Prognosis and Staging of Multiple Myeloma

  • Jesús F. San-Miguel
  • Ramón García-Sanz
  • Norma C. Gutiérrez


Multiple myeloma (MM) is still considered an incurable disease and has a median survival ranging between 3 and 6 years. Nevertheless, the response rate and outcome are highly variable among MM patients, with some surviving for more than 10 years and others living for only a few months [1, 2]. In the main, this heterogeneity relates to specific characteristics of the tumor itself and of the host. The identification of those characteristics associated with either a good or a poor prognosis is most important not only for doctors but also for patients, in order to obtain more individualized information about disease outcome, instead of simply offering a general median survival rate.


Multiple myeloma prognosis Multiple myeloma staging 


  1. 1.
    Hideshima T, Bergsagel PL, Kuehl WM, Anderson KC. Advances in biology of multiple myeloma: clinical applications. Blood. 2004;104:607–18.PubMedCrossRefGoogle Scholar
  2. 2.
    Stewart AK, Bergsagel PL, Greipp PR, et al. A practical guide to defining high-risk myeloma for clinical trials, patient counseling and choice of therapy. Leukemia. 2007;21:529–34.PubMedCrossRefGoogle Scholar
  3. 3.
    San Miguel JF, Harousseau JL, Joshua D, Anderson KC. Individualizing treatment of patients with myeloma in the era of novel agents. J Clin Oncol. 2008;26:2761–6.PubMedCrossRefGoogle Scholar
  4. 4.
    San Miguel JF, Mateos MV, Gutierrez NC. Risk stratification in the era of novel therapies. Cancer J. 2009;15:457–64.PubMedCrossRefGoogle Scholar
  5. 5.
    Fonseca R, Barlogie B, Bataille R et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 2004;64:1546–58.Google Scholar
  6. 6.
    Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23:2210–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2:175–87.PubMedCrossRefGoogle Scholar
  8. 8.
    Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myelome. Blood. 2007;109:3489–95.PubMedCrossRefGoogle Scholar
  9. 9.
    Fonseca R, Blood E, Rue M, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101:4569–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Gertz MA, Lacy MQ, Dispenzieri A, et al. Clinical implications of t(11;14)(q13;q32), t(4;14)(p16.3;q32), and -17p13 in myeloma patients treated with high-dose therapy. Blood. 2005;106:2837–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Gutierrez NC, Castellanos MV, Martin ML, et al. Prognostic and biological implications of genetic abnormalities in multiple myeloma undergoing autologous stem cell transplantation: t(4;14) is the most relevant adverse prognostic factor, whereas RB deletion as a unique abnormality is not associated with adverse prognosis. Leukemia. 2007;21:143–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Chang H, Sloan S, Li D, et al. The t(4;14) is associated with poor prognosis in myeloma patients undergoing autologous stem cell transplant. Br J Haematol. 2004;125:64–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Moreau P, Facon T, Leleu X, et al. Recurrent 14q32 translocations determine the prognosis of multiple myeloma, especially in patients receiving intensive chemotherapy. Blood. 2002;100:1579–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Fonseca R, Stewart AK. Targeted therapeutics for multiple myeloma: the arrival of a risk-stratified approach. Mol Cancer Ther. 2007;6:802–10.PubMedCrossRefGoogle Scholar
  15. 15.
    Jaksic W, Trudel S, Chang H, et al. Clinical outcomes in t(4;14) multiple myeloma: a chemotherapy-sensitive disease characterized by rapid relapse and alkylating agent resistance. J Clin Oncol. 2005;23:7069–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Moreau P, Attal M, Garban F, et al. Heterogeneity of t(4;14) in multiple myeloma. Long-term follow-up of 100 cases treated with tandem transplantation in IFM99 trials. Leukemia. 2007;21:2020–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Shaughnessy Jr JD, Zhan F, Burington BE, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276–84.PubMedCrossRefGoogle Scholar
  18. 18.
    Fonseca R, Blood EA, Oken MM, et al. Myeloma and the t(11;14)(q13;q32); evidence for a biologically defined unique subset of patients. Blood. 2002;99:3735–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Nair B, van Rhee F, Shaughnessy Jr JD, et al. Superior results of Total Therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with bortezomib, lenalidomide and dexamethasone (VRD) maintenance. Blood. 2010;115:4168–73.PubMedCrossRefGoogle Scholar
  20. 20.
    Smadja NV, Fruchart C, Isnard F, et al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases. Leukemia. 1998;12:960–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Fonseca R, Debes-Marun CS, Picken EB, et al. The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood. 2003;102:2562–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Smadja NV, Leroux D, Soulier J, et al. Further cytogenetic ­characterization of multiple myeloma confirms that 14q32 translocations are a very rare event in hyperdiploid cases. Genes Chromosomes Cancer. 2003;38:234–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Mateo G, Castellanos M, Rasillo A, et al. Genetic abnormalities and patterns of antigenic expression in multiple myeloma. Clin Cancer Res. 2005;11:3661–7.PubMedCrossRefGoogle Scholar
  24. 24.
    Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9:313–25.PubMedCrossRefGoogle Scholar
  25. 25.
    Fonseca R, Van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20:2034–40.PubMedCrossRefGoogle Scholar
  26. 26.
    Hanamura I, Stewart JP, Huang Y, et al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 2006;108:1724–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Tricot G, Barlogie B, Jagannath S, et al. Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood. 1995;86:4250–6.PubMedGoogle Scholar
  28. 28.
    Tricot G, Sawyer JR, Jagannath S, et al. Unique role of cytogenetics in the prognosis of patients with myeloma receiving high-dose therapy and autotransplants. J Clin Oncol. 1997;15:2659–66.PubMedGoogle Scholar
  29. 29.
    Zojer N, Konigsberg R, Ackermann J, et al. Deletion of 13q14 remains an independent adverse prognostic variable in multiple myeloma despite its frequent detection by interphase fluorescence in situ hybridization. Multicenter investigation of bone marrow transplantation for sickle cell disease. Blood. 2000;95:1925–30.PubMedGoogle Scholar
  30. 30.
    Chang H, Qi C, Yi QL, Reece D, Stewart AK. p53 gene deletion detected by fluorescence in situ hybridization is an adverse prognostic factor for patients with multiple myeloma following autologous stem cell transplantation. Blood. 2005;105:358–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Drach J, Ackermann J, Fritz E, et al. Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood. 1998;92:802–9.PubMedGoogle Scholar
  32. 32.
    Avet-Loiseau H, Soulier J, Fermand JP, et al. Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone. Leukemia. 2010;24:623–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Reece D, Song KW, Fu T, et al. Influence of cytogenetics in patients with relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone: adverse effect of deletion 17p13. Blood. 2009;114:522–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Avet Loiseau H, Moreau P, Mathiot C et al. Induction with Velcade(R)/Dexamethasone Partially Overcomes the Poor Prognosis of t(4;14), but Not That of Del(17p), in Young Patients with Multiple Myeloma. ASH Annual Meeting Abstracts 2009;114:957.Google Scholar
  35. 35.
    Lopez-Anglada L, Gutierrez NC, Garcia JL, et al. P53 deletion may drive the clinical evolution and treatment response in multiple myeloma. Eur J Haematol. 2009;84:359–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Tiedemann RE, Gonzalez-Paz N, Kyle RA, et al. Genetic aberrations and survival in plasma cell leukemia. Leukemia. 2008;22:1044–52.PubMedCrossRefGoogle Scholar
  37. 37.
    Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27:4585–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Jenner MW, Leone PE, Walker BA, et al. Gene mapping and expression analysis of 16q loss of heterozygosity identifies WWOX and CYLD as being important in determining clinical outcome in multiple myeloma. Blood. 2007;110:3291–300.PubMedCrossRefGoogle Scholar
  39. 39.
    Walker BA, Leone PE, Jenner MW, et al. Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms, and genes important in the pathogenesis of multiple myeloma. Blood. 2006;108:1733–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Hallek M, Leif BP, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood. 1998;91:3–21.PubMedGoogle Scholar
  41. 41.
    Bezieau S, Devilder MC, Avet-Loiseau H, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18:212–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Chng WJ, Gonzalez-Paz N, Price-Troska T, et al. Clinical and biological significance of RAS mutations in multiple myeloma. Leukemia. 2008;22:2280–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Rasmussen T, Kuehl M, Lodahl M, Johnsen HE, Dahl IM. Possible roles for activating RAS mutations in the MGUS to MM transition and in the intramedullary to extramedullary transition in some plasma cell tumors. Blood. 2005;105:317–23.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen W, Wu Y, Zhu J, et al. Methylation of p16 and p15 genes in multiple myeloma. Chin Med Sci J. 2002;17:101–5.PubMedGoogle Scholar
  45. 45.
    Mateos MV, Garcia-Sanz R, Lopez-Perez R, et al. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival. Br J Haematol. 2002;118:1034–40.PubMedCrossRefGoogle Scholar
  46. 46.
    Gonzalez-Paz N, Chng WJ, McClure RF, et al. Tumor suppressor p16 methylation in multiple myeloma: biological and clinical implications. Blood. 2007;109:1228–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Ribas C, Colleoni GW, Felix RS, et al. p16 gene methylation lacks correlation with angiogenesis and prognosis in multiple myeloma. Cancer Lett. 2005;222:247–54.PubMedCrossRefGoogle Scholar
  48. 48.
    Sarasquete ME, Garcia-Sanz R, Armellini A, et al. The association of increased p14ARF/p16INK4a and p15INK4a gene expression with proliferative activity and the clinical course of multiple myeloma. Haematologica. 2006;91:1551–4.PubMedGoogle Scholar
  49. 49.
    Filipits M, Pohl G, Stranzl T, et al. Low p27Kip1 expression is an independent adverse prognostic factor in patients with multiple myeloma. Clin Cancer Res. 2003;9:820–6.PubMedGoogle Scholar
  50. 50.
    Ohata M, Nakamura S, Fujita H, Isemura M. Prognostic implications of p21 (Waf1/Cip1) immunolocalization in multiple myeloma. Biomed Res. 2005;26:91–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Decaux O, Lode L, Magrangeas F, et al. Prediction of survival in multiple myeloma based on gene expression profiles reveals cell cycle and chromosomal instability signatures in high-risk patients and hyperdiploid signatures in low-risk patients: a study of the Intergroupe Francophone du Myelome. J Clin Oncol. 2008;26:4798–805.PubMedCrossRefGoogle Scholar
  52. 52.
    Bergsagel PL, Kuehl WM, Zhan F, et al. Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma. Blood. 2005;106:296–303.PubMedCrossRefGoogle Scholar
  53. 53.
    Hanamura I, Huang Y, Zhan F, Barlogie B, Shaughnessy J. Prognostic value of cyclin D2 mRNA expression in newly diagnosed multiple myeloma treated with high-dose chemotherapy and tandem autologous stem cell transplantations. Leukemia. 2006;20:1288–90.PubMedCrossRefGoogle Scholar
  54. 54.
    Annunziata CM, Davis RE, Demchenko Y, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12:115–30.PubMedCrossRefGoogle Scholar
  55. 55.
    Demchenko YN, Glebov OK, Zingone A, et al. Classical and/or alternative NF{kappa}B pathway activation in multiple myeloma. Blood. 2010;115(17):3541–52.PubMedCrossRefGoogle Scholar
  56. 56.
    Keats JJ, Fonseca R, Chesi M, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12:131–44.PubMedCrossRefGoogle Scholar
  57. 57.
    Pichiorri F, Suh SS, Ladetto M, et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA. 2008;105:12885–90.PubMedCrossRefGoogle Scholar
  58. 58.
    Lionetti M, Biasiolo M, Agnelli L, et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood. 2009;114:e20–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I, et al. Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. Leukemia. 2010;24:629–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Fonseca R, Barlogie B, Bataille R, et al. Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res. 2004;64:1546–58.PubMedCrossRefGoogle Scholar
  61. 61.
    Garcia-Sanz R, Orfao A, Gonzalez M, et al. Primary plasma cell leukemia: clinical, immunophenotypic, DNA ploidy, and cytogenetic characteristics. Blood. 1999;93:1032–7.PubMedGoogle Scholar
  62. 62.
    Shimazaki C, Gotoh H, Ashihara E, et al. Immunophenotype and DNA content of myeloma cells in primary plasma cell leukemia. Am J Hematol. 1992;39:159–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Tafuri A, Meyers J, Lee BJ, Andreeff M. DNA and RNA flow cytometric study in multiple myeloma. Clinical correlations. Cancer. 1991;67:449–54.PubMedCrossRefGoogle Scholar
  64. 64.
    Garcia-Sanz R, Orfao A, Gonzalez M, et al. Prognostic implications of DNA aneuploidy in 156 untreated multiple myeloma patients. Castelano-Leones (Spain) Cooperative Group for the Study of Monoclonal Gammopathies. Br J Haematol. 1995;90:106–12.PubMedCrossRefGoogle Scholar
  65. 65.
    San Miguel JF, Garcia-Sanz R, Gonzalez M, Orfao A. DNA cell content studies in multiple myeloma. Leuk Lymphoma. 1996;23:33–41.PubMedCrossRefGoogle Scholar
  66. 66.
    Chng WJ, Ketterling RP, Fonseca R. Analysis of genetic abnormalities provides insights into genetic evolution of hyperdiploid myeloma. Genes Chromosomes Cancer. 2006;45:1111–20.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhan F, Huang Y, Colla S, et al. The molecular classification of multiple myeloma. Blood. 2006;108:2020–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Durie BG, Salmon SE, Moon TE. Pretreatment tumor mass, cell kinetics, and prognosis in multiple myeloma. Blood. 1980;55:364–72.PubMedGoogle Scholar
  69. 69.
    Joshua D, Petersen A, Brown R, et al. The labelling index of primitive plasma cells determines the clinical behaviour of patients with myelomatosis. Br J Haematol. 1996;94:76–81.PubMedCrossRefGoogle Scholar
  70. 70.
    Greipp PR, Lust JA, O’Fallon WM, et al. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma [see comments]. Blood. 1993;81:3382–7.PubMedGoogle Scholar
  71. 71.
    Orfao A, Garcia-Sanz R, López-Berges MC, et al. A new method for the analysis of plasma cell DNA content in multiple myeloma samples using a CD38/propidium iodide double staining technique. Cytometry. 1994;17:332–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Orfao A, Garcia-Sanz R, Lopez-Berges MC, et al. A new method for the analysis of plasma cell DNA content in multiple myeloma samples using a CD38/propidium iodide double staining technique. Cytometry. 1994;17:332–9.PubMedCrossRefGoogle Scholar
  73. 73.
    San Miguel JF, Garcia-Sanz R, Gonzalez M, et al. A new staging system for multiple myeloma based on the number of S-phase plasma cells. Blood. 1995;85:448–55.PubMedGoogle Scholar
  74. 74.
    Garcia-Sanz R, Gonzalez-Fraile MI, Mateo G, et al. Proliferative activity of plasma cells is the most relevant prognostic factor in elderly multiple myeloma patients. Int J Cancer. 2004;112:884–9.PubMedCrossRefGoogle Scholar
  75. 75.
    San Miguel JF, Gonzalez M, Gascon A, et al. Immunophenotypic heterogeneity of multiple myeloma: influence on the biology and clinical course of the disease. Castellano-Leones (Spain) Cooperative Group for the Study of Monoclonal Gammopathies. Br J Haematol. 1991;77:185–90.PubMedCrossRefGoogle Scholar
  76. 76.
    Omede P, Boccadoro M, Fusaro A, Gallone G, Pileri A. Multiple myeloma: ‘early’ plasma cell phenotype identifies patients with aggressive biological and clinical characteristics. Br J Haematol. 1993;85:504–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Pellat-Deceunynck C, Bataille R, Robillard N, et al. Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood. 1994;84:2597–603.PubMedGoogle Scholar
  78. 78.
    San Miguel JF, Garcia-Sanz R, Gonzalez M, Orfao A. Immunophenotype and DNA cell content in multiple myeloma. Baillieres Clin Haematol. 1995;8:735–59.PubMedCrossRefGoogle Scholar
  79. 79.
    Pellat-Deceunynck C, Barille S, Puthier D, et al. Adhesion molecules on human myeloma cells: significant changes in expression related to malignancy, tumor spreading, and immortalization. Cancer Res. 1995;55:3647–53.PubMedGoogle Scholar
  80. 80.
    Robillard N, Jego G, Pellat-Deceunynck C, et al. CD28, a marker associated with tumoral expansion in multiple myeloma. Clin Cancer Res. 1998;4:1521–6.PubMedGoogle Scholar
  81. 81.
    Shapiro VS, Mollenauer MN, Weiss A. Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: implications for multiple myeloma progression. Blood. 2001;98:187–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Sahara N, Takeshita A. Prognostic significance of surface markers expressed in multiple myeloma: CD56 and other antigens. Leuk Lymphoma. 2004;45:61–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Moreau P, Robillard N, Avet-Loiseau H, et al. Patients with CD45 negative multiple myeloma receiving high-dose therapy have a shorter survival than those with CD45 positive multiple myeloma. Haematologica. 2004;89:547–51.PubMedGoogle Scholar
  84. 84.
    Mateo G, Montalban MA, Vidriales MB, et al. Prognostic value of immunophenotyping in multiple myeloma: a study by the PETHEMA/GEM cooperative study groups on patients uniformly treated with high-dose therapy. J Clin Oncol. 2008;26:2737–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Wang Z, Zhang Y, Mandal A, et al. The spermatozoa protein, SLLP1, is a novel cancer-testis antigen in hematologic malignancies. Clin Cancer Res. 2004;10:6544–50.PubMedCrossRefGoogle Scholar
  86. 86.
    Lim SH, Wang Z, Chiriva-Internati M, Xue Y. Sperm protein 17 is a novel cancer-testis antigen in multiple myeloma. Blood. 2001;97:1508–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Dhodapkar MV, Osman K, Teruya-Feldstein J, et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun. 2003;23:9.Google Scholar
  88. 88.
    Pellat-Deceunynck C, Mellerin MP, Labarriere N, et al. The cancer germ-line genes MAGE-1, MAGE-3 and PRAME are commonly expressed by human myeloma cells. Eur J Immunol. 2000;30:803–9.PubMedCrossRefGoogle Scholar
  89. 89.
    van Baren N, Brasseur F, Godelaine D, et al. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood. 1999;94:1156–64.PubMedGoogle Scholar
  90. 90.
    Taylor BJ, Reiman T, Pittman JA, et al. SSX cancer testis antigens are expressed in most multiple myeloma patients: co-expression of SSX1, 2, 4, and 5 correlates with adverse prognosis and high frequencies of SSX-positive PCs. J Immunother. 2005;28:564–75.PubMedCrossRefGoogle Scholar
  91. 91.
    Bataille R, Jego G, Robillard N, et al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica. 2006;91:1234–40.PubMedGoogle Scholar
  92. 92.
    Robillard N, Pellat-Deceunynck C, Bataille R. Phenotypic characterization of the human myeloma cell growth fraction. Blood. 2005;105:4845–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Kulas DT, Freund GG, Mooney RA. The transmembrane protein-tyrosine phosphatase CD45 is associated with decreased insulin receptor signaling. J Biol Chem. 1996;271:755–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Liu S, Ishikawa H, Tsuyama N, et al. Increased susceptibility to apoptosis in CD45(+) myeloma cells accompanied by the increased expression of VDAC1. Oncogene. 2006;19(25):419–29.Google Scholar
  95. 95.
    Mahmoud MS, Ishikawa H, Fujii R, Kawano MM. Induction of CD45 expression and proliferation in U-266 myeloma cell line by interleukin-6. Blood. 1998;92:3887–97.PubMedGoogle Scholar
  96. 96.
    Kumar S, Rajkumar SV, Kimlinger T, Greipp PR, Witzig TE. CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia. 2005;19:1466–70.PubMedCrossRefGoogle Scholar
  97. 97.
    Harada H, Kawano MM, Huang N, et al. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood. 1993;81:2658–63.PubMedGoogle Scholar
  98. 98.
    Ocqueteau M, Orfao A, Almeida J, et al. Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol. 1998;152:1655–65.PubMedGoogle Scholar
  99. 99.
    Kumar S, Rajkumar SV, Kyle RA, et al. Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance. J Clin Oncol. 2005;20(23):5668–74.CrossRefGoogle Scholar
  100. 100.
    Perez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007;110:2586–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Paiva B, Vidriales MB, Cervero J, et al. Multiparameter flow cytometric remission is the most relevant prognostic factor for multiple myeloma patients who undergo autologous stem cell transplantation. Blood. 2008;112:4017–23.PubMedCrossRefGoogle Scholar
  102. 102.
    Grogan TM, Spier CM, Salmon SE, et al. P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood. 1993;81:490–5.PubMedGoogle Scholar
  103. 103.
    Sonneveld P. Multidrug resistance in haematological malignancies. J Intern Med. 2000;247:521–34.PubMedGoogle Scholar
  104. 104.
    Friedenberg WR, Rue M, Blood EA, et al. Phase III study of PSC-833 (valspodar) in combination with vincristine, doxorubicin, and dexamethasone (valspodar/VAD) versus VAD alone in patients with recurring or refractory multiple myeloma (E1A95): a trial of the Eastern Cooperative Oncology Group. Cancer. 2006;106:830–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Sonneveld P, Suciu S, Weijermans P, et al. Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD) compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914). Br J Haematol. 2001;115:895–902.PubMedCrossRefGoogle Scholar
  106. 106.
    Gieseler F, Nussler V. Cellular resistance mechanisms with impact on the therapy of multiple myeloma. Leukemia. 1997;11 Suppl 5:S1–4.PubMedGoogle Scholar
  107. 107.
    Raaijmakers HG, Izquierdo MA, Lokhorst HM, et al. Lung-resistance-related protein expression is a negative predictive factor for response to conventional low but not to intensified dose alkylating chemotherapy in multiple myeloma. Blood. 1998;91:1029–36.PubMedGoogle Scholar
  108. 108.
    Bartl R, Frisch B, Burkhardt R, et al. Bone marrow histology in myeloma: its importance in diagnosis, prognosis, classification and staging. Br J Haematol. 1982;51:361–75.PubMedCrossRefGoogle Scholar
  109. 109.
    Greipp PR, Leong T, Bennett JM, et al. Plasmablastic morphology–an independent prognostic factor with clinical and laboratory correlates: Eastern Cooperative Oncology Group (ECOG) myeloma trial E9486 report by the ECOG Myeloma Laboratory Group. Blood. 1998;91:2501–7.PubMedGoogle Scholar
  110. 110.
    Greipp PR, Raymond NM, Kyle RA, O’Fallon WM. Multiple myeloma: significance of plasmablastic subtype in morphological classification. Blood. 1985;65:305–10.PubMedGoogle Scholar
  111. 111.
    Janssen-Heijnen ML, Houterman S, Lemmens VE, et al. Prognostic impact of increasing age and co-morbidity in cancer patients: a population-based approach. Crit Rev Oncol Hematol. 2005;55:231–40.PubMedCrossRefGoogle Scholar
  112. 112.
    Lenhoff S, Hjorth M, Westin J, et al. Impact of age on survival after intensive therapy for multiple myeloma: a population-based study by the Nordic Myeloma Study Group. Br J Haematol. 2006;133:389–96.PubMedCrossRefGoogle Scholar
  113. 113.
    Mileshkin L, Biagi JJ, Mitchell P, et al. Multicenter phase 2 trial of thalidomide in relapsed/refractory multiple myeloma: adverse prognostic impact of advanced age. Blood. 2003;102:69–77.PubMedCrossRefGoogle Scholar
  114. 114.
    Mileshkin L, Prince HM. The adverse prognostic impact of advanced age in multiple myeloma. Leuk Lymphoma. 2005;46:951–66.PubMedCrossRefGoogle Scholar
  115. 115.
    Ross FM, Ibrahim AH, Vilain-Holmes A, et al. Age has a profound effect on the incidence and significance of chromosome abnormalities in myeloma. Leukemia. 2005;19:1634–42.PubMedCrossRefGoogle Scholar
  116. 116.
    San Miguel JF, Garcia-Sanz R. Prognostic features of multiple myeloma. Best Pract Res Clin Haematol. 2005;18:569–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Blade J, Kyle RA, Greipp PR. Presenting features and prognosis in 72 patients with multiple myeloma who were younger than 40 years. Br J Haematol. 1996;93:345–51.PubMedCrossRefGoogle Scholar
  118. 118.
    Cheema PK, Zadeh S, Kukreti V, et al. Age 40 years and under does not confer superior prognosis in patients with multiple myeloma undergoing upfront autologous stem cell transmplant. Biol Blood Marrow Transplant. 2009;15:686–93.PubMedCrossRefGoogle Scholar
  119. 119.
    Siegel DS, Desikan KR, Mehta J, et al. Age is not a prognostic variable with autotransplants for multiple myeloma. Blood. 1999;93:51–4.PubMedGoogle Scholar
  120. 120.
    Badros A, Barlogie B, Siegel E, et al. Autologous stem cell transplantation in elderly multiple myeloma patients over the age of 70 years. Br J Haematol. 2001;114:600–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.PubMedCrossRefGoogle Scholar
  122. 122.
    Krejci M, Scudla V, Tothova E, et al. Long-term outcomes of autologous transplantation in multiple myeloma: significant survival benefit of novel drugs in post-transplantation relapse. Clin Lymph Myeloma. 2009;9:436–42.CrossRefGoogle Scholar
  123. 123.
    Kastritis E, Zervas K, Symeonidis A, et al. Improved survival of patients with multiple myeloma after the introduction of novel agents and the applicability of the International Staging System (ISS): an analysis of the Greek Myeloma Study Group (GMSG). Leukemia. 2009;23:1152–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Brenner H, Gondos A, Pulte D. Recent major improvement in long-term survival of younger patients with multiple myeloma. Blood. 2008;111:2521–6.PubMedCrossRefGoogle Scholar
  125. 125.
    Renshaw C, Ketley N, Moller H, Davies EA. Trends in the incidence and survival of multiple myeloma in South East England 1985-2004. BMC Cancer. 2010;10:74.PubMedCrossRefGoogle Scholar
  126. 126.
    Greipp PR, San Miguel JF, Durie BGM, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412–20.PubMedCrossRefGoogle Scholar
  127. 127.
    Modiano MR, Villar-Werstler P, Crowley J, Salmon SE. Evaluation of race as a prognostic factor in multiple myeloma. An ancillary of Southwest Oncology Group Study 8229. J Clin Oncol. 1996;14:974–7.PubMedGoogle Scholar
  128. 128.
    Savage D, Lindenbaum J, Van RJ, Struening E, Garrett TJ. Race, poverty, and survival in multiple myeloma. Cancer. 1984;54:3085–94.PubMedCrossRefGoogle Scholar
  129. 129.
    Hari PN, Majhail NS, Zhang MJ, et al. Race and outcomes of autologous hematopoietic cell transplantation for multiple myeloma. Biol Blood Marrow Transplant. 2010;16:395–402.PubMedCrossRefGoogle Scholar
  130. 130.
    Verma PS, Howard RS, Weiss BM. The impact of race on outcomes of autologous transplantation in patients with multiple myeloma. Am J Hematol. 2008;83:355–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Jawde RM, Baz R, Walker E, et al. The role of race, socioeconomic status, and distance traveled on the outcome of African-American patients with multiple myeloma. Haematologica. 2006;91:1410–3.PubMedGoogle Scholar
  132. 132.
    Saraf S, Chen YH, Dobogai LC, et al. Prolonged responses after autologous stem cell transplantation in African-American patients with multiple myeloma. Bone Marrow Transplant. 2006;37:1099–102.PubMedCrossRefGoogle Scholar
  133. 133.
    Ojha RP, Prabhakar D, Evans E, et al. RE: Abou-Jawde et al. The role of race, socioeconomic status, and distance traveled on the outcome of African-American patients with multiple myeloma. Haematologica. 2007;92:e46.PubMedCrossRefGoogle Scholar
  134. 134.
    Lincz LF, Scorgie FE, Robertson R, Enno A. Genetic variations in benzene metabolism and susceptibility to multiple myeloma. Leuk Res. 2007;31:759–63.PubMedCrossRefGoogle Scholar
  135. 135.
    Spink CF, Gray LC, Davies FE, Morgan GJ, Bidwell JL. Haplotypic structure across the IkappaBalpha gene (NFKBIA) and association with multiple myeloma. Cancer Lett. 2007;246:92–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Morgan GJ, Adamson PJ, Mensah FK, et al. Haplotypes in the tumour necrosis factor region and myeloma. Br J Haematol. 2005;129:358–65.PubMedCrossRefGoogle Scholar
  137. 137.
    Roddam PL, Rollinson S, O’Driscoll M, et al. Genetic variants of NHEJ DNA ligase IV can affect the risk of developing multiple myeloma, a tumour characterised by aberrant class switch recombination. J Med Genet. 2002;39:900–5.PubMedCrossRefGoogle Scholar
  138. 138.
    Parker KM, Ma MH, Manyak S, et al. Identification of polymorphisms of the IkappaBalpha gene associated with an increased risk of multiple myeloma. Cancer Genet Cytogenet. 2002;137:43–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Davies FE, Rollinson SJ, Rawstron AC, et al. High-producer haplotypes of tumor necrosis factor alpha and lymphotoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment. J Clin Oncol. 2000;18:2843–51.PubMedGoogle Scholar
  140. 140.
    Dasgupta RK, Adamson PJ, Davies FE, et al. Polymorphic variation in GSTP1 modulates outcome following therapy for multiple myeloma. Blood. 2003;102:2345–50.PubMedCrossRefGoogle Scholar
  141. 141.
    Sarasquete ME, Garcia-Sanz R, Marin L, et al. Bisphosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood. 2008;112:2709–12.PubMedCrossRefGoogle Scholar
  142. 142.
    Neben K, Mytilineos J, Moehler TM, et al. Polymorphisms of the tumor necrosis factor-alpha gene promoter predict for outcome after thalidomide therapy in relapsed and refractory multiple myeloma. Blood. 2002;100:2263–5.PubMedGoogle Scholar
  143. 143.
    Johnson DC, Corthals SL, Walker BA, et al. Genetic factors underlying the risk of thalidomide-related neuropathy in patients with multiple myeloma. J Clin Oncol. 2011;29:797–804.PubMedCrossRefGoogle Scholar
  144. 144.
    Johnson DC, Corthals S, Ramos C, et al. Genetic associations with thalidomide mediated venous thrombotic events in myeloma identified using targeted genotyping. Blood. 2008;112:4924–34.PubMedCrossRefGoogle Scholar
  145. 145.
    Kay NE, Leong TL, Bone N, et al. Blood levels of immune cells predict survival in myeloma patients: results of an Eastern Cooperative Oncology Group phase 3 trial for newly diagnosed multiple myeloma patients. Blood. 2001;98:23–8.PubMedCrossRefGoogle Scholar
  146. 146.
    Kay NE, Leong T, Kyle RA, et al. Circulating blood B cells in multiple myeloma: analysis and relationship to circulating clonal cells and clinical parameters in a cohort of patients entered on the Eastern Cooperative Oncology Group phase III E9486 clinical trial. Blood. 1997;90:340–5.PubMedGoogle Scholar
  147. 147.
    Osterborg A, Nilsson B, Bjorkholm M, Holm G, Mellstedt H. Natural killer cell activity in monoclonal gammopathies: relation to disease activity. Eur J Haematol. 1990;45:153–7.PubMedCrossRefGoogle Scholar
  148. 148.
    Garcia-Sanz R, Gonzalez M, Orfao A, et al. Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications. Br J Haematol. 1996;93:81–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Brown RD, Yuen E, Nelson M, Gibson J, Joshua D. The prognostic significance of T cell receptor beta gene rearrangements and idiotype-reactive T cells in multiple myeloma. Leukemia. 1997;11:1312–7.PubMedCrossRefGoogle Scholar
  150. 150.
    Sze DM, Giesajtis G, Brown RD, et al. Clonal cytotoxic T cells are expanded in myeloma and reside in the CD8(+)CD57(+)CD28(-) compartment. Blood. 2001;98:2817–27.PubMedCrossRefGoogle Scholar
  151. 151.
    Durie BG, Salmon SE. Cellular kinetics staging, and immunoglobulin synthesis in multiple myeloma. Annu Rev Med. 1975;26:283–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Drayson M, Begum G, Basu S, et al. Effects of paraprotein heavy and light chain types and free light chain load on survival in myeloma: an analysis of patients receiving conventional-dose chemotherapy in Medical Research Council UK multiple myeloma trials. Blood. 2006;108:2013–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Nair B, Waheed S, Szymonifka J, et al. Immunoglobulin isotypes in multiple myeloma: laboratory correlates and prognostic implications in total therapy protocols. Br J Haematol. 2009;145:134–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Kumar S, Perez WS, Zhang MJ, et al. Comparable outcomes in nonsecretory and secretory multiple myeloma after autologous stem cell transplantation. Biol Blood Marrow Transplant. 2008;14:1134–40.PubMedCrossRefGoogle Scholar
  155. 155.
    Nadav L, Katz BZ, Baron S, et al. Diverse niches within multiple myeloma bone marrow aspirates affect plasma cell enumeration. Br J Haematol. 2006;133:530–2.PubMedCrossRefGoogle Scholar
  156. 156.
    San Miguel JF, Gutierrez NC, Mateo G, Orfao A. Conventional diagnostics in multiple myeloma. Eur J Cancer. 2006;42:1510–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Fonseca R, Harrington D, Oken MM, et al. Biological and prognostic significance of interphase fluorescence in situ hybridization detection of chromosome 13 abnormalities (delta13) in multiple myeloma: an eastern cooperative oncology group study. Cancer Res. 2002;62:715–20.PubMedGoogle Scholar
  158. 158.
    Rajkumar SV, Fonseca R, Dispenzieri A, et al. Methods for estimation of bone marrow plasma cell involvement in myeloma: predictive value for response and survival in patients undergoing autologous stem cell transplantation. Am J Hematol. 2001;68:269–75.PubMedCrossRefGoogle Scholar
  159. 159.
    Palumbo A, Bringhen S, Falco P, et al. Time to first disease progression, but not beta2-microglobulin, predicts outcome in myeloma patients who receive thalidomide as salvage therapy. Cancer. 2007;110:824–9.PubMedCrossRefGoogle Scholar
  160. 160.
    Paiva B, Vidriales MB, Perez JJ, et al. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica. 2009;94:1599–602.PubMedCrossRefGoogle Scholar
  161. 161.
    Witzig TE, Gertz MA, Lust JA, et al. Peripheral blood monoclonal plasma cells as a predictor of survival in patients with multiple myeloma. Blood. 1996;88:1780–7.PubMedGoogle Scholar
  162. 162.
    Garewal H, Durie BG, Kyle RA, et al. Serum beta 2-microglobulin in the initial staging and subsequent monitoring of monoclonal plasma cell disorders. J Clin Oncol. 1984;2:51–7.PubMedGoogle Scholar
  163. 163.
    Bataille R, Grenier J, Sany J. Unexpected normal serum beta-microglobulin (B2M) levels in multiple myeloma. Anticancer Res. 1987;7:513–5.PubMedGoogle Scholar
  164. 164.
    Boccadoro M, Omede P, Frieri R, et al. Multiple myeloma: beta-2-microglobulin is not a useful follow-up parameter. Acta Haematol. 1989;82:122–5.PubMedCrossRefGoogle Scholar
  165. 165.
    Cuzick J, De Stavola BL, Cooper EH, Chapman C, MacLennan IC. Long-term prognostic value of serum beta 2 microglobulin in myelomatosis. Br J Haematol. 1990;75:506–10.PubMedCrossRefGoogle Scholar
  166. 166.
    Greipp PR. Monoclonal gammopathies: new approaches to clinical problems in diagnosis and prognosis. Blood Rev. 1989;3:222–36.PubMedCrossRefGoogle Scholar
  167. 167.
    Boccadoro M, Battaglio S, Omede P, et al. Increased serum neopterin concentration as indicator of disease severity and poor survival in multiple myeloma. Eur J Haematol. 1991;47:305–9.PubMedCrossRefGoogle Scholar
  168. 168.
    Reibnegger G, Krainer M, Herold M, et al. Predictive value of interleukin-6 and neopterin in patients with multiple myeloma. Cancer Res. 1991;51:6250–3.PubMedGoogle Scholar
  169. 169.
    Klein B, Zhang XG, Jourdan M, et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood. 1989;73:517–26.PubMedGoogle Scholar
  170. 170.
    Papadaki H, Kyriakou D, Foudoulakis A, et al. Serum levels of soluble IL-6 receptor in multiple myeloma as indicator of disease activity. Acta Haematol. 1997;97:191–5.PubMedCrossRefGoogle Scholar
  171. 171.
    Thompson MA, Witzig TE, Kumar S, et al. Plasma levels of tumour necrosis factor alpha and interleukin-6 predict progression-free survival following thalidomide therapy in patients with ­previously untreated multiple myeloma. Br J Haematol. 2003;123:305–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Pulkki K, Pelliniemi TT, Rajamaki A, et al. Soluble interleukin-6 receptor as a prognostic factor in multiple myeloma. Finnish Leukaemia Group. Br J Haematol. 1996;92:370–4.PubMedCrossRefGoogle Scholar
  173. 173.
    Stasi R, Brunetti M, Parma A, et al. The prognostic value of soluble interleukin-6 receptor in patients with multiple myeloma. Cancer. 1998;82:1860–6.PubMedCrossRefGoogle Scholar
  174. 174.
    Ohtani K, Ninomiya H, Hasegawa Y, et al. Clinical significance of elevated soluble interleukin-6 receptor levels in the sera of patients with plasma cell dyscrasias. Br J Haematol. 1995;91:116–20.PubMedCrossRefGoogle Scholar
  175. 175.
    Schaar CG, Kaiser U, Snijder S, et al. Serum interleukin-6 has no discriminatory role in paraproteinaemia nor a prognostic role in multiple myeloma. Br J Haematol. 1999;107:132–8.PubMedCrossRefGoogle Scholar
  176. 176.
    Bataille R, Boccadoro M, Klein B, Durie B, Pileri A. C-reactive protein and beta-2 microglobulin produce a simple and powerful myeloma staging system. Blood. 1992;80:733–7.PubMedGoogle Scholar
  177. 177.
    Merlini G, Perfetti V, Gobbi PG, et al. Acute phase proteins and prognosis in multiple myeloma. Br J Haematol. 1993;83:595–601.PubMedCrossRefGoogle Scholar
  178. 178.
    Seidel C, Sundan A, Hjorth M, et al. Serum syndecan-1: a new independent prognostic marker in multiple myeloma. Blood. 2000;95:388–92.PubMedGoogle Scholar
  179. 179.
    Lovell R, Dunn JA, Begum G, et al. Soluble syndecan-1 level at diagnosis is an independent prognostic factor in multiple myeloma and the extent of fall from diagnosis to plateau predicts for overall survival. Br J Haematol. 2005;130:542–8.PubMedCrossRefGoogle Scholar
  180. 180.
    Barlogie B, Smallwood L, Smith T, Alexanian R. High serum levels of lactic dehydrogenase identify a high-grade lymphoma-like myeloma. Ann Intern Med. 1989;110:521–5.PubMedGoogle Scholar
  181. 181.
    Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med. 1991;115:931–5.PubMedGoogle Scholar
  182. 182.
    Suguro M, Kanda Y, Yamamoto R, et al. High serum lactate dehydrogenase level predicts short survival after vincristine-doxorubicin-dexamethasone (VAD) salvage for refractory multiple myeloma. Am J Hematol. 2000;65:132–5.PubMedCrossRefGoogle Scholar
  183. 183.
    Anagnostopoulos A, Gika D, Symeonidis A, et al. Multiple myeloma in elderly patients: prognostic factors and outcome. Eur J Haematol. 2005;75:370–5.PubMedCrossRefGoogle Scholar
  184. 184.
    Hussein MA, Bolejack V, Zonder JA, et al. Phase II study of thalidomide plus dexamethasone induction followed by tandem melphalan-based autotransplantation and thalidomide-plus-prednisone maintenance for untreated multiple myeloma: a southwest oncology group trial (S0204). J Clin Oncol. 2009;27:3510–7.PubMedCrossRefGoogle Scholar
  185. 185.
    Lee CK, Barlogie B, Munshi N, et al. DTPACE: an effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol. 2003;21:2732–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Hutchison CA, Bradwell AR, Cook M, et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin J Am Soc Nephrol. 2009;4:745–54.PubMedCrossRefGoogle Scholar
  187. 187.
    Parikh GC, Amjad AI, Saliba RM, et al. Autologous hematopoietic stem cell transplantation may reverse renal failure in patients with multiple myeloma. Biol Blood Marrow Transplant. 2009;15:812–6.PubMedCrossRefGoogle Scholar
  188. 188.
    Matsue K, Fujiwara H, Iwama K, et al. Reversal of dialysis-dependent renal failure in patients with advanced multiple myeloma: single institutional experiences over 8 years. Ann Hematol. 2010;89:291–7.PubMedCrossRefGoogle Scholar
  189. 189.
    Dimopoulos MA, Roussou M, Gavriatopoulou M, et al. Reversibility of renal impairment in patients with multiple myeloma treated with bortezomib-based regimens: identification of predictive factors. Clin Lymph Myeloma. 2009;9:302–6.CrossRefGoogle Scholar
  190. 190.
    Li J, Zhou DB, Jiao L, et al. Bortezomib and dexamethasone therapy for newly diagnosed patients with multiple myeloma complicated by renal impairment. Clin Lymph Myeloma. 2009;9:394–8.CrossRefGoogle Scholar
  191. 191.
    Qayum A, Aleem A, Al Diab AR, Niaz F, Al Momen AK. Rapid improvement in renal function in patients with multiple myeloma and renal failure treated with bortezomib. Saudi J Kidney Dis Transpl. 2010;21:63–8.PubMedGoogle Scholar
  192. 192.
    Dimopoulos MA, Richardson PG, Schlag R, et al. VMP (Bortezomib, Melphalan, and Prednisone) is active and well tolerated in newly diagnosed patients with multiple myeloma with moderately impaired renal function, and results in reversal of renal impairment: cohort analysis of the phase III VISTA study. J Clin Oncol. 2009;20(27):6086–93.CrossRefGoogle Scholar
  193. 193.
    Ludwig H, Van Belle S, Barrett-Lee P, et al. The European Cancer Anaemia Survey (ECAS): a large, multinational, prospective survey defining the prevalence, incidence, and treatment of anaemia in cancer patients. Eur J Cancer. 2004;40:2293–306.PubMedCrossRefGoogle Scholar
  194. 194.
    Ludwig H, Pohl G, Osterborg A. Anemia in multiple myeloma. Clin Adv Hematol Oncol. 2004;2:233–41.PubMedGoogle Scholar
  195. 195.
    Terpos E, Cibeira MT, Blade J, Ludwig H. Management of complications in multiple myeloma. Semin Hematol. 2009;46:176–89.PubMedCrossRefGoogle Scholar
  196. 196.
    Baz R, Walker E, Choueiri TK, et al. Recombinant human erythropoietin is associated with increased overall survival in patients with multiple myeloma. Acta Haematol. 2007;117:162–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Katodritou E, Verrou E, Hadjiaggelidou C, et al. Erythropoiesis-stimulating agents are associated with reduced survival in patients with multiple myeloma. Am J Hematol. 2008;83:697–701.PubMedCrossRefGoogle Scholar
  198. 198.
    Moulopoulos LA, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol. 2005;16:1824–8.PubMedCrossRefGoogle Scholar
  199. 199.
    Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25:1121–8.PubMedCrossRefGoogle Scholar
  200. 200.
    Bartel TB, Haessler J, Brown TL, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114:2068–76.PubMedCrossRefGoogle Scholar
  201. 201.
    Zamagni E, Patriarca F, Nanni C, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118(23):5989–95.PubMedCrossRefGoogle Scholar
  202. 202.
    Coleman R, Brown J, Terpos E, et al. Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev. 2008;34:629–39.PubMedCrossRefGoogle Scholar
  203. 203.
    Terpos E, Dimopoulos MA, Sezer O, et al. The use of biochemical markers of bone remodeling in multiple myeloma: A Report of the International Myeloma Working Group (IMWG) [abstract]. Leukemia. 2010;24:1700–12.PubMedCrossRefGoogle Scholar
  204. 204.
    Hernandez JM, Suquia B, Queizan JA, et al. Bone remodelation markers are useful in the management of monoclonal gammopathies. Hematol J. 2004;5:480–8.PubMedCrossRefGoogle Scholar
  205. 205.
    Terpos E, Szydlo R, Apperley JF, et al. Soluble receptor activator of nuclear factor kappaB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood. 2003;102:1064–9.PubMedCrossRefGoogle Scholar
  206. 206.
    Jakob C, Zavrski I, Heider U, et al. Bone resorption parameters [carboxy-terminal telopeptide of type-I collagen (ICTP), amino-terminal collagen type-I telopeptide (NTx), and deoxypyridinoline (Dpd)] in MGUS and multiple myeloma. Eur J Haematol. 2002;69:37–42.PubMedCrossRefGoogle Scholar
  207. 207.
    Fonseca R, Trendle MC, Leong T, et al. Prognostic value of serum markers of bone metabolism in untreated multiple myeloma patients. Br J Haematol. 2000;109:24–9.PubMedCrossRefGoogle Scholar
  208. 208.
    Jakob C, Sterz J, Liebisch P, et al. Incorporation of the bone marker carboxy-terminal telopeptide of type-1 collagen improves prognostic information of the International Staging System in newly diagnosed symptomatic multiple myeloma. Leukemia. 2008;22:1767–72.PubMedCrossRefGoogle Scholar
  209. 209.
    Schutt P, Rebmann V, Brandhorst D, et al. The clinical significance of soluble human leukocyte antigen class-I, ICTP, and RANKL molecules in multiple myeloma patients. Hum Immunol. 2008;69:79–87.PubMedCrossRefGoogle Scholar
  210. 210.
    Abildgaard N, Brixen K, Eriksen EF, et al. Sequential analysis of biochemical markers of bone resorption and bone densitometry in multiple myeloma. Haematologica. 2004;89:567–77.PubMedGoogle Scholar
  211. 211.
    Carbone PP, Kellerhouse LE, Gehan EA. Plasmacytic myeloma. A study of the relationship of survival to various clinical manifestations and anomalous protein type in 112 patients. Am J Med. 1967;42:937–48.PubMedCrossRefGoogle Scholar
  212. 212.
    Costa G, Engle RL, Schilling A, et al. Melphalan and prednisone: An effective combination for the treatment of multiple myeloma [abstract]. Am J Med. 1973;54:589–99.CrossRefGoogle Scholar
  213. 213.
    Southern Cancer Study Group. Treatment of myeloma. Comparison of melphalan, chlorambucil, and azathioprine. Arch Intern Med 1975;135:157–62.Google Scholar
  214. 214.
    Vassilopoulou-Sellin R, Newman BM, Taylor SH, Guinee VF. Incidence of hypercalcemia in patients with malignancy referred to a comprehensive cancer center. Cancer. 1993;71:1309–12.PubMedCrossRefGoogle Scholar
  215. 215.
    Saad F, Lipton A, Cook R, et al. Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer. 2007;110:1860–7.PubMedCrossRefGoogle Scholar
  216. 216.
    Sonmez M, Akagun T, Topbas M, et al. Effect of pathologic fractures on survival in multiple myeloma patients: a case control study. J Exp Clin Cancer Res. 2008;27:11.PubMedCrossRefGoogle Scholar
  217. 217.
    van de Velde H, Liu X, Chen G, et al. Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica. 2007;92:1399–406.PubMedCrossRefGoogle Scholar
  218. 218.
    Lahuerta JJ, Mateos MV, Martinez-Lopez J, et al. Influence of pre- and post-transplantation responses on outcome of patients with multiple myeloma: sequential improvement of response and achievement of complete response are associated with longer survival. J Clin Oncol. 2008;26:5775–82.PubMedCrossRefGoogle Scholar
  219. 219.
    Harousseau JL, Avet-Loiseau H, Attal M, et al. Achievement of at least very good partial response is a simple and robust prognostic factor in patients with multiple myeloma treated with high-dose therapy: long-term analysis of the IFM 99-02 and 99-04 Trials. J Clin Oncol. 2009;27:5720–6.PubMedCrossRefGoogle Scholar
  220. 220.
    Cavo M, Tacchetti P, Patriarca F et al. A Phase III study of Double Autotransplantation Incorporating Bortezomib-Thalidomide-Dexamethasone (VTD) or Thalidomide-Dexamethasone (TD) for multiple myeloma: superior clinical outcomes with VTD compared to TD. ASH Annual Meeting Abstracts 2009;114:351.Google Scholar
  221. 221.
    Harousseau JL, Avet-Louseau H, Attal M et al. High Complete and Very Good Partial Response Rates with Bortezomib—Dexamethasone as Induction Prior to ASCT in Newly Diagnosed Patients with High-Risk Myeloma: Results of the IFM2005-01 Phase 3 Trial. Blood (ASH Annual Meeting Abstracts) 2009;114:353.Google Scholar
  222. 222.
    Kyle RA, Leong T, Li S, et al. Complete response in multiple myeloma: clinical trial E9486, an Eastern Cooperative Oncology Group study not involving stem cell transplantation. Cancer. 2006;106:1958–66.PubMedCrossRefGoogle Scholar
  223. 223.
    Harousseau JL, Weber D, Dimopoulos M et al. Relapsed/refractory multiple myeloma patients treated with lenalidomide/dexamethasone who achieve a complete or near complete response Have longer overall survival and time to progression compared with patients achieving a partial response. ASH Annual Meeting Abstracts 2007;110:3598.Google Scholar
  224. 224.
    Harousseau JL, Palumbo A, Richardson P et al. Superior Outcomes Associated with Complete Response: Analysis of the Phase III VISTA Study of Bortezomib Plus Melphalan-Prednisone Versus Melphalan-Prednisone. ASH Annual Meeting Abstracts 2008;112:2778.Google Scholar
  225. 225.
    Gay F, Larocca A, Wijermans P, et al. Complete response correlates with long-term progression-free and overall survival in elderly myeloma treated with novel agents: analysis of 1175 patients. Blood. 2011;117:3025–31.PubMedCrossRefGoogle Scholar
  226. 226.
    Durie BG, Harousseau JL, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.PubMedCrossRefGoogle Scholar
  227. 227.
    Sarasquete ME, Garcia-Sanz R, Gonzalez D, et al. Minimal residual disease monitoring in multiple myeloma: a comparison between allelic-specific oligonucleotide real-time quantitative polymerase chain reaction and flow cytometry. Haematologica. 2005;90:1365–72.PubMedGoogle Scholar
  228. 228.
    Corradini P, Cavo M, Lokhorst H, et al. Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood. 2003;102:1927–9.PubMedCrossRefGoogle Scholar
  229. 229.
    Lin C, Luciani A, Belhadj K, et al. Multiple myeloma treatment response assessment with whole-body dynamic contrast-enhanced MR imaging. Radiology. 2010;254:521–31.PubMedCrossRefGoogle Scholar
  230. 230.
    Harousseau JL, Attal M, Avet-Loiseau H. The role of complete response in multiple myeloma. Blood. 2009;114:3139–46.PubMedCrossRefGoogle Scholar
  231. 231.
    Zhan F, Hardin J, Kordsmeier B, et al. Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood. 2002;99:1745–57.PubMedCrossRefGoogle Scholar
  232. 232.
    Kyle RA, Therneau TM, Rajkumar SV, et al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med. 2002;346:564–9.PubMedCrossRefGoogle Scholar
  233. 233.
    San Miguel JF, Sanchez J, Gonzalez M. Prognostic factors and classification in multiple myeloma. Br J Cancer. 1989;59:113–8.PubMedCrossRefGoogle Scholar
  234. 234.
    Medical Research Council’s Working Party on Leukaemia in Adults. Prognostic features in the third MRC myelomatosis trial. Medical Research Council’s Working Party on Leukaemia in Adults. Br J Cancer 1980;42:831–40.Google Scholar
  235. 235.
    Greipp PR, Katzmann JA, O’Fallon WM, Kyle RA. Value of beta 2-microglobulin level and plasma cell labeling indices as prognostic factors in patients with newly diagnosed myeloma. Blood. 1988;72:219–23.PubMedGoogle Scholar
  236. 236.
    Singhal S, Mehta J, Desikan R, et al. Antitumor activity of thalidomide in refractory multiple myeloma. N Engl J Med. 1999;341:1565–71.PubMedCrossRefGoogle Scholar
  237. 237.
    Cavo M, Testoni N, Terragna C et al. Up-Front Thalidomide-Dexamethasone (THAL) and Double Autologous Transplantation (Double TX) for Multiple Myeloma: Comparison with Double TX without Added Thalidomide and Prognostic Implications of Chromosome 13 Deletion and Translocation t(4;14). ASH Annual Meeting Abstracts 2006;108:3081.Google Scholar
  238. 238.
    Lokhorst HM, van der HB, Zweegman S, et al. A randomized phase 3 study on the effect of thalidomide combined with adriamycin, dexamethasone, and high-dose melphalan, followed by thalidomide maintenance in patients with multiple myeloma. Blood. 2010;115:1113–20.PubMedCrossRefGoogle Scholar
  239. 239.
    Attal M, Harousseau JL, Leyvraz S, et al. Maintenance therapy with thalidomide improves survival in patients with multiple myeloma. Blood. 2006;108:3289–94.PubMedCrossRefGoogle Scholar
  240. 240.
    Morgan GJ, Jackson GH, Davies FE et al. Maintenance Thalidomide May Improve Progression Free but Not Overall Survival; Results from the Myeloma IX Maintenance Randomisation. ASH Annual Meeting Abstracts 2008;112:656.Google Scholar
  241. 241.
    Barlogie B, Pineda-Roman M, van Rhee F, et al. Thalidomide arm of Total Therapy 2 improves complete remission duration and survival in myeloma patients with metaphase cytogenetic abnormalities. Blood. 2008;112:3115–21.PubMedCrossRefGoogle Scholar
  242. 242.
    Barlogie B, Anaissie E, van Rhee F. Reiterative survival analyses of total therapy 2 for multiple myeloma elucidate follow-up time dependency of prognostic variables and treatment arms. J Clin Oncol. 2010;28:3023–7.PubMedCrossRefGoogle Scholar
  243. 243.
    Kapoor P, Kumar S, Fonseca R, et al. Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood. 2009;114:518–21.PubMedCrossRefGoogle Scholar
  244. 244.
    Avet-Loiseau H, Caillot D, Marit G, et al. Long-Term Maintenance with Lenalidomide Improves Progression Free Survival In Myeloma Patients with High-Risk Cytogenetics: An IFM Study. ASH Annual Meeting Abstracts 2010;116:1944.Google Scholar
  245. 245.
    Jagannath S, Richardson PG, Sonneveld P, et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia. 2007;21:151–7.PubMedCrossRefGoogle Scholar
  246. 246.
    Sagaster V, Ludwig H, Kaufmann H, et al. Bortezomib in relapsed multiple myeloma: response rates and duration of response are independent of a chromosome 13q-deletion. Leukemia. 2007;21:164–8.PubMedCrossRefGoogle Scholar
  247. 247.
    Cavo M, Testoni N, Terragna C et al. Superior Rate of Complete Response with up-Front Velcade-Thalidomide-Dexamethasone Versus Thalidomide-Dexamethasone in Newly Diagnosed Multiple Myeloma Is Not Affected by Adverse Prognostic Factors, Including High-Risk Cytogenetic Abnormalities. ASH Annual Meeting Abstracts 2008;112:1662.Google Scholar
  248. 248.
    Cavo M, Tacchetti P, Patriarca F, et al. Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study. Lancet. 2010;376:2075–85.PubMedCrossRefGoogle Scholar
  249. 249.
    Cavo M, Bringhen S, Terragna C, et al. Bortezomib-based induction treatments improve outcomes of newly diagnosed multiple myeloma patients with high-risk cytogenetic abnormalities. ASH Annual Meeting Abstracts 2010;116:781.Google Scholar
  250. 250.
    Sonneveld P, Schmidt-Wolf I, van der Holt B et al. HOVON-65/GMMG-HD4 Randomized Phase III trial comparing Bortezomib, Doxorubicin, Dexamethasone (PAD) Vs VAD followed by high-dose Melphalan (HDM) and maintenance with Bortezomib or Thalidomide in patients with newly diagnosed Multiple Myeloma (MM). ASH Annual Meeting Abstracts 2010;116:40.Google Scholar
  251. 251.
    Goldschmidt H, Neben K, Bertsch U et al. Bortezomib-based induction therapy followed by autologous stem cell transplantation and maintenance therapy with Bortezomib Improves Outcome In myeloma patients with Gain 1q21 and t(4;14)—a subgroup analysis of the HOVON-65/GMMG-HD4 Trial. ASH Annual Meeting Abstracts 2010;116:305.Google Scholar
  252. 252.
    Rosinol L, Cibeira MT, Martinez J et al. Thalidomide/dexamethasone (TD) Vs. Bortezomib(Velcade(R))/Thalidomide/Dexamethasone (VTD) Vs. VBMCP/VBAD/Velcade(R) As Induction Regimens Prior Autologous Stem Cell Transplantation (ASCT) in younger patients with Multiple Myeloma (MM): first results of a prospective Phase III PETHEMA/Gem Trial. ASH Annual Meeting Abstracts 2008;112:654.Google Scholar
  253. 253.
    Rosinol L, Cibeira MT, Martinez J et al. Thalidomide/Dexamethasone (TD) Vs. Bortezomib (Velcade)a/Thalidomide/Dexamethasone (VTD) Vs. VBMCP/VBAD/Velcade as Induction Regimens Prior Autologous Stem Cell Transplantation (ASCT) in Multiple Myeloma (MM): Results of a Phase III PETHEMA/GEM Trial. ASH Annual Meeting Abstracts 2009;114:130.Google Scholar
  254. 254.
    Mateos MV, Richardson PG, Schlag R, et al. Bortezomib plus melphalan–prednisone versus melphalan–prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase 3 VISTA trial. J Clin Oncol. 2010;28:2259–66.PubMedCrossRefGoogle Scholar
  255. 255.
    Mateos MV, Oriol A, Martinez-Lopez J, et al. Bortezomib, melphalan, and prednisone versus bortezomib, thalidomide, and prednisone as induction therapy followed by maintenance treatment with bortezomib and thalidomide versus bortezomib and prednisone in elderly patients with untreated multiple myeloma: a randomised trial. Lancet Oncol. 2010;11:934–41.PubMedCrossRefGoogle Scholar
  256. 256.
    Mateos MV, Gutierrez NC, Martin-Ramos ML, et al. Outcome according to cytogenetic abnormalities and DNA ploidy in myeloma patients receiving short induction with weekly bortezomib followed by maintenace. Blood. 2011;118(17):4547–53.PubMedCrossRefGoogle Scholar
  257. 257.
    Palumbo A, Bringhen S, Rossi D et al. Bortezomib, Melphalan, Prednisone and Thalidomide (VMPT) followed by maintenance with Bortezomib and Thalidomide for initial treatment of elderly multiple myeloma patients. ASH Annual Meeting Abstracts 2009;114:128.Google Scholar
  258. 258.
    Richardson P, Lonial S, Jakubowiak A et al. Lenalidomide, Bortezomib, and Dexamethasone in patients with newly diagnosed multiple myeloma: encouraging efficacy in high risk groups with updated results of a Phase I/II Study. ASH Annual Meeting Abstracts 2008;112:92.Google Scholar
  259. 259.
    Richardson P, Jagannath S, Jakubowiak A, et al. Lenalidomide, Bortezomib, and Dexamethasone in patients with Relapsed or Relapsed/Refractory Multiple Myeloma (MM): encouraging response rates and tolerability with correlation of outcome and adverse cytogenetics in a Phase II Study. ASH Annual Meeting Abstracts 2008;112:1742.Google Scholar
  260. 260.
    San Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med. 2008;359:906–17.PubMedCrossRefGoogle Scholar
  261. 261.
    Arnulf B, Ghez D, Leblond V et al. FGFR3 Tyrosine kinase inhibitor AB1010 as Treatment of t(4;14) multiple myeloma. ASH Annual Meeting Abstracts 2007;110:413.Google Scholar
  262. 262.
    Baughn LB, Di LM, Wu K, et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res. 2006;66:7661–7.PubMedCrossRefGoogle Scholar
  263. 263.
    Raje N, Kumar S, Hideshima T, et al. Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood. 2005;106:1042–7.PubMedCrossRefGoogle Scholar
  264. 264.
    Trudel S, Li ZH, Wei E, et al. CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005;105:2941–8.PubMedCrossRefGoogle Scholar
  265. 265.
    Badros A, Burger AM, Philip S, et al. Phase I study of vorinostat in combination with bortezomib for relapsed and refractory multiple myeloma. Clin Cancer Res. 2009;15:5250–7.PubMedCrossRefGoogle Scholar
  266. 266.
    Lacy MQ, Hayman SR, Gertz MA, et al. Pomalidomide (CC4047) plus low-dose dexamethasone as therapy for relapsed multiple myeloma. J Clin Oncol. 2009;27:5008–14.PubMedCrossRefGoogle Scholar
  267. 267.
    Lonial S, Vij R, Harousseau JL et al. Phase 1/2 Study of Elotuzumab in Combination with Lenalidomide and Low Dose Dexamethasone in Relapsed or Refractory Multiple Myeloma: Interim Results. ASH Annual Meeting Abstracts 2009;114:432.Google Scholar
  268. 268.
    Niesvizky R, Wang L, Orlowski RZ et al. Phase Ib Multicenter Dose Escalation Study of Carfilzomib Plus Lenalidomide and Low Dose Dexamethasone (CRd) in Relapsed and Refractory Multiple Myeloma (MM). ASH Annual Meeting Abstracts 2009;114:304.Google Scholar
  269. 269.
    Ocio EM, Mateos MV, Maiso P, Pandiella A, San-Miguel JF. New drugs in multiple myeloma: mechanisms of action and phase I/II clinical findings. Lancet Oncol. 2008;9:1157–65.PubMedCrossRefGoogle Scholar
  270. 270.
    Ocio EM, Vilanova D, Atadja P, et al. In vitro and in vivo rationale for the triple combination of panobinostat (LBH589) and dexamethasone with either bortezomib or lenalidomide in multiple myeloma. Haematologica. 2009;95:794–803.PubMedCrossRefGoogle Scholar
  271. 271.
    Richardson PG, Chanan-Khan AA, Lonial S et al. Tanespimycin + Bortezomib Demonstrates Safety, Activity, and Effective Target Inhibition in Relapsed/Refractory Myeloma Patients: Updated Results of a Phase 1/2 Study. ASH Annual Meeting Abstracts 2009;114:2890.Google Scholar
  272. 272.
    Moreau P, Garban F, Attal M, et al. Long-term follow-up results of IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation with autologous transplantation in high-risk de novo multiple myeloma. Blood. 2008;112:3914–5.PubMedCrossRefGoogle Scholar
  273. 273.
    Bruno B, Rotta M, Patriarca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007;356:1110–20.PubMedCrossRefGoogle Scholar
  274. 274.
    Bruno B, Rotta M, Patriarca F, et al. Nonmyeloablative allografting for newly diagnosed multiple myeloma: the experience of the Gruppo Italiano Trapianti di Midollo. Blood. 2009;113:3375–82.PubMedCrossRefGoogle Scholar
  275. 275.
    Gahrton G, Bjorkstrand B, Iacobelli S et al. Tandem Autologous(ASCT)/Allogeneic Reduced Intensity Conditioning Transplantation (RIC) with Identical Sibling Donor Versus ASCT in Previously Untreated Multiple Myeloma (MM): Long Term Follow up of a Prospective Controlled Trial by the EBMT. ASH Annual Meeting Abstracts 2009;114:52.Google Scholar
  276. 276.
    Schilling G, Hansen T, Shimoni A, et al. Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma. Leukemia. 2008;22:1250–5.PubMedCrossRefGoogle Scholar
  277. 277.
    Blanco B, Perez-Simon JA, Sanchez-Abarca LI, et al. Bortezomib induces selective depletion of alloreactive T lymphocytes and decreases the production of Th1 cytokines. Blood. 2006;107:3575–83.PubMedCrossRefGoogle Scholar
  278. 278.
    Blanco B, Perez-Simon JA, Sanchez-Abarca LI, et al. Treatment with bortezomib of human CD4+ T cells preserves natural regulatory T cells and allows the emergence of a distinct suppressor T-cell population. Haematologica. 2009;94:975–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jesús F. San-Miguel
    • 1
  • Ramón García-Sanz
    • 1
  • Norma C. Gutiérrez
    • 1
  1. 1.Department of HematologyUniversity Hospital of SalamancaSalamancaSpain

Personalised recommendations