Skip to main content

Immunoglobulins and Laboratory Recognition of Monoclonal Proteins

  • Chapter
  • First Online:
Book cover Neoplastic Diseases of the Blood

Abstract

Plasma cell proliferative disorders such as multiple myeloma, macroglobulinemia, and primary amyloidosis are characterized by the clonal expansion of plasma cells and their secreted monoclonal immunoglobulin. The monoclonal immunoglobulin serves as a tumor marker for the recognition of the clinical disorder as well as for monitoring disease progression, response, or relapse. Because of the wide range of biology amongst the plasma cell proliferative diseases, the recognition of a monoclonal protein may require a simple laboratory test or may require multiple approaches. Knowledge of immunoglobulin structure and genetics as well as the technologies of protein electrophoresis, immunoelectrophoresis, and quantitative free light chain (FLC) assessment is needed to fully understand the use of these markers of plasma cell proliferative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kyle RA, Bayrd ED. The monoclonal gammopathies: multiple myeloma and related plasma cell disorders. Springfield, IL: Charles C Thomas; 1976.

    Google Scholar 

  2. Tiselius A. Electrophoresis of serum globulin. II. Electrophoretic analysis of normal and immune sera. Biochem J. 1937;31:1464.

    PubMed  CAS  Google Scholar 

  3. Putnam FW. From the first to the last of the immunoglobulins: perspectives and prospects. Clin Physiol Biochem. 1983;1:63.

    PubMed  CAS  Google Scholar 

  4. Longsworth LG, Shedlovsky T, MacInnes DA. Electrophoretic patterns of normal and pathological human blood serum and plasma. J Exp Med. 1939;70:399.

    Article  PubMed  CAS  Google Scholar 

  5. Kohn J. A cellulose acetate supporting medium for zone electrophoresis. Clin Chim Acta. 1957;2:297.

    Article  PubMed  CAS  Google Scholar 

  6. Kyle RA, Bieger RC, Gleich GJ. Diagnosis of syndromes associated with hyperglobulinemia. Med Clin North Am. 1970;54:917.

    PubMed  CAS  Google Scholar 

  7. Ryazantsev S, Tishchenko V, Vasiliev V, et al. Structure of human myeloma IgG3 Kuc. Eur J Biochem. 1990;190:393.

    Article  PubMed  CAS  Google Scholar 

  8. Recht B, Frangione B, Franklin E, van Loghem E. Structural studies of a human γ3 myeloma protein (GOE) that binds staph protein A. J Immunol. 1981;127:917.

    PubMed  CAS  Google Scholar 

  9. Shapiro SS. Characterization of factor VIII antibodies. Ann NY Acad Sci. 1975;240:350.

    Article  PubMed  CAS  Google Scholar 

  10. Reynolds HY. Immunoglobulin G and its function in the human respiratory tract. Mayo Clin Proc. 1988;63:161.

    PubMed  CAS  Google Scholar 

  11. Hymes K, Schur PH, Karpatkin S. Heavy-chain subclass of bound antiplatelet IgG in autoimmune thrombocytopenic purpura. Blood. 1980;56:84.

    PubMed  CAS  Google Scholar 

  12. Oxelius VA, Laurell AB, Lindquist B, et al. IgG subclasses in selective IgA deficiency: importance of IgG2-IgA deficiency. N Engl J Med. 1981;304:1476.

    Article  PubMed  CAS  Google Scholar 

  13. Aittoniemi J, Koskinen S, Laippala P, et al. The significance of IgG subclasses and mannan-binding lectin (MBL) for susceptibility to infection in apparently healthy adults with IgA deficiency. Clin Exp Immunol. 1999;116:505.

    Article  PubMed  CAS  Google Scholar 

  14. Jefferis R, Kumararatne DS. Selective IgG subclass deficiency: quantification and clinical relevance. Clin Exp Immunol. 1990;81:357.

    Article  PubMed  CAS  Google Scholar 

  15. Oxelius VA, Berkel AI, Hanson LÅ. IgG2 deficiency in ataxia—telangiectasia. N Engl J Med. 1982;306:515.

    Article  PubMed  CAS  Google Scholar 

  16. Beck CS, Heiner DC. Selective immunoglobulin G4 deficiency and recurrent infections of the respiratory tract. Am Rev Respir Dis. 1981;124:94.

    PubMed  CAS  Google Scholar 

  17. Aucouturier P, Mariault M, Lacombe C, Preud’homme J-L. Frequency of selective IgG subclass deficiency: a reappraisal. Clin Immunol Immunopathol. 1992;63:289.

    Article  PubMed  CAS  Google Scholar 

  18. Hill SL, Mitchell JL, Burnett D, Stockley RA. IgG subclasses in the serum and sputum from patients with bronchiectasis. Thorax. 1998;53:463.

    Article  PubMed  CAS  Google Scholar 

  19. Schur PH. IgG subclasses—a review. Ann Allergy. 1987;58:89.

    PubMed  CAS  Google Scholar 

  20. Smith TF. IgG subclasses. Adv Pediatr. 1992;39:101.

    PubMed  CAS  Google Scholar 

  21. Preud’homme J-L, Hanson LÅ. IgG subclass deficiency. Immunodefic Rev. 1990;2:129.

    Google Scholar 

  22. Kyle RA, Gleich GJ. IgG subclasses in monoclonal gammopathy of undetermined significance. J Lab Clin Med. 1982;100:806.

    PubMed  CAS  Google Scholar 

  23. Papadea C, Reimer CB, Check IJ. IgG subclass distribution in patients with multiple myeloma or with monoclonal gammopathy of undetermined significance. Ann Clin Lab Sci. 1989;19:27.

    Article  PubMed  CAS  Google Scholar 

  24. Macintyre W. Case of mollities and fragilitas ossium, accompanied with urine strongly charged with animal matter. Med Chir Soc. 1850;33:211.

    CAS  Google Scholar 

  25. Bence Jones H. Papers on chemical pathology: Prefaced by the Gulstonian lectures, read at the Royal College of Physicians. Lancet 1847;2:88.

    Google Scholar 

  26. Edelman GM, Gally JA. The nature of Bence-Jones proteins: chemical similarities to polypeptide chains of myeloma globulins and normal γ-globulins. J Exp Med. 1962;116:207.

    Article  PubMed  CAS  Google Scholar 

  27. Bayne-Jones S, Wilson DW. Immunological reactions of Bence- Jones proteins. II. Differences between Bence-Jones proteins from various sources. Bull Johns Hopkins Hosp. 1922;33:119.

    CAS  Google Scholar 

  28. Korngold L, Lipari R. Multiple-myeloma proteins. III. The antigenic relationship of Bence Jones proteins to normal gamma-globulin and multiple-myeloma serum proteins. Cancer. 1956;9:262.

    Article  PubMed  CAS  Google Scholar 

  29. Bladé J, Lust JA, Kyle RA. IgD multiple myeloma: presenting features, response to therapy, and survival in a series of 53 cases. J Clin Oncol. 1994;12:2398.

    PubMed  Google Scholar 

  30. Lieu TS, Deutsch HF, Tischendorf FW. Human λ-chain sequence variations and serologic associations. Immunochemistry. 1977;14:429.

    Article  PubMed  CAS  Google Scholar 

  31. Solomon A, McLaughlin CL. Bence-Jones proteins and light chains of immunoglobulins. I. Formation and characterization of amino-terminal (variant) and carboxyl-terminal (constant) halves. J Biol Chem. 1969;244:3393.

    PubMed  CAS  Google Scholar 

  32. Wang AC, Fudenberg HH, Wells JV, Roelcke D. A new subgroup of the kappa chain variable region associated with anti-Pr cold agglutinins (editorial). Nat New Biol. 1973;243:126.

    Article  PubMed  CAS  Google Scholar 

  33. Solomon A. Bence-Jones proteins and light chains of immunoglobulins. N Engl J Med. 1976;294:17, 91.

    Google Scholar 

  34. Lacy MQ, Gertz MA. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol Oncol Clin North Am. 1999;13:1273.

    Article  PubMed  CAS  Google Scholar 

  35. Messiaen T, Deret S, Mougenot B et al. Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients. Medicine (Balt). 2000;79:135.

    Google Scholar 

  36. Ronco PM, Aucouturier P. The molecular bases of plasma cell dyscrasia-related renal diseases. Nephrol Dial Transplant. 1999;14 Suppl 1:4.

    Article  PubMed  CAS  Google Scholar 

  37. Denoroy L, Deret S, Aucouturier P. Overrepresentation of the V kappa IV subgroup in light chain deposition disease. Immunol Lett. 1994;42:63.

    Article  PubMed  CAS  Google Scholar 

  38. Solomon A. Light chains of immunoglobulins: structural-genetic correlates. Blood. 1986;68:603.

    PubMed  CAS  Google Scholar 

  39. Solomon A, Kyle RA, Frangione B. Light chain variable region subgroups of monoclonal immunoglobulins in amyloidosis AL. In: Glenner GG, Osserman EF, Benditt EP, et al., editors. Amyloidosis. New York: Plenum; 1986. p. 449.

    Chapter  Google Scholar 

  40. Putnam FW, Easley CW, Lynn LT, et al. The heat precipitation of Bence-Jones proteins. I. Optimum conditions. Arch Biochem Biophys. 1959;83:115.

    Article  PubMed  CAS  Google Scholar 

  41. Solomon A. Bence Jones proteins and light chains of immunoglobulins. XIV. Conformational dependency and molecular localization of the kappa (κ) and lambda (λ) antigenic determinants. Scand J Immunol. 1976;5:685.

    Article  PubMed  CAS  Google Scholar 

  42. Putnam FW, Hardy S. Proteins in multiple myeloma. III. Origin of Bence-Jones protein. J Biol Chem. 1955;212:361.

    PubMed  CAS  Google Scholar 

  43. Wochner RD, Strober W, Waldmann TA. The role of the kidney in the catabolism of Bence Jones proteins and immunoglobulin fragments. J Exp Med. 1967;126:207.

    Article  PubMed  CAS  Google Scholar 

  44. Virella G, Wang A-C. Biosynthesis, metabolism and biological properties of immunoglobulins. Immunol Ser. 1993;58:91.

    PubMed  CAS  Google Scholar 

  45. Kim J, Hayton W, Robinson J, Anderson C. Kinetics of FcRn-mediated recycling of IgG and albumin in humans: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007;122:146.

    Article  PubMed  CAS  Google Scholar 

  46. Akilesh S, Christianson G, Roopenian D, Shaw A. Neonatal FcR expression in bone marrow-derived cells function to protect serum IgG from catabolism. J Immunol. 2007;179:4580.

    PubMed  CAS  Google Scholar 

  47. Wu TT, Kabat EA. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med. 1970;132:211.

    Article  PubMed  CAS  Google Scholar 

  48. Capra JD, Kehoe JM. Hypervariable regions, idiotypy, and the antibody-combining site. Adv Immunol. 1975;20:1.

    Article  PubMed  CAS  Google Scholar 

  49. Tomasi Jr TB. Human immunoglobulin A. N Engl J Med. 1968;279:1327.

    Article  PubMed  Google Scholar 

  50. Chandy KG, Stockley RA, Leonard RCF, et al. Relationship between serum viscosity and intravascular IgA polymer concentration in IgA myeloma. Clin Exp Immunol. 1981;46:653.

    PubMed  CAS  Google Scholar 

  51. Tichý M, Hrncír Z. Distribution of subclasses in a series of 62 sera with IgA paraprotein. Neoplasma. 1986;33:507.

    PubMed  Google Scholar 

  52. Aucouturier P, Musset L, Itoh Y, et al. Isotypic and allotypic analysis with monoclonal antibodies and jacalin of 309 serum monoclonal IgA from French and Japanese myeloma patients. Immunol Lett. 1992;32:31.

    Article  PubMed  CAS  Google Scholar 

  53. André C, Berthoux FC, André F, et al. Prevalence of IgA2 deposits in IgA nephropathies: a clue to their pathogenesis. N Engl J Med. 1980;303:1343.

    Article  PubMed  Google Scholar 

  54. Leung JC, Poon PY, Lai KN. Increased sialylation of polymeric immunoglobulin A1: mechanism of selective glomerular deposition in immunoglobulin A nephropathy? J Lab Clin Med. 1999;133:152.

    Article  PubMed  CAS  Google Scholar 

  55. Rivat-Peran L, Buriot D, Salier JP, et al. Immunoglobulins in ataxia-telangiectasia: evidence for IgG4 and IgA2 subclass deficiencies. Clin Immunol Immunopathol. 1981;20:99.

    Article  PubMed  CAS  Google Scholar 

  56. Bizzaro N, Pasini P, Finco B. False-positive reactions for IgA anti- phospholipid and anti-β2-glycoprotein I antibodies in patients with IgA monoclonal gammopathy. Clin Chem. 1999;45:2007.

    PubMed  CAS  Google Scholar 

  57. Heremans JF. Immunoglobulin A. In: Sela M, editor. The antigens, vol. 2. San Diego: Academic; 1974. p. 395.

    Google Scholar 

  58. Mestecky J, Russell MW, Jackson S, Brown TA. The human IgA system: a reassessment. Clin Immunol Immunopathol. 1986;40:105.

    Article  PubMed  CAS  Google Scholar 

  59. Cunningham-Rundles C. Genetic aspects of immunoglobulin A deficiency. Adv Hum Genet. 1990;19:235.

    PubMed  CAS  Google Scholar 

  60. Gotoh T, Takishita Y, Doi H, Tsubura E. Secretory-component- producing lung cancer with hypergammaglobulinemia of secretory IgA. Cancer. 1981;48:1776.

    Article  PubMed  CAS  Google Scholar 

  61. Conley ME, Delacroix DL. Intravascular and mucosal immunoglobulin A: two separate but related systems of immune defense? Ann Intern Med. 1987;106:892.

    PubMed  CAS  Google Scholar 

  62. Goodman MR, Link DW, Brown WR, Nakane PK. Ultrastructural evidence of transport of secretory IgA across bronchial epithelium. Am Rev Respir Dis. 1981;123:115.

    PubMed  CAS  Google Scholar 

  63. DeCoteau WE. The role of secretory IgA in defense of the distal lung. Ann NY Acad Sci. 1974;221:214.

    Article  PubMed  CAS  Google Scholar 

  64. Abu-Ghazaleh RI, Fujisawa T, Mestecky J, et al. IgA-induced eosinophil degranulation. J Immunol. 1989;142:2393.

    PubMed  CAS  Google Scholar 

  65. Strober W, Krakauer R, Klaeveman HL, et al. Secretory component deficiency: a disorder of the IgA immune system. N Engl J Med. 1976;294:351.

    Article  PubMed  CAS  Google Scholar 

  66. Kutteh WH, Prince SJ, Mestecky J. Tissue origins of human polymeric and monomeric IgA. J Immunol. 1982;128:990.

    PubMed  CAS  Google Scholar 

  67. Brandtzaeg P, Guy-Grand D, Griscelli C. Intestinal, salivary, and tonsillar IgA and J-chain production in a patient with severe deficiency of serum IgA. Scand J Immunol. 1981;13:313.

    Article  PubMed  CAS  Google Scholar 

  68. Koshland ME. Structure and function of the J chain. Adv Immunol. 1975;20:41.

    Article  PubMed  CAS  Google Scholar 

  69. Vaerman JP, Langendries A, Giffroy D, et al. Lack of SC/pIgR- mediated epithelial transport of a human polymeric IgA devoid of J chain: In vitro and in vivo studies. Immunology. 1998;95:90.

    Article  PubMed  CAS  Google Scholar 

  70. Hayzer DJ, Jaton J-C. Immunoglobulin M (IgM). Methods Enzymol. 1985;116:26.

    Article  PubMed  CAS  Google Scholar 

  71. Metzger H. Structure and function of γM macroglobulins. Adv Immunol. 1970;12:57.

    Article  PubMed  CAS  Google Scholar 

  72. Tartakoff A, Vassalli P. Plasma cell immunoglobulin M molecules: their biosynthesis, assembly, and intracellular transport. J Cell Biol. 1979;83:284.

    Article  PubMed  CAS  Google Scholar 

  73. Putnam FW, Florent G, Paul C, et al. Complete amino acid sequence of the mu heavy chain of a human IgM immunoglobulin. Science. 1973;182:287.

    Article  PubMed  CAS  Google Scholar 

  74. Reddy PS, Corley RB. The contribution of ER quality control to the biologic functions of secretory IgM. Immunol Today. 1999;20:582.

    Article  PubMed  CAS  Google Scholar 

  75. Abu-Farsakh FA, Abu-Farsakh HA. M-component overestimated by laser nephelometry in Waldenström’s macroglobulinemia, abstracted. Clin Chem. 1988;34:428.

    PubMed  CAS  Google Scholar 

  76. Riches PG, Sheldon J, Smith AM, Hobbs JR. Overestimation of monoclonal immunoglobulin by immunochemical methods. Ann Clin Biochem. 1991;28:253.

    PubMed  Google Scholar 

  77. Murray DL, Ryu E, Snyder MR, Katzmann J. Quantitation of serum monoclonal proteins: relationship between agarose gel electrophoresis and immunonephelometry. Clin Chem. 2009;55:1523.

    Article  PubMed  CAS  Google Scholar 

  78. Filomena CA, Filomena AP, Hudock J, Ballas SK. Evaluation of serum immunoglobulins by protein electrophoresis and rate nephelometry before and after therapeutic plasma exchange. Am J Clin Pathol. 1992;98:243.

    PubMed  CAS  Google Scholar 

  79. Rowe DS, Fahey JL. A new class of human immunoglobulins. I. A unique myeloma protein. J Exp Med. 1965;121:171.

    Article  PubMed  CAS  Google Scholar 

  80. Dunnette SL, Gleich GJ, Miller RD, Kyle RA. Measurement of IgD by a double antibody radioimmunoassay: demonstration of an apparent trimodal distribution of IgD levels in normal human sera. J Immunol. 1977;119:1727.

    PubMed  CAS  Google Scholar 

  81. Stulík J, Tichý M, Kovárová H. Two-dimensional gel electrophoresis of four serum samples from patients with IgD myeloma. Clin Chim Acta. 1993;218:149.

    Article  PubMed  Google Scholar 

  82. Putnam FW, Takahashi N, Tetaert D, et al. The last of the immunoglobulins: complete amino acid sequence of human IgD. Ann NY Acad Sci. 1982;399:41.

    Article  PubMed  CAS  Google Scholar 

  83. Spiegelberg HL. Immunoglobulin D (IgD). Methods Enzymol. 1985;116:95.

    Article  PubMed  CAS  Google Scholar 

  84. Van Boxel JA, Paul WE, Terry WD, Green I. IgD-bearing human lymphocytes. J Immunol. 1972;109:648.

    PubMed  Google Scholar 

  85. Bladé J, Kyle RA. IgD monoclonal gammopathy with long-term follow-up. Br J Haematol. 1994;88:395.

    Article  PubMed  Google Scholar 

  86. Ishizaka K, Ishizaka T, Hornbrook MM. Physicochemical proper- ties of reaginic antibody. V. Correlation of reaginic activity with γE-globulin antibody. J Immunol. 1966;97:840.

    PubMed  CAS  Google Scholar 

  87. Geha RS. Human IgE. J Allergy Clin Immunol. 1984;74:109.

    Article  PubMed  CAS  Google Scholar 

  88. Johansson SGO, Bennich H. Immunological studies of an atypical (myeloma) immunoglobulin. Immunology. 1967;13:381.

    PubMed  CAS  Google Scholar 

  89. Invernizzi F, Monti G, Caviglia AG, et al. A new case of Ig myeloma. Acta Haematol. 1991;85:41.

    Article  PubMed  CAS  Google Scholar 

  90. Macro M, André I, Comby E, et al. IgE multiple myeloma. Leuk Lymphoma. 1999;32:597.

    PubMed  CAS  Google Scholar 

  91. Kairemo KJ, Lindberg M, Prytz M. IgE myeloma: a case presentation and a review of the literature. Scand J Clin Lab Invest. 1999;59:451.

    Article  PubMed  CAS  Google Scholar 

  92. Yunginger JW, Gleich GJ. The impact of the discovery of IgE on the practice of allergy. Pediatr Clin North Am. 1975;22:3.

    PubMed  CAS  Google Scholar 

  93. Ishizaka K. Twenty years with IgE. From the identification of IgE to regulatory factors for the IgE response (presidential address). J Immunol. 1985;135:1.

    Google Scholar 

  94. Strunk RC, Bloomberg GR. Omalizumab for asthma. N Engl J Med. 2006;354:2689.

    Article  PubMed  CAS  Google Scholar 

  95. Erikson J, Martinis J, Croce CM. Assignment of the genes for human λ immunoglobulin chains to chromosome 22. Nature. 1981;294:173.

    Article  PubMed  CAS  Google Scholar 

  96. Honjo T. Immunoglobulin genes. Annu Rev Immunol. 1983;1:499.

    Article  PubMed  CAS  Google Scholar 

  97. Seidman JG, Leder P. The arrangement and rearrangement of antibody genes. Nature. 1978;276:790.

    Article  PubMed  CAS  Google Scholar 

  98. Hieter PA, Max EE, Seidman JG, et al. Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments. Cell. 1980;22:197.

    Article  PubMed  CAS  Google Scholar 

  99. Hieter PA, Hollis GF, Korsmeyer SJ, et al. Clustered arrangement of immunoglobulin lambda constant region genes in man. Nature. 1981;294:536.

    Article  PubMed  CAS  Google Scholar 

  100. Malcolm S, Barton P, Murphy C, et al. Localization of human immunoglobulin kappa light chain variable region genes to the short arm of chromosome 2 by in situ hybridization. Proc Natl Acad Sci USA. 1982;79:4957.

    Article  PubMed  CAS  Google Scholar 

  101. Kirsch IR, Morton CC, Nakahara K, Leder P. Human immunoglobulin heavy chain genes map to a region of translocations in malignant B lymphocytes. Science. 1982;216:301.

    Article  PubMed  CAS  Google Scholar 

  102. Lorenz W, Straubinger B, Zachau HG. Physical map of the human immunoglobulin κ locus and its implications for the mechanisms of Vκ-Jκ rearrangement. Nucleic Acids Res. 1987;15:9667.

    Article  PubMed  CAS  Google Scholar 

  103. Pohlenz HD, Straubinger B, Thiebe R, et al. The human V kappa locus. Characterization of extended immunoglobulin gene regions by cosmid cloning. J Mol Biol. 1987;193:241.

    Article  PubMed  CAS  Google Scholar 

  104. Meindl A, Klobeck HG, Ohnheiser R, Zachau HG. The V kappa gene repertoire in the human germ line. Eur J Immunol. 1990;20:1855.

    Article  PubMed  CAS  Google Scholar 

  105. Williams SC, Winter G. Cloning and sequencing of human immunoglobulin V lambda gene segments. Eur J Immunol. 1993;23:1456.

    Article  PubMed  CAS  Google Scholar 

  106. Cossman J, Uppenkamp M, Sundeen J, et al. Molecular genetics and the diagnosis of lymphoma. Arch Pathol Lab Med. 1988;112:117.

    PubMed  CAS  Google Scholar 

  107. Seidman JG, Max EE, Leder P. A κ-immunoglobulin gene is formed by site-specific recombination without further somatic mutation. Nature. 1979;280:370.

    Article  PubMed  CAS  Google Scholar 

  108. Early P, Huang H, David M, et al. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D, and JH. Cell. 1980;19:981.

    Article  PubMed  CAS  Google Scholar 

  109. Reth MG, Jackson S, Alt FW. VHDJH formation and DJH replacement during pre-B differentiation: Nonrandom usage of gene segments. EMBO J. 1986;5:2131.

    PubMed  CAS  Google Scholar 

  110. Berman JE, Mellis SJ, Pollock R, et al. Content and organization of the human Ig VH locus: Definition of three new VH families and linkage to the Ig CH locus. EMBO J. 1988;7:727.

    PubMed  CAS  Google Scholar 

  111. Siebenlist U, Ravetch JV, Korsmeyer S, et al. Human immunoglobulin D segments encoded in tandem multigenic families. Nature. 1981;294:631.

    Article  PubMed  CAS  Google Scholar 

  112. Ichihara Y, Matsuoka H, Kurosawa Y. Organization of human immunoglobulin heavy chain diversity gene loci. EMBO J. 1988;7:4141.

    PubMed  CAS  Google Scholar 

  113. Ravetch JV, Siebenlist U, Korsmeyer S, et al. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981;27:583.

    Article  PubMed  CAS  Google Scholar 

  114. Buluwela L, Albertson DG, Sherrington P, et al. The use of chromosomal translocations to study human immunoglobulin gene organization: Mapping DH segments within 35 kb of the C mu gene and identification of a new DH locus. EMBO J. 1988;7:2003.

    PubMed  CAS  Google Scholar 

  115. Davis MM, Kim SK, Hood LE. DNA sequences mediating class switching in alpha-immunoglobulins. Science. 1980;209:1360.

    Article  PubMed  CAS  Google Scholar 

  116. Kataoka T, Miyata T, Honjo T. Repetitive sequences in class- switch recombination regions of immunoglobulin heavy chain genes. Cell. 1981;23:357.

    Article  PubMed  CAS  Google Scholar 

  117. Marcu KB, Lang RB, Stanton LW, Harris LJ. A model for the molecular requirements of immunoglobulin heavy chain class switching. Nature. 1982;298:87.

    Article  PubMed  CAS  Google Scholar 

  118. Sakano H, Maki R, Kurosawa Y, et al. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature. 1980;286:676.

    Article  PubMed  CAS  Google Scholar 

  119. Korsmeyer SJ, Hieter PA, Ravetch JV, et al. Developmental hierarchy of immunoglobulin gene arrangements in human leukemic pre-B-cells. Proc Natl Acad Sci USA. 1981;78:7096.

    Article  PubMed  CAS  Google Scholar 

  120. Kabat EA, Wu TT, Bilofsky H, et al. Sequences of Proteins of Immunological Interest. 4th Ed. Washington, DC: US Department of Health and Human Services, National Institutes of Health;1983.

    Google Scholar 

  121. Ralph QM, Brisco MJ, Joshua DE, et al. Advancement of multiple myeloma from diagnosis through plateau phase to progression does not involve a new B-cell clone: evidence from the Ig heavy chain gene. Blood. 1993;82:202.

    PubMed  CAS  Google Scholar 

  122. Bakkus MHC, Heirman C, Van Riet I, et al. Evidence that multiple myeloma Ig heavy chain VDJ genes contain somatic mutation but show no intraclonal variation. Blood. 1992;80:2326.

    PubMed  CAS  Google Scholar 

  123. Seidman JG, Leder A, Nau M, et al. Antibody diversity. Science. 1978;202:11.

    Article  PubMed  CAS  Google Scholar 

  124. Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302:575.

    Article  PubMed  CAS  Google Scholar 

  125. Kunkel HG. The “abnormality” of myeloma proteins. Cancer Res. 1968;28:1351.

    PubMed  CAS  Google Scholar 

  126. Natvig JB, Kunkel HG. Human immunoglobulins: classes, sub- classes, genetic variants, and idiotypes. Adv Immunol. 1973;16:1.

    Article  PubMed  CAS  Google Scholar 

  127. Krause RM. The search for antibodies with molecular uniformity. Adv Immunol. 1970;12:1.

    Article  PubMed  CAS  Google Scholar 

  128. Potter M. Myeloma proteins (M-component) with antibody-like activity. N Engl J Med. 1971;284:831.

    Article  PubMed  CAS  Google Scholar 

  129. Seligmann M, Brouet JC. Antibody activity of human myeloma globulins. Semin Hematol. 1973;10:163.

    PubMed  CAS  Google Scholar 

  130. Osterland CK, Espinoza LR. Biological properties of myeloma proteins. Arch Intern Med. 1975;135:32.

    Article  PubMed  CAS  Google Scholar 

  131. Gutman AB. The plasma proteins in disease. Adv Protein Chem. 1948;4:155.

    Google Scholar 

  132. Buxbaum JN. The biosynthesis, assembly, and secretion of immunoglobulins. Semin Hematol. 1973;10:33.

    PubMed  CAS  Google Scholar 

  133. Stone MJ, Frenkel EP. The clinical spectrum of light chain myeloma: a study of 35 patients with special reference to the occurrence of amyloidosis. Am J Med. 1975;58:601.

    Article  PubMed  CAS  Google Scholar 

  134. Kyle RA, Greipp PR. The laboratory investigation of monoclonal gammopathies. Mayo Clin Proc. 1978;53:719.

    PubMed  CAS  Google Scholar 

  135. Whicher JT, Wallage M, Fifield R. Use of immunoglobulin heavy- and light-chain measurements compared with existing techniques as a means of typing monoclonal immunoglobulins. Clin Chem. 1987;33:1771.

    PubMed  CAS  Google Scholar 

  136. Kyle RA. Sequence of testing for monoclonal gammopathies. Arch Pathol Lab Med. 1999;123:114.

    PubMed  CAS  Google Scholar 

  137. Reichert CM, Everett Jr DF, Nadler PI, Papadopoulos NM. High- resolution zone electrophoresis, combined with immunofixation, in the detection of an occult myeloma paraprotein. Clin Chem. 1982;28:2312.

    PubMed  CAS  Google Scholar 

  138. Katzmann JA, Kyle RA, Benson J, Larson DR, Snyder MR, Lust JA, Rajkumar SV, Dispenzieri A. Screening panels for detection of monoclonal gammopathies. Clin Chem. 2009;55:1517.

    Google Scholar 

  139. Dispenzieri A, Kyle R, Merlini G, Miguel JS, Ludwig H, Hajek R, Palumbo A, Jagannath S, Blade J, Lomial S, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia. 2008;23:215.

    Article  PubMed  CAS  Google Scholar 

  140. Pola V, Tichý M. Bisalbuminemia: Critical review and report of a case of an acquired form in a myeloma patient [German]. Folia Haematol Int Mag Klin Morphol Blutforsch. 1985;112:208.

    PubMed  CAS  Google Scholar 

  141. Kyle RA, Robinson RA, Katzmann JA. The clinical aspects of biclonal gammopathies: review of 57 cases. Am J Med. 1981;71:999.

    Article  PubMed  CAS  Google Scholar 

  142. Dispenzieri A, Gertz MA, Therneau TM, Kyle RA. Retrospective cohort study of 148 patients with polyclonal gammopathy. Mayo Clin Proc. 2001;76:476.

    Article  PubMed  CAS  Google Scholar 

  143. Whicher JT, Calvin J, Riches P, Warren C. The laboratory investigation of paraproteinaemia. Ann Clin Biochem. 1987;24:119.

    PubMed  CAS  Google Scholar 

  144. Keren DF. Capillary zone electrophoresis in the evaluation of serum protein abnormalities. Am J Clin Pathol. 1998;110:248.

    PubMed  CAS  Google Scholar 

  145. Clark R, Katzmann JA, Wiegert E, et al. Rapid capillary electrophoretic analysis of human serum proteins: qualitative comparison with high-throughput agarose gel electrophoresis. J Chromatogr A. 1996;744:205.

    Article  PubMed  CAS  Google Scholar 

  146. Katzmann JA, Clark R, Wiegert E, et al. Identification of monoclonal proteins in serum: a quantitative comparison of acetate, agarose gel, and capillary electrophoresis. Electrophoresis. 1997;18:1775.

    Article  PubMed  CAS  Google Scholar 

  147. Bradwell AR, Carr-Smith HD, Mead GP, Tang LX, Showell PJ, Drayson MT, Drew R. Highly sensitive automated immunoassay for immunoglobulin free light chains in serum and urine. Clin Chem. 2001;47:637.

    Google Scholar 

  148. Katzmann JA, Dispenzieri A, Kyle RA, Snyder MR, Plevak MF, Larson DR, et al. Elimination of the need for urine studies in the screening algorithms for monoclonal gammopathies by using serum immunofixation and free light chain assays. Mayo Clin Proc. 2006;81:1575.

    Article  PubMed  CAS  Google Scholar 

  149. Katzmann JA, Clark RJ, Abraham RS, Bryant S, Lymp JF, Bradwell AR, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem. 2002;48:1437–44.

    PubMed  CAS  Google Scholar 

  150. Drayson M, Tang LX, Drew R, Mead GP, Carr-Smith H, Bradwell AR. Serum free light-chain measurements for identifying and monitoring patients with nonsecretory multiple myeloma. Blood. 2001;97:2900–1.

    Article  PubMed  CAS  Google Scholar 

  151. Katzmann JA, Abraham RS, Dispenzieri A, Lust JA, Kyle RA. Diagnostic performance of quantitative κ and λ free light chain assays in clinical practice. Clin Chem. 2005;51:878–81.

    Article  PubMed  CAS  Google Scholar 

  152. Abraham RS, Katzmann JA, Clark RJ, Bradwell AR, Kyle RA, Gertz MA. Quantitative analysis of serum free light chains. A new marker for the diagnostic evaluation of primary systemic amyloidosis. Am J Clin Pathol. 2003;119:274–8.

    Article  PubMed  CAS  Google Scholar 

  153. Lachmann HJ, Gallimore R, Gillmore JD, Carr-Smith HD, Bradwell AR, Pepys MB, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Bt J Haematol. 2003;122:78–94.

    Article  CAS  Google Scholar 

  154. Bradwell AR, Carr-Smith HD, Mead GP, Harvey TC, Drayson MT. Serum test for assessment of patients with Bence Jones myeloma. Lancet. 2003;361:489–91.

    Article  PubMed  Google Scholar 

  155. Abraham RS, Clark RJ, Bryant SC, Lymp JF, Larson T, Kyle RA, et al. Correlation of serum immunoglobulin free light chain quantification with urinary Bence Jones protein in light chain myeloma. Clin Chem. 2002;48:655–7.

    PubMed  CAS  Google Scholar 

  156. Beetham R, Wassell J, Wallage MJ, Whiteway AJ, James JA. Can serum free light chains replace urine electrophoresis in the detection of monoclonal gammopathies? Ann Clin Biochem. 2007;44:516–22.

    Article  PubMed  CAS  Google Scholar 

  157. Nowrousian MR, Brandhorst D, Sammet C, Kellert M, Daniels R, Schuett P, et al. Serum free light chain analysis and urine immunofixation electrophoresis in patients with multiple myeloma. Clin Cancer Res. 2005;11:8706–14.

    Article  PubMed  CAS  Google Scholar 

  158. Hill PG, Forsyth JM, Rai B, Mayne S. Serum free light chains: an alternative to the urine Bence Jones proteins screening test for monoclonal gammopathies. Clin Chem. 2006;52:1743–8.

    Article  PubMed  CAS  Google Scholar 

  159. Abadie JM, Bankson DD. Assessment of serum free light chain assays for plasma cell disorder screening in a veterans affairs population. Ann Clin Lab Sci. 2006;36:157–62.

    PubMed  CAS  Google Scholar 

  160. Bakshi NA, Bulbranson R, Garstka D, Bradwell AR, Keren DF. Serum free light chain (FLC) measurement can aid capillary zone electrophoresis in detecting subtle FLC-producing M proteins. Am J Clin Pathol. 2005;124:214–8.

    Article  PubMed  CAS  Google Scholar 

  161. Marien G, Oris E, Bradwell AR, Blanckaert N, Bossuyt X. Detection of monoclonal proteins in sera by capillary zone electrophoresis and free light chain measurements. Clin chem. 2002;48:1600–1.

    PubMed  CAS  Google Scholar 

  162. Deegan MJ, Perry M, Hayashi H. A rapid method for identifying the light chain component of a monoclonal protein, abstracted. Blood. 1985;66 Suppl 1:186a.

    Google Scholar 

  163. Keren DF, Warren JS, Lowe JB. Strategy to diagnose monoclonal gammopathies in serum: High-resolution electrophoresis, immunofixation, and κ/λ quantification. Clin Chem. 1988;34:2196.

    PubMed  CAS  Google Scholar 

  164. Jones RG, Aguzzi F, Bienvenu J, et al. Use of immunoglobulin heavy-chain and light-chain measurements in a multicenter trial to investigate monoclonal components: II. Classification by use of computer-based algorithms. Clin Chem. 1991;37:1922.

    PubMed  CAS  Google Scholar 

  165. Bush D, Keren DF. Over and underestimation of monoclonal gammopathies by quantification of κ- and γ-containing immunoglobulins in serum (editorial). Clin Chem. 1992;38:315.

    PubMed  CAS  Google Scholar 

  166. Palladini G, Russo P, Bosoni T, Verga L, Sarais G, Lavatelli F, Nuvolone M, Obici L, Casarini S, Donadei S, Albertini R, Righetti G, Marini M, Graziani MS, D’Eril GVM, Moratti R, Merlini G. Identification of amyloidogenic light chains requires the combination of serum-free light chain assay with immunofixation of serum and urine. Clin Chem. 2009;55:499.

    Article  PubMed  CAS  Google Scholar 

  167. Markowitz H, Tschida AR. Automated quantitative immuno-chemical analysis of human immunoglobulins. Clin Chem. 1972;18:1364.

    PubMed  CAS  Google Scholar 

  168. Fahey JL, McKelvey EM. Quantitative determination of serum immunoglobulins in antibody-agar plates. J Immunol. 1965;94:84.

    PubMed  CAS  Google Scholar 

  169. Schreiber WE, Chiang E, Tse SSL. Electrophoresis underestimates the concentration of polyclonal immunoglobulins in serum. Am J Clin Pathol. 1992;97:610.

    PubMed  CAS  Google Scholar 

  170. Snozek CL, Saenger AK, Greipp PR, Bryant SC, Kyle RA, Rajkumar SV, Katzmann JA. Comparison of bromcresol green and agarose protein electrophoresis for quantitation of serum albumin in multiple myeloma. Clin Chem. 2007;53:1099.

    Article  PubMed  CAS  Google Scholar 

  171. Kapoor P, Kumar S, Fonseca R, Lacy MQ, Witzig TE, Hayman SR, Dispenzieri A, Buadi F, Bergsagel PL, Gertz MA, Dalton RJ, Mikhael JR, Dingli D, Reeder CB, Lust JA, Russell SJ, Roy V, Zeldenrust SR, Stewart AK, Kyle RA, Greipp PR, Rajkumar SV. Impact of risk stratification on outcome among patients with multiple myeloma receiving initial therapy with lenalidomide and dexamethasone. Blood. 2009;114:518.

    Article  PubMed  CAS  Google Scholar 

  172. Katzmann JA, Massey MA, Greipp PR, et al. Artifactually low IgG monoclonal protein (M-spike) quantitation on agarose gel electrophoresis: comparison of agarose gel electrophoresis, capillary zone electrophoresis, and nephelometry. Clin Chem. 2000;46(Suppl.): A169.

    Google Scholar 

  173. Pruzanski W, Watt JG. Serum viscosity and hyperviscosity syndrome in IgG multiple myeloma. Report on 10 patients and a review of the literature. Ann Intern Med. 1972;77:853.

    PubMed  CAS  Google Scholar 

  174. Gertz MA, Kyle RA. Hyperviscosity syndrome. J Intens Care Med. 1995;10:128.

    CAS  Google Scholar 

  175. Brouet JC, Clauvel JP, Danon F, et al. Biologic and clinical significance of cryoglobulins: a report of 86 cases. Am J Med. 1974;57:775.

    Article  PubMed  CAS  Google Scholar 

  176. Gorevic PD, Kassab HJ, Levo Y, et al. Mixed cryoglobulinemia: clinical aspects and long-term follow-up of 40 patients. Am J Med. 1980;69:287.

    Article  PubMed  CAS  Google Scholar 

  177. Letendre L, Kyle RA. Monoclonal cryoglobulinemia with high thermal insolubility. Mayo Clin Proc. 1982;57:629.

    PubMed  CAS  Google Scholar 

  178. Dammacco F, Sansonno D. Antibodies to hepatitis C virus in essential mixed cryoglobulinaemia. Clin Exp Immunol. 1992;87:352.

    Article  PubMed  CAS  Google Scholar 

  179. Martin WJ, Mathieson DR, Eigler JOC. Pyroglobulinemia: further observations and review of 20 cases. Proc Staff Meet Mayo Clin. 1959;34:95.

    PubMed  CAS  Google Scholar 

  180. Caulin-Glaser T, Prelli F, Franklin EC. Structural studies on an IgM-λ pyroglobulin. J Lab Clin Med. 1982;99:845.

    PubMed  CAS  Google Scholar 

  181. Patterson R, Weiszer I, Rambach W, et al. Comparative cellular and immunochemical studies of two cases of pyroglobulinemia. Am J Med. 1968;44:147.

    Article  PubMed  CAS  Google Scholar 

  182. Invernizzi F, Cattaneo R, Rosso di San Secondo V, et al. Pyroglobulinemia: a report of eight patients with associated paraproteinemia. Acta Haematol (Basel). 1973;50:65.

    Google Scholar 

  183. Sugai S. IgA pyroglobulin, hyperviscosity syndrome and coagulation abnormality in a patient with multiple myeloma. Blood. 1972;39:224.

    PubMed  CAS  Google Scholar 

  184. Tsuda H, Kishimoto S. IgD-plasma cell leukemia associated with pyroglobulinemia and pyroglobulinuria: new types of pyroglobulin and cytoplasmic fibrils. Acta Haematol (Basel). 1982;67:80.

    Google Scholar 

  185. Line DE, Adler S, Fraley DS, Burns FJ. Massive pseudoproteinuria caused by nafcillin. JAMA. 1976;235:1259.

    Article  PubMed  CAS  Google Scholar 

  186. Hinberg IH, Katz L, Waddell L. Sensitivity of in vitro diagnostic dipstick tests to urinary protein. Clin Biochem. 1978;11:62.

    Article  PubMed  CAS  Google Scholar 

  187. Scarpioni L, Ballocchi S, Bergonzi G, et al. Glomerular and tubular proteinuria in myeloma: relationship with Bence Jones proteinuria. Contrib Nephrol. 1981;26:89.

    PubMed  CAS  Google Scholar 

  188. Dalal FR, Winsten S. Double light-chain disease: a case report. Clin Chem. 1979;25:190.

    Google Scholar 

  189. Whicher JT, Hawkins L, Higginson J. Clinical applications of immunofixation: a more sensitive technique for the detection of Bence Jones protein. J Clin Pathol. 1980;33:779.

    Article  PubMed  CAS  Google Scholar 

  190. Kyle RA, Gertz MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32:45.

    PubMed  CAS  Google Scholar 

  191. Harrison HH. The “ladder light chain” or “pseudo-oligoclonal” pattern in urinary immunofixation electrophoresis (IFE) studies: a distinctive IFE pattern and an explanatory hypothesis relating it to free polyclonal light chains. Clin Chem. 1991;37:1559.

    PubMed  CAS  Google Scholar 

  192. Charles EZ, Valdes AJ. Free fragments of γ chain in the urine: a possible source of confusion with γ heavy-chain disease. Am J Clin Pathol. 1994;101:462.

    PubMed  CAS  Google Scholar 

  193. McLaughlin P, Alexanian R. Myeloma protein kinetics following chemotherapy. Blood. 1982;60:851.

    PubMed  CAS  Google Scholar 

  194. Snyder MR, Clark R, Bryant SC, Katzmann JA. Quantification of urinary light chains. Clin Chem. 2008;54:1744.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Katzmann Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Katzmann, J., Kyle, R.A., Lust, J., Snyder, M., Dispenzieri, A. (2013). Immunoglobulins and Laboratory Recognition of Monoclonal Proteins. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics