int. 1976;10:104–16.

    Article  PubMed  CAS  Google Scholar 

  56. Morris-Jones PH, Houston IB, Evans RC. Prognosis of the neurological complications of acute hypernatraemia. Lancet. 1967;2:1385–9.

    Article  PubMed  CAS  Google Scholar 

  57. Lien YH, Shapiro JI, Chan L. Effects of hypernatremia on organic brain osmoles. J Clin Invest. 1990;85:1427–35.

    Article  PubMed  CAS  Google Scholar 

  58. Brown WD, Caruso JM. Extrapontine myelinolysis with involvement of the hippocampus in three children with severe hypernatremia. J Child Neurol. 1999;14:428–33.

    Article  PubMed  CAS  Google Scholar 

  59. Palevsky PM, Bhagrath R, Greenberg A. Hyper­natremia in hospitalized patients. Ann Intern Med. 1996;124:197–203.

    PubMed  CAS  Google Scholar 

  60. Polderman KH, Schreuder WO, Strack van Schijndel RJ, Thijs LG. Hypernatremia in the intensive care unit: an indicator of quality of care? Crit Care Med. 1999;27:1105–8.

    Article  PubMed  CAS  Google Scholar 

  61. Rose BD, Post TW. Clincial physiology of acid-base and electrolyte disorders. New York: McGraw Hill; 2001.

    Google Scholar 

  62. Kahn A, Brachet E, Blum D. Controlled fall in natremia and risk of seizures in hypertonic dehydration. Intensive Care Med. 1979;5:27–31.

    Article  PubMed  CAS  Google Scholar 

  63. Blum D, Brasseur D, Kahn A, Brachet E. Safe oral rehydration of hypertonic dehydration. J Pediatr Gastroenterol Nutr. 1986;5:232–5.

    Article  PubMed  CAS  Google Scholar 

  64. Miller M, Dalakos T, Moses AM, Fellerman H, Streeten DH. Recognition of partial defects in antidiuretic hormone secretion. Ann Intern Med. 1970;73:721–9.

    PubMed  CAS  Google Scholar 

  65. Kim GH, Lee JW, Oh YK, Chang HR, Joo KW, Na KY, Earm JH, Knepper MA, Han JS. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836–43.

    Article  PubMed  CAS  Google Scholar 

  66. Fujiwara TM, Bichet DG. Molecular biology of hereditary diabetes insipidus. J Am Soc Nephrol. 2005;16:2836–46.

    Article  PubMed  CAS  Google Scholar 

  67. Hoorn EJ, Betjes MG, Weigel J, Zietse R. Hypernatraemia in critically ill patients: too little water and too much salt. Nephrol Dial Transplant. 2008;23:1562–8.

    Article  PubMed  Google Scholar 

  68. Lindner G, Kneidinger N, Holzinger U, Druml W, Schwarz C. Tonicity balance in patients with hypernatremia acquired in the intensive care unit. Am J Kidney Dis. 2009;54:674–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Thurman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Thurman, J.M., Berl, T. (2013). Disorders of Water Metabolism. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics