Etiology and Epidemiology of CLL

  • Dalemari Crowther-Swanepoel
  • Daniel Catovsky
  • Richard S. Houlston


Chronic lymphocytic leukemia (CLL) is an indolent disease resulting from an accumulation of CD5-positive neoplastic B-cells characterized by a low rate of proliferation. Despite CLL accounting for approximately 25 % of all leukemia and being the most common form of lymphoid malignancy in Western countries [1], our understanding of its biological basis is only starting to be unraveled.


Incidence Risk Environment Immune Familial Linkage Polygenic association Genome wide association study (GWA) IRF4 SP140 PRKD2 IRF8 FIR Epstein–Barr virus (EBV) Myc Monoclonal B-cell lymphocytosis (MBL) IGHV 


  1. 1.
    Ries LA, Wingo PA, Miller DS, et al. The annual report to the nation on the status of cancer, 1973–1997, with a special section on colorectal cancer. Cancer. 2000;88:2398–424.PubMedCrossRefGoogle Scholar
  2. 2.
    SEER Cancer Statistics Review, 1975–2006. 2009. (Accessed 2010, 2009, at
  3. 3.
    Gale RP, Cozen W, Goodman MT, Wang FF, Bernstein L. Decreased chronic lymphocytic leukemia incidence in Asians in Los Angeles County. Leuk Res. 2000;24:665–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968;40:43–68.PubMedGoogle Scholar
  5. 5.
    Vigliani EC. Leukemia associated with benzene exposure. Ann N Y Acad Sci. 1976;271:143–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Brown LM, Gibson R, Blair A, et al. Smoking and risk of leukemia. Am J Epidemiol. 1992;135:763–8.PubMedGoogle Scholar
  7. 7.
    Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137:S68–97.PubMedCrossRefGoogle Scholar
  8. 8.
    Blair A, White DW. Leukemia cell types and agricultural practices in Nebraska. Arch Environ Health. 1985;40:211–4.PubMedGoogle Scholar
  9. 9.
    Amadori D, Nanni O, Falcini F, et al. Chronic lymphocytic leukaemias and non-Hodgkin’s lymphomas by histological type in farming-animal breeding workers: a population case-control study based on job titles. Occup Environ Med. 1995;52:374–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Delzell E, Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R. An updated study of mortality among North American synthetic rubber industry workers. Res Rep Health Eff Inst. 2006;132:1–63. discussion 5–74.PubMedGoogle Scholar
  11. 11.
    Huebner WW, Chen VW, Friedlander BR, et al. Incidence of lymphohaematopoietic malignancies in a petrochemical industry cohort: 1983–94 follow up. Occup Environ Med. 2000;57:605–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Raabe GK, Wong O. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene. Environ Health Perspect. 1996;104 Suppl 6:1381–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Gilman PA, Ames RG, McCawley MA. Leukemia risk among U.S. white male coal miners. A case-control study. J Occup Med. 1985;27:669–71.PubMedGoogle Scholar
  14. 14.
    Schwartz DA, Vaughan TL, Heyer NJ, et al. B cell neoplasms and occupational asbestos exposure. Am J Ind Med. 1988;14:661–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Blair A, Purdue MP, Weisenburger DD, Baris D. Chemical exposures and risk of chronic lymphocytic leukaemia. Br J Haematol. 2007;139:753–61.PubMedCrossRefGoogle Scholar
  16. 16.
    Richardson DB, Wing S, Schroeder J, Schmitz-Feuerhake I, Hoffmann W. Ionizing radiation and chronic lymphocytic leukemia. Environ Health Perspect. 2005;113:1–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Schubauer-Berigan MK, Daniels RD, Fleming DA, et al. Chronic lymphocytic leukaemia and radiation: findings among workers at five US nuclear facilities and a review of the recent literature. Br J Haematol. 2007;139:799–808.PubMedCrossRefGoogle Scholar
  18. 18.
    Molica S. Infections in chronic lymphocytic leukemia: risk factors, and impact on survival, and treatment. Leuk Lymphoma. 1994;13:203–14.PubMedCrossRefGoogle Scholar
  19. 19.
    Krackhardt AM, Harig S, Witzens M, Broderick R, Barrett P, Gribben JG. T-cell responses against chronic lymphocytic leukemia cells: implications for immunotherapy. Blood. 2002;100:167–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Krackhardt AM, Witzens M, Harig S, et al. Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002;100:2123–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Analo HI, Akanmu AS, Akinsete I, Njoku OS, Okany CC. Seroprevalence study of HTLV-1 and HIV infection in blood donors and patients with lymphoid malignancies in Lagos, Nigeria. Cent Afr J Med. 1998;44:130–4.PubMedGoogle Scholar
  22. 22.
    Cartwright RA, Bernard SM, Bird CC, et al. Chronic lymphocytic leukaemia: case control epidemiological study in Yorkshire. Br J Cancer. 1987;56:79–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Jonsson V, Houlston RS, Catovsky D, et al. CLL family ‘Pedigree 14’ revisited: 1947–2004. Leukemia. 2005;19:1025–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Linet MS, Van Natta ML, Brookmeyer R, et al. Familial cancer history and chronic lymphocytic leukemia. A case-control study. Am J Epidemiol. 1989;130:655–64.PubMedGoogle Scholar
  25. 25.
    Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104:1850–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Gunz FW, Gunz JP, Veale AM, Chapman CJ, Houston IB. Familial leukaemia: a study of 909 families. Scand J Haematol. 1975;15:117–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Giles GG, Lickiss JN, Baikie MJ, Lowenthal RM, Panton J. Myeloproliferative and lymphoproliferative disorders in Tasmania, 1972–80: occupational and familial aspects. J Natl Cancer Inst. 1984;72:1233–40.PubMedGoogle Scholar
  28. 28.
    Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86:1600–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Pottern LM, Linet M, Blair A, et al. Familial cancers associated with subtypes of leukemia and non-Hodgkin’s lymphoma. Leuk Res. 1991;15:305–14.PubMedCrossRefGoogle Scholar
  30. 30.
    Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009;94:647–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Ishibe N, Sgambati MT, Fontaine L, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42:99–108.PubMedCrossRefGoogle Scholar
  32. 32.
    Crowther-Swanepoel D, Wild R, Sellick G, et al. Insight into the pathogenesis of chronic lymphocytic leukemia (CLL) through analysis of IgVH gene usage and mutation status in familial CLL. Blood. 2008;111:5691–3.PubMedCrossRefGoogle Scholar
  33. 33.
    Wiernik PH, Ashwin M, Hu XP, Paietta E, Brown K. Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol. 2001;113:407–14.PubMedCrossRefGoogle Scholar
  34. 34.
    Horwitz M, Goode EL, Jarvik GP. Anticipation in familial leukemia. Am J Hum Genet. 1996;59:990–8.PubMedGoogle Scholar
  35. 35.
    Yuille MR, Houlston RS, Catovsky D. Anticipation in familial chronic lymphocytic leukaemia. Leukemia. 1998;12:1696–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Daugherty SE, Pfeiffer RM, Mellemkjaer L, Hemminki K, Goldin LR. No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiol Biomarkers Prev. 2005;14:1245–50.PubMedCrossRefGoogle Scholar
  37. 37.
    Sellick GS, Goldin LR, Wild RW, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood. 2007;110:3326–33.PubMedCrossRefGoogle Scholar
  38. 38.
    Fuller SJ, Papaemmanuil E, McKinnon L, et al. Analysis of a large multi-generational family provides insight into the genetics of chronic lymphocytic leukemia. Br J Haematol. 2008;142(2):238–45.PubMedCrossRefGoogle Scholar
  39. 39.
    Goldin LR, Ishibe N, Sgambati M, et al. A genome scan of 18 families with chronic lymphocytic leukaemia. Br J Haematol. 2003;121:866–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Sellick GS, Webb EL, Allinson R, et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-susceptibility loci. Am J Hum Genet. 2005;77:420–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Raval A, Tanner SM, Byrd JC, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129:879–90.PubMedCrossRefGoogle Scholar
  42. 42.
    Jonsson V, Tjonnfjord GE, Johannesen TB, Ly B, Olsen JH, Yuille M. Familial chronic lymphocytic leukemia in Norway and Denmark. Comments on pleiotropy and birth order. In Vivo. 2010;24:85–95.PubMedGoogle Scholar
  43. 43.
    Di Bernardo MC, Crowther-Swanepoel D, Broderick P, et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2008;40:1204–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Crowther-Swanepoel D, Broderick P, Di Bernardo MC, et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet. 2010;42:132–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.PubMedCrossRefGoogle Scholar
  46. 46.
    Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5:230–42.PubMedCrossRefGoogle Scholar
  47. 47.
    Klein U, Casola S, Cattoretti G, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7:773–82.PubMedCrossRefGoogle Scholar
  48. 48.
    Adami J, Frisch M, Yuen J, Glimelius B, Melbye M. Evidence of an association between non-Hodgkin’s lymphoma and skin cancer. Br Med J. 1995;310:1491–5.CrossRefGoogle Scholar
  49. 49.
    Swerdlow AJ, Storm HH, Sasieni PD. Risks of second primary malignancy in patients with cutaneous and ocular melanoma in Denmark, 1943–1989. Int J Cancer. 1995;61:773–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Han J, Kraft P, Nan H, et al. A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation. PLoS Genet. 2008;4:e1000074.PubMedCrossRefGoogle Scholar
  51. 51.
    Pho LN, Leachman SA. Genetics of pigmentation and melanoma predisposition. G Ital Dermatol Venereol. 2010;145:37–45.PubMedGoogle Scholar
  52. 52.
    Bloch DB, de la Monte SM, Guigaouri P, Filippov A, Bloch KD. Identification and characterization of a leukocyte-specific component of the nuclear body. J Biol Chem. 1996;271:29198–204.PubMedCrossRefGoogle Scholar
  53. 53.
    Dent AL, Yewdell J, Puvion-Dutilleul F, Koken MH, de The H, Staudt LM. LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. Blood. 1996;88:1423–6.PubMedGoogle Scholar
  54. 54.
    Ling PD, Peng RS, Nakajima A, et al. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J. 2005;24:3565–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Madani N, Millette R, Platt EJ, et al. Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol. 2002;76:11133–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Kovalevska LM, Yurchenko OV, Shlapatska LM, et al. Immunohistochemical studies of protein kinase D (PKD) 2 expression in malignant human lymphomas. Exp Oncol. 2006;28:225–30.PubMedGoogle Scholar
  57. 57.
    Miyamoto Y, Yamauchi J, Itoh H. Src kinase regulates the activation of a novel FGD-1-related Cdc42 guanine nucleotide exchange factor in the signaling pathway from the endothelin A receptor to JNK. J Biol Chem. 2003;278:29890–900.PubMedCrossRefGoogle Scholar
  58. 58.
    Page-McCaw PS, Amonlirdviman K, Sharp PA. PUF60: a novel U2AF65-related splicing activity. RNA. 1999;5:1548–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Duncan R, Bazar L, Michelotti G, et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 1994;8:465–80.PubMedCrossRefGoogle Scholar
  60. 60.
    Liu J, He L, Collins I, et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol Cell. 2000;5:331–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Gudmundsson J, Sulem P, Manolescu A, et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet. 2007;39:631–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007;447:1087–93.PubMedCrossRefGoogle Scholar
  63. 63.
    Tomlinson I, Webb E, Carvajal-Carmona L, et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 2007;39:984–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Yeager M, Orr N, Hayes RB, et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet. 2007;39:645–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Amundadottir LT, Sulem P, Gudmundsson J, et al. A common variant associated with prostate cancer in European and African populations. Nat Genet. 2006;38:652–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Kiemeney LA, Thorlacius S, Sulem P, et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet. 2008;40:1307–12.PubMedCrossRefGoogle Scholar
  67. 67.
    Pomerantz MM, Ahmadiyeh N, Jia L, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41:882–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Shaffer AL, Emre NC, Lamy L, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454:226–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Rawstron AC, Green MJ, Kuzmicki A, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood. 2002;100:635–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.PubMedCrossRefGoogle Scholar
  71. 71.
    Brezinschek HP, Brezinschek RI, Lipsky PE. Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol. 1995;155:190–202.PubMedGoogle Scholar
  72. 72.
    Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.PubMedGoogle Scholar
  73. 73.
    Mockridge CI, Rahman A, Buchan S, et al. Common patterns of B cell perturbation and expanded V4-34 immunoglobulin gene usage in autoimmunity and infection. Autoimmunity. 2004;37:9–15.PubMedCrossRefGoogle Scholar
  74. 74.
    Kostareli E, Hadzidimitriou A, Stavroyianni N, et al. Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Leukemia. 2009;23:919–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Xu D, Zhao L, Del Valle L, Miklossy J, Zhang L. Interferon regulatory factor 4 is involved in Epstein-Barr virus-mediated transformation of human B lymphocytes. J Virol. 2008;82:6251–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dalemari Crowther-Swanepoel
    • 1
  • Daniel Catovsky
    • 2
  • Richard S. Houlston
    • 1
  1. 1.Department of Cancer GeneticsThe Institute of Cancer ResearchSurreyUK
  2. 2.Department of Hemato-oncologyThe Institute of Cancer Research and Royal Marsden Hospital NHS TrustSurreyUK

Personalised recommendations